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In this paper we consider the problem of optimal search strategies on multi-linked networks, i.e. graphs
whose nodes are endowedwith several independent sets of links.We focus preliminarily on agents randomly
hopping along the links of a graph, with the additional possibility of performing non-local hops to randomly
chosen nodes with a given probability. We show that an optimal combination of the two jump rules exists
that maximises the efficiency of target search, the optimum reflecting the topology of the network.We then
generalize our results to multi-linked networks with an arbitrary number of mutually interfering link sets.

C omplex networks are ubiquitous in nature and play a role of paramount importance in many contexts.
Internet and the cyberworld, which permeate our everyday life, are self-organized hierarchical graphs.
Urban traffic flows on intricate road networks, which impact both transportation design and epidemic

control. In the brain, neurons are cabled through heterogeneous connections, which support the propagation of
electric signals. In all these cases, the true challenge is to unveil themechanisms through which specific dynamical
features are modulated by the underlying topology of the network. Here, we study the utterly general problem of
optimal search strategies onmulti- linked networks, i.e. graphs which have independent sets of edges that connect
the same group of nodes.

To this aim, let us start by considering a given agent (e.g. an electric pulse, an excitation, an animal or a human
individual, such as a web surfer) located at a node of a network. The agent can hop to a neighbouring node,
provided a link exists as specified by the adjacency matrix associated with the graph. The walker wanders on the
network through a sequences of steps, that allow for a local exploration of its support. In such situations, the
efficiency in reaching a specified location may be quantified by the mean first passage time, a robust and widely
used measure of transport efficiency on networks in many contexts5,4, from biology19 and ecology8,10,40 to road
network dynamics17 and quantum systems16,38.

However, local moves are not always the best option to reach a target efficiently. For example, facilitated
diffusion in the cell nucleus, a mix of one-dimensional gliding along the DNA and three-dimensional jumps to
adjacent DNA strands, is believed to account for the efficiency of transcription factors in finding their binding
sites7,32,9. Analogously, inspired by the behaviour of foraging animals, it has been hypothesised that the local
exploration of a connected territory might be complemented by intermittent relocation phases in order to
optimize the searching strategy23. Accordingly, the animal would venture off-track through ballistic runs from
time to time, thus sampling larger portions of space. In such examples, the relative duration of the local and
relocation stages may control the optimization of the dual-stage strategy36.

Walkers on complex networks could in principle rely on similar integrated strategies, possibly tuned to the
heterogeneous nature of the underlying support. In the seminal paper by Kleinberg25, the navigation on a regular
two dimensional lattice distorted with the inclusion of long-range connections was studied and an optimum for
the delivery time found, when tuning the probability of off-lattice connections between nodes. Exacts results and
new insights on the navigability of small-world networks were later reported independently in Refs. 14 and 15.
Since the pioneering contribution by Kleinberg, the problem of assisted exploration of a network has been
addressed in a number of different contexts22,26,28,29,30,35,37, mainly relying on numerical investigations targeted
to the problem at hand.

To help intuition let us consider, for example, web surfing. Starting the exploration from an arbitrary web page,
one usually proceeds by following the hyperlinks which are therein available. This is a local search, which the user
abandons when she opens a new tab to look for a different, potentially related topic, eventually landing into another
virtual compartment which will be again probed locally for some time. On a different level, the brain displays
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multi-layered architectures of connections, that assist the finely orche-
strated spatio-temporal patterns underlying brain function6. One may
then speculate that electric signals can be transmitted across different
layers, thus realizing de facto non-local jumps in the overall brain
connectome between single-layer connected components. Non-local
jumps (moves directed towards target sites which are not physically
linked to the departure node) may be also loosely referred to as long-
range, even though the underlying network is not necessarily endowed
with a metric.
Building upon these ideas, we start by investigating the conditions

for optimal target searches on a generic network ofN nodes. In order
to quantify search efficiency on a given network, we shall analytically
compute mean first passage times31,34,24, which are widely used to
gauge search strategies in many contexts42,2,21,46. To investigate the
combined effect of local and non-local moves, we study a simple
stochastic process which accommodates for both local diffusion
and non-local relocation to sites which are not connected through
the adjacency matrix.
An interesting application of such analysis is random walk on two

networks that share the same nodes but are endowed with two dif-
ferent sets of links. Altogether, the two nested graphs sharing the
same nodes might be termed a multi-linked network. Only local
moves are allowed in this case, as prescribed by the two adjacency
matrices associated with the two link sets. Moving from this obser-
vation, in the second part of the paper wewill examine amore general
setting where agents can diffuse in multi-linked networks endowed
with an arbitrary number of independent link sets. The ensuing sub-
networks can be imagined to be assembled as a stratified hierarchy of
independent levels, each hosting an identical replica of the nodes, as
in the spirit of a multiplex20,11,33,1. Indeed, it is straightforward to
extend our analysis to the relevant, andmore general situation where
only a subset of the nodes is present in each nested level.

Results
Relocation-assisted diffusion. Let A denote the N|N adjacency
matrix of the network, with Aij~1 if i and j are physically
connected by a link, and Aij~0 otherwise. The degree of node i is

given by kAi ~
XN

j
Aij. The probability that a particle sitting at node i

jumps on any other node j is specified by the following matrix

Tij~a
Aij

kAi
z(1{a)

Sij
kSi

ð1Þ

where Sij~f0,1g are the entries of a random symmetric sparse
N|N matrix, that controls the relocation via non-local hops (self-
loops are, in principle, also allowed for). The density of ones in S is
measured by the parameter d[½0,1�, so that the average number of
nodes that can be reached from any node i via off-network long-

range jumps is hkSi i:h
XN

j
Siji~Nd. The parameter a[½0,1� tunes

the relative strength of the two competing mechanisms, local
diffusion and random relocation. When a~1 the walker explores
the network according to a purely local rule, while in the opposite
limit, a~0, hopping towards disconnected sites are the only allowed
moves. For d~1, the matrix S is filled with ones and T becomes the
known Google matrix used in the PageRank Algorithm12,27.
We define the search time as the time needed by a particle starting

at node i to reach an absorbing trap located at node j. This satisfies the
following relation (see Methods)

ti?j~
XN{1

k~1

Z{1
j

� �
ik

ð2Þ

where Zj~IN{1{Tj. The subscript j indicates an (N{1)|(N{1)
submatrix obtained by suppressing the j-th row and the j-th column,
while IN{1 denotes the identity matrix of size N{1. To assess the

overall ability of the walker to find a target, we introduce a global
parameter hti by averaging Eq. (2) over all possible starting nodes (i)
and trap locations (j), that is,

hti~ 1
N(N{1)

X
j=i

ti?j ð3Þ

In short, hti quantifies the ability of the walker to search for targets
at the global scale of the network. The shorter hti, the more efficient
the search. The quantity a acts as a free parameter – it can be adjusted
to select the optimal balance between local and non-local hops, with
the aim of minimizing the global exploration time.
Figure 1 illustrates how hti changes as a function of the relative

weight of local and non-local moves for two different classes of
synthetic undirected networks, the scale-free3,13 and the small-
world44 networks. The curves display a clear minimum, implying
the existence of an optimal value of a which minimizes the search
time. Exactly the same behaviour is displayed by directed networks.
The location of the minimum depends on the topology of the net-
work, which defines the backbone for local diffusion, but also on the
average number of sites that can be reached through a single long-
range hop, Nd. Remarkably, the fewer sites are accessible through
non-local jumps (i.e. the smaller d), themore pronounced the optim-
ality condition (see upper insets in Fig. 1).
When d?1, amin approaches (but never reaches) the limiting

solution amin~0. In this case, the walker can virtually land on any
node with just one jump (the matrix S is completely filled with ones),
and local diffusion contributes modestly to further reduce the aver-
age searching time. Although a minimum always exists also for d~1
(the GoogleMatrix case), htimin is very close toN , the time the walker
needs to reach an isolated trap when a is exactly set to zero.
Conversely, when dv1, non-local short-cuts are only available
towards a subset of nodes. This is a more plausible situation, bearing
in mind the afore-mentioned applications. When surfing the web,
from time to time one will abandon a given area of exploration to
look for the presumed central node of a new region that she wishes to
sample. Similarly, long-range connections in the brain, established
through trans-layer channels, are certainly fewer than those account-
ing for effective bridges among the N nodes of a given layer.
The relocation-assisted search is 10–15% more efficient with

respect to the purely local dynamics for intermediate values of the
density d of available distant nodes (insets in Fig. 1). The same
analysis performed with different values of the average connectivity
hki (scale-free network) and of the rewiring parameter p (Watts-
Strogatz) yields similar results. In particular, upon decreasing hki
one recovers the same qualitative behaviour as obtained when
increasing d (data not shown). In this paper, we have chosen to focus
on small networks because of the computational cost required to
invert the matrix Zj, for any given j. However, the method is utterly
general and may be applied to systems of arbitrary size N. In the
Supplementary Information, we show that amin progressively
decreases as N increases, while keeping d constant. Conversely,
working at fixed size N one can change the position of the minimum
as sought, by acting on d. The counter-intuitive conclusion is that the
density of non-local links should be reduced as N gets larger to keep
the optimum value of a fixed. Interestingly, the advantage brought
about by the assisted search over purely local diffusion is preserved if
N and d are simultaneously tuned so to keep amin fixed. The data
reported in the Supplementary Information refer to the Watts-
Strogatz setting but the same conclusions hold in general. As a side
remark, we recall that the searching time can be expressed as a
function of the nodes connectivity, for specific classes of networks,
in the large N limit43. Such large networks could share the same
characteristics of searchability for the limiting choice a~1. When
introducing the effect of long-range teleportation one can in prin-
ciple remove such degeneracy and obtain distinct optimal values of a.
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To confirm the existence of an optimal searching strategy on
real data sets, we have extracted the adjacency graph of small
portions of the web, starting from the home-pages of four main
European newspapers (see Methods). The top panel of Fig. 2
shows that the general picture described above for synthetic data
sets is valid for real networks too. This has nothing to do with the
peculiar structure of the Web, for the same analysis performed on
small neural networks of different animals confirms the existence
of a clear minimum in the average search time (bottom panel in
Fig. 2).
In all the cases examined, hti appears to be a convex smooth

function of a with a clear minimum. One may ask whether this is a
widespread feature of many graphs. More generally, it would be
helpful to work out a quantitative criterion to predict whether an
optimal search strategy exists at all, possibly also identifying the

optimal balance between local and non-local moves required to place
oneself in such regime. Unfortunately, the exact dependence of hti on
a is hidden in the inverse of thematrix Z which, in general, cannot be
computed explicitly. However, a principle of this sort can be formu-
lated by resorting to a perturbative approach. If we assume that the
stationary point is located at sufficiently small values of a, then we
may consider a search time of the form

hti^c0{c1azc2a
2 ð4Þ

In this case, the coefficients c0, c1 and c2, which depend on the
topology of the network, can be computed analytically (see
Methods). A necessary and sufficient condition for a meaningful
minimum to occur is c1w0 and c2w0 with c1v2c2, which ensures
that aminv1. This provides a handy rule to enquire about the exist-
ence of an optimality condition for any given network.
In all the cases that we examined, the coefficients ck turn out to be

positive. Therefore a minimum is always predicted to exist under the
quadratic approximation, and closed expressions for both amin and
htimin can be readily obtained. These match well the exact data com-
puted through Eq. (3). The agreement is of course better when the
minimum is found close to a~0 (Fig. 2–4). Explicit analytical

Figure 2 | The average search time on real data sets displays an optimum
as a function of the relative weight of local and non-local moves. Top:
average time hti as a function of a for four real Web subgraphs. The

100|100 adjacency matrices have been mapped out by a Web crawler

starting from the web sites of four major European newspapers (see

Methods). The sparse symmetric matrix S has been generated with

d~0:04. Bottom: search time in two neuronal networks: cortical

connectivity network of cats (52 nodes, left39) and macaques (71 nodes,
right45). In both cases we have used d~0:1.

Figure 1 | The average search time on synthetic networks displays an
optimumas a function of the relative weight of local and non-localmoves.
Upper panel: scale-free network generatedwith the preferential attachment

method3 with N~200 and average connectivity hki~20. Lower panel:
Watts and Strogatz small-world random network with p~0:544, N~100
and average connectivity hki~9:5. Here the sparse symmetric matrix S has
been generated with d~0:04 (scale-free) and d~0:1 (Watts-Strogatz). The

insets show the position of the minimum amin and the corresponding

shortest average time htimin (normalized to the case of a purely local walker,

tD:htia~1) as a function of the average fraction of long-range accessible

nodes d. The data are averaged over 10 independent realizations of the
random matrices S and error bars correspond to one standard deviation.
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expressions can be obtained in some limiting cases. When d~1 one
recovers the Google matrix and the transition rate from node i to
node j readsTij~aAij=k

A
i z(1{a)=N . In this case it is not difficult to

show that c0~N , c1~N=(N{1) and

c2~N=(N{1)
XN

j~1
cj cjz1=kAj

� �
{ðNþ 1Þ

h i
, where cj~PN

i~1 Aij=kAi (see Supplementary Information for the full deriva-
tion). In the case of a regular lattice of connectivity k, one immedi-
ately finds amin~k=(2N) and htimin~N{c=(4N). The more links
per node are added, the larger the value of amin ([½1=N,0:5�), and the
deeper the minimum for hti vs a. Although htimin is shorter than the
search time tD obtained for a~0, the associated correction is just
O(1=N).
As remarked at the beginning, the analysis carried out above can

be interpreted as diffusion on graphs characterized by a single set of
nodes and two independent sets of links, represented by two different
adjacency matrices A and S. This kind of network could be termed
double-linked. Building on this observation, we discuss in the follow-
ing the generalization of our approach to arbitrarymulti-linked net-
works, where an arbitrary number of independent link sets is
imposed upon the same ensemble of nodes.

The general case ofMnetworks.Let us consider agents hopping on a
given set of nodes, that are joined together through M independent
sets of links, represented by as many different adjacency matrices.
We term such a structure a multi-linked network, i.e. a graph where
links attached to a given node have an identity. For example, in a
transportation network two nodes (cities) could be linked through a
plane connection (air link-set) and by train (railway link-set). With
reference to this setting, we set out to derive the optimal coupling
that maximizes the transport efficiency across the system. Again
with reference to mobility applications, one can consider the
effective design of an integrated urban transportation network18.
Underground, cars and bus service define three different networks
(three different link systems on the same set of nodes): their relative
load in terms of users and a smart planning of the respective
infrastructures could be studied via a systemic approach that
builds on the formalism developed here.
In a multi-linked graph the probability of transition is specified by

the following stochastic matrix

T~
XM{1

l~1

alKl
{1Alz 1{

XM{1

l~1

al

 !
KM

{1AM

where Al are M matrices of size N|N , and Kl are their associated
diagonal matrices of connectivities, namely Kl~diag(kAl

1 , � � � ,kAl
N ).

In this case the reduced matrix Zj reads:

Zj~IN{1{ K{1
M AM

� �
j{
XM{1

l~1

al K
{1
l Al

� �
j

z
XM{1

l~1

al K
{1
M AM

� �
j

ð5Þ

where j flags the position of the absorbing trap. The time it takes to
reach j starting from i can be computed again bymeans of expression
(2) and the average trapping time hti estimated through eq. (3).
Following a straightforward generalization of the calculation carried
out in the preceding paragraph, one can derive an approximate
expression for hti (see Methods)

hti^ 1
N(N{1)

XM{1

l~1

al:a
2
l z

XM{1

l~1

XM{1

k~1
k=l

blk:alak{
XM{1

l~1

cl:alzd

2
64

3
75 ð6Þ

To compute the stationary point of hti, one needs to impose the
condition La1hti~La2hti~ � � �~LaM{1hti~0, which is equivalent
to setting

2a1 b12 � � � � � � b1,M{1

b21 2a2 b23 � � � b2,M{1

..

. ..
. ..

. P ..
.

..

. ..
. ..

. P bM{2,M{1

bM{1,1 � � � � � � bM{1,M{2 2aM{1

0
BBBBBBB@

1
CCCCCCCA

a1

..

.

..

.

..

.

aM{1

0
BBBBBBBB@

1
CCCCCCCCA
~

c1

..

.

..

.

..

.

cM{1

0
BBBBBBBB@

1
CCCCCCCCA

ð7Þ
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Figure 3 | Formula (4) provides a convenient tool to enquire about the
existence of an optimality criterion for the search time in a given network.
The average search time in a small random network of N~100 nodes
(symbols) computed from Eq. (3) is compared to the approximated

quadratic profile described by Eq. (4) (solid line). The inset shows a

close-up of the region around the minimum. Other parameters are: p~0:1,
d~0:29.
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Figure 4 | Existence of an optimum for the average search time in amulti-
linked network with M~3. Density plot of the average search time for

networks with N~100 nodes andM~3. Data are obtained from formula

(3), via numerical inversion of matrix (5), for every choice of a1 and a2. In

both cases here depicted, the three matrices are generated according to the

Watts-Strogatz algorithm, for different choices of the probability pi and the
initial connectivity ki, (i~1,2,3): p1~p2~p3~0:1, k1~70, k2~80,
k3~90 (lower triangle), p1~0:3, p2~0:5, p3~0:7, k1~k2~k3~10
(upper triangle). The dashed crosses identify the optimal values for a1 and

a2 as predicted by the approximated numerical expression (8).
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The stationary point of (6) is a global minimum if the associated
Hessian matrix is positive defined.
To clarify the interest of the proposed generalization, we fixM~3

and investigate the average trapping time as a function of the two
independent parameters a1 and a2. In Fig. 4 we show a densitymap in
the (a1, a2) plane of the exact search time hti computed for two
different multi-linked networks following the prescription (3).
A minimum is clearly found in both cases, signaling the existence
of an optimal choice of the coupling strengths that maximizes the
transport efficiency. In the context of the above example, this know-
ledge could be exploited for the design of efficiently integrated facil-
ities in urban transportation planning, or to favour a smart
distribution of users through existing infrastructures.
Approximate analytical expressions for the optimal values of a1

and a2 can be readily obtained from system (7), which gives

a1~
2a2c1{b1,2c2
4a1a2{b21,2

a2~
2a1c2{b1,2c1
4a1a2{b21,2

ð8Þ

The white crosses in Fig. 4 refer to the above solution. As it happens
in the case of M~2 analyzed in the previous section, the approx-
imate solution is a better estimate of the true minimum when this is
found close to a1~a2~0.

Discussion
Summarising, in this paper we have addressed the problem of search
on networks. To this end, we have preliminarily studied the trapping
problem for a modified randomwalk that combines local hops along
the links of the graph with non-local relocation jumps, i.e. not along
the links contained in the adjacencymatrix.We have shown, both for
artificial and real datasets, that an optimal balance between local and
non-local moves exists whichminimizes the average time required to
reach a trap. Furthermore, we have derived closed analytical expres-
sions, that enable one to predict the optimal combination as a func-
tion of the network topology.
In the second part of the paper we have focused on a random

walker diffusing on a arbitrary number of interconnected networks,
which share the same set of nodes but are characterized by different
adjacency matrices. We have termed a complex structure of this kind
a multi-linked network. Also in this generalized setting an optimum
for the average transport time is found, which can be controlled by
tuning the different coupling strengths among the individual sub-
networks. In conclusion, the optimality criterion seems to be a uni-
versal dynamical mechanism, which might have exerted a critical
pressure in the evolutionary selection of many naturally occurring
network architectures of the multi-linked kind and that might
equally well be exploited in the optimization of man-made technolo-
gical solutions.

Methods
Computation of first passage times. The mean first passage time ti , namely the time
it takes for a walker starting at site i to get to any one ofNC randomly placed traps, can
be computed by extending to the case of a network the standard argument used in the
continuum limit for a randomwalk on a line. Let us consider the interval ½0,x0� on the
real axis and a random walk with two absorbing boundaries located at x~0 and
x~x0. The time interval between two jumps is Dt and the lattice spacing is Dx. The
exit time t(x) obeys to t(x)~1=2 t(xzDx)zDt½ �z1=2 t(x{Dx)zDt½ �meaning that
the walker can be regarded as starting one step in the future with equal probability
from either xzDx or x{Dx. The generalization of this equation for a random walk
on a network is simply given by ti~

X
j
Tij tjzDt
� �

, a formulation which proves

particularly convenient to investigate the trapping problem. Indeed, re-labelling the
nodes of the network so as to have non-trap nodes going from 1 to N{NC and all
traps located at nodesN{NCz1 toN , one obtains a matrix T with the last NC rows
equal to zero. Rearranging correspondingly the array ti and recalling that ti~0 for
N{NCz1ƒiƒN , one finds that the exit times are solution of the linear system

XN{NC

j~1
Zijtj~1, where we have denoted by Z the upper-left (N{NC )|(N{NC )

block square sub-matrix of IN{T . Eq. (2) is the formal solution of this last equation.

Adjacency matrices of sub-networks from the web. To gather real data from the
Web we have used theWeb crawler surfer.m (http://www.mathworks.com/). Starting
from a selected URL, the crawler identifies all the hyperlinks in the page and adds
them to the list of URLs to visit. Once all these URLs are visited, the procedure is
repeated recursively for each URL in the list until the assigned number of websites is
reached. The outcome of the algorithm is stored in an adjacency matrix where nodes
represent the visited pages: the entries of the matrix are 1 if two pages are connected
trough a hyperlink, 0 otherwise. The matrix is then symmetrized.

Perturbative expansion of a sum of two matrices. Let C and B be two arbitrary non-
singular squarematrices of the samedimension and let us introduce the operatorH, that
returns the sum of all the elements of a given square matrix. Starting from the relation

CzeBð Þ{1
~ INzeC{1B
� �{1

C{1, and expressing INzeC{1B by a Neumann

series41, it follows CzeBð Þ{1
~C{1{eC{1BC{1ze2C{1BC{1BC{1z . . . . To

apply this approximation to Eq. (3), we introduce two diagonalmatrices associated with
A and S, namely KA~diag(kA1 , . . . ,k

A
N ) and KS~diag(kS1, . . . ,k

S
N ). In this way, T takes

the form aKA
{1Az(1{a)KS

{1S. Consequently, by denoting again by j the position of
the trap, the terms of the reduced matrix Zj can be easily rearranged by collecting
together those proportional to a. In formulae: Zj~IN{1{(KS

{1)jSjz

a (KS
{1)jSj{(KA

{1)jAj

h i
. SettingCj~IN{1{(KS

{1)jSj , Bj~(KS
{1)jSj{(KA

{1)jAj

and e~a, and applying the operator H(:) to CjzeBj
� �{1

, we recover Eq. (4) with

c0~
X

j
H C{1

j

� �
=N=(N{1), c1~

X
j
H C{1

j BjC
{1
j

� �
=N=(N{1) and

c2~
X

j
H C{1

j BjC
{1
j BjC

{1
j

� �
=N=(N{1).

Generalization to the case ofMmatrices. Following the same perturbative scheme
detailed above, one can expand the inverse of Zj defined in eq. (5) as: Z{1

j ^C{1
j

{
PM{1

l~1 alC{1
j Blð ÞjC{1

j z
PM{1

l~1 a2l C
{1
j Blð ÞjC{1

j Blð ÞjC{1
j z

PM{1
l~1

PM{1
k~1
k=l

alak

C{1
j Blð ÞjC{1

j Bkð ÞjC{1
j .

Applying the operator H(:) and summing over all trap locations, one obtains

expression (6) for hti, where: al~
XN

j~1
H C{1

j Blð ÞjC{1
j Blð ÞjC{1

j

� �
, blk~

XN

j~1

H C{1
j Blð ÞjC{1

j Bkð ÞjC{1
j

� �
, cl~

XN

j~1
H C{1

j Blð ÞjC{1
j

� �
and

d~
XN

j~1
H C{1

j

� �
.
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