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ABSTRACT: We present herein a thorough description of the effects of high
glucose concentrations on the diffusion, hydration and internal dynamics of
ubiquitin, as predicted from extensive molecular dynamics simulations on several
systems described at fully atomistic level. We observe that the protein acts as a seed
that speeds up the natural propensity of glucose to cluster at high concentration;
the sugar molecules thus aggregate around the protein trapping it inside a dynamic
cage. This process extensively dehydrates the protein surface, restricts the motions
of the remaining water molecules, and drags the large-scale, collective motions of
protein atoms slowing down the rate of exploration of the conformational space
despite only a slight dampening of fast, local dynamics. We discuss how these
effects could be relevant to the function of sugars as preservation agents in
biological materials, and how crowding by small sticky molecules could modulate

proteins across different reaction coordinates inside the cellular cytosol.

B INTRODUCTION

Sugars play roles as agents for the preservation of biological
material in nature and in biotechnological manufacture,' >
most importantly through their capacity to stabilize proteins
against cold and hot denaturation, both in solution and in the
solid state.*”” Other potential effects of sugars on protein
properties have been less explored, but changes in activity,
dynamics, and regulation can be expected by analogy to the
effects known to be caused by high concentrations of other
molecules. Whereas most hydrophilic molecules have the
capacity to agglomerate and disrupt water structure, sugars and
polyols generally have exceptionally large solubilities, which
allows them to strongly dehydrate other molecules and to
cluster at very high concentrations forming glassy states.*”"!
Because of these special properties, questions about the effects
of sugars on protein properties are intimately related to those
revolving around the effects of viscosity, molecular crowding,
encapsulation and even vitrification on proteins, all meeting at
the crossroads between chemistry, biology, medicine, and
applications in the food and pharmacological industries. Within
all these closely related fields, the effects of high concentrations
of small hydrophilic molecules on protein stability and
translational and rotational diffusion have been explored, but
studies of their effects on protein hydration and on internal
protein dynamics are scarce.*””'>7'¢ More specifically to
sugars, reports on the structure and dynamics of sugar-only
solutions abound,*'”~>* but works dealing with proteins in
sugar solutions are mostly focused on the stability of the
proteins and do not pay much attention to other effects related
to hydration, diffusion, and internal mobility.*”” We recently
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reported in a preliminary work that concentrated glucose
solutions can perturb protein dynamics by restricting
exploration of the conformational space, through a mechanism
that presumably involves protein—sugar interactions.'® How-
ever, we could not provide at that time details on why and how
the exploration of the conformational space is altered, what the
effects on hydration structure and dynamics are, how glucose’s
propensity to cluster relates to these processes and what the
practical outcomes of all these effects could be. In the present
work, we attempted to assess these points and to fully dissect
the effect of high glucose concentrations on protein properties
by describing results from molecular dynamics (MD)
simulations in several systems containing one or more protein
molecules and a large numbers of glucose molecules that form a
crowded, concentrated solution of this small, very hydrophilic
molecule.

Within the scope of biological chemistry, glucose falls in the
category of small hydrophilic solutes, which make up around
25% of the 300—400 g/L solutes found inside the highly
crowded cellular environments.** Thus, beyond the intrinsic
relevance of glucose given its abundance in biological systems
and its applications in biotechnological manufacture, studies of
proteins in concentrated glucose solutions can in principle help
to unveil the effects of small hydrophilic crowders inside cells.
Such crowded conditions are very important in shaping life at
the molecular level, since they force molecules into unspecific
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interactions that alter diffusion through the cell, the structures
and internal dynamics of biomolecules, their activity and
interaction capabilities, and so on, ultimately affecting the
equilibria and cellular processes in which these macromolecules
are involved."”>™">*>~* These effects are so relevant that it is
being increasingly recognized that they should be, and are in
fact being, accounted for in experimental and computational
studies dealing with biomolecules.'>>*3%4045=58

Probably the most studied effects of viscosity, molecular
crowding, and encapsulation on protein properties are those
related to the dampening of translational and rotational
diffusion">*°™>> and those linked to changes in stabil-
i‘cy.4_7‘28’33’35’36’59_64 More recently, experiments and simu-
lations suggested that these conditions can also influence
hydration and internal protein dynamics,'®3”#038596566 yhich
are essential for proteins to function. However, the inherent
difficulty in exploring protein dynamics and hydration,
especially under crowded, encapsulated, and high-viscosity
conditions, has so far hampered detailed studies on these
aspects. The few insights available to date arose from studies on
ubiquitin, a small protein whose structural dynamics (i.e.,
conformational fluctuations) are very important for recognition
of its different protein targets. Indeed, ubiquitin ensembles
refined against NMR data about motions on the nanoseconds—
microseconds time scale show that the protein explores in
solution a landscape that encompasses most of the con-
formations in which it is bound to other proteins. In turn, MD
simulations show that this landscape contains three main basins
that are crossed multiple times in the long nanoseconds time
scale, two of them very close, as seen in our simulations, and
three of them with small structural differences that map mainly
to three loops (shown in Figure S1 together with some more
information).

Ubiquitin dynamics have been vastly studied through
experiments and simulations in dilute solution”~"* and more
recently under crowded-like conditions. First, two related works
reported that confinement of ubiquitin inside reverse micelles,
which can be related to crowded conditions, slightly reduces its
picoseconds—nanoseconds flexibility, although motions in
slower time scales were not probed.**® We then reported
that exploration of ubiquitin’s conformational space in
submicrosecond MD simulations was impaired in systems set
up at high glucose concentrations, compared to reference
conditions in water.'® This interesting observation generated
novel hypotheses and raised a number of issues that we address
here. Does this glucose-crowded condition affect conforma-
tional diffusion through a conserved landscape, or does it also
alter the shape of this landscape? How are motions on different
time scales differentially affected? How do changes in internal
dynamics relate to the better understood changes in transla-
tional and rotational diffusion? To what extent is protein
hydration affected? Are there any relationships between the
observed effects and glucose’s clustering and desolvating
capacities?

In order to answer these questions, headed towards
dissecting the effects of small hydrophilic molecules on protein
properties, we have probed the effect of increasing glucose
concentrations on unbiased MD and replica-exchange MD
(REMD) simulations of ubiquitin. We have studied systems set
up with one or three copies of the protein in different starting
conformational states, in either water or glucose solutions at
108 or 325 g/L concentration (Table S1). The choice of
glucose for these studies relies on the facts that (i) it is
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abundant in nature and in man-made products, (ii) it has been
much studied to understand its clustering and percolating
properties and how it stabilizes proteins, and (iii) it can be
accurately modeled in atomistic simulations even reproducing
quantitatively the formation of clusters and desolvation
potential at high concentrations.””®'"~'¥?*75 n all our
simulations, we used fully atomistic descriptions of all the
systems, as required to capture not only mere steric effects but
also realistic interactions between the different components.

The simulations on systems containing a single protein
molecule and glucose are all 1 us long, allowing us to dissect
the effect of the concentrated small molecule on the protein’s
flexibility in different time scales, its diffusion properties, and
perturbations on the structure and mobility of water and
glucose molecules around the protein surface. From these
analyses we conclude that the protein acts as a seed for
clustering of glucose molecules to occur around the protein, as
predicted from theory in a previous work,® leading to the
formation of a dynamic cage of glucose molecules around the
protein and to strong desolvation of its surface. This perturbs
translational and rotational diffusion, but of most novelty, we
observe that this slowdown is transmitted to the protein
interior so that, whereas fast, local dynamics are reduced only
slightly under crowded conditions, collective motions are
strongly dampened, with a predicted slowdown larger than that
observed for translational and rotational diffusion. Finally, 250
ns-long simulations on systems containing three protein
molecules allow us to visualize that the cages of glucose
molecules around the proteins project into the solution and
contact each other. This results in the formation of structures
that bridge the glucose cages surrounding different proteins,
much like the “noncovalently interacting metabolite structures”
proposed by Cossins et al. in their simulation of the bacterial
cytosol.” This supports the growing hypothesis of the
cytoplasm being a biphasic gel—sol system”® with the additional
insight that small hydrophilic molecules could provide the
driving force for phase separation.

B METHODS

Molecular Dynamics Simulations. Unbiased MD simu-
lations were run with the NAMD’’ code using the
amber99SB”® force field for the protein, TIP3P”® for water
and Glycam06® parameters for a-p-glucose (we have modeled
the alpha anomer only, but given the very similar
physicochemical properties of the alpha and beta anomers
this choice should have minor consequences on the effects that
we studied). NPT conditions were set at 1 atm and 300 K. The
structure of ligand-free human ubiquitin in PDB ID 1D3Z*!
was minimized and equilibrated in water to produce the
conformation that corresponds to state C in Figure 1A. Starting
states L and R were extracted from stable sections of the
simulation of state C in water, lasting for more than 10 ns
around the minima in the PCA frame shown in Figure 1A.
Simulation boxes were built by combining the corresponding
protein structures together with a random distribution of
glucose molecules using the Packmol®” program, and then
solvated with TIP3P water molecules. Further details about
these simulations are given in the Supporting Information (SI)
text.

REMD simulations®> were run with the AMBER code®*
using the same structures and parametrizations described above
for protein, water, and glucose molecules. The simulation in
water was 30 ns long, and those with glucose were 70 ns long.
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All of them were run in NVT conditions with a Langevin
thermostat as shown to be optimal by Rosta et al.** Further
details about these simulations are given in the SI. For each
simulation, 48 replicas were computed at temperatures between
290 and 389 K (all temperatures listed in the SI) and exchanges
were attempted every 1 ps as suggested by Sindhikara et al.*
The analyzed data corresponds to all sections run at 301.1 K,
joined together for each system. We have not used unbiasing
techniques to reconstruct the energy landscape, as we only
intended to see with these simulations whether the proteins
could escape their minima. We provide an assessment of these
simulations in the SI (Figure S11 and Table S6) mostly based
on analyses described by Sindhikara et al.*®

Projection and Analysis of the MD Trajectories. The
reference frame employed for projecting the simulated
trajectories was built through principal components analysis
of the covariance matrix of Ca positions for residues 2—70 as
retrieved from 72 high-resolution X-ray structures of human
ubiquitin aligned to model 1 of PDB ID 1D3Z.*" Projection of
the trajectories on the reference frame was also preceded by
alignment to this reference structure. Logarithmic probability
distributions were built by projecting the trajectories on a
reference frame, binning them into a grid and counting the
number of frames inside each cell of the grid (IV;) to compute
—kgT In(N;/N,), where N corresponds to the most populated
bin thus setting the offset. The method is basically the same
that Lange et al. introduced,”” plus the calculation of
logarithmic densities that Long et al.”® employed to visualize
the projected trajectories.

The MD trajectories were analyzed in terms of the root-
mean squared fluctuations of Ca atoms (RMSF), order
parameters of N—H bonds (s?), mean square displacements
of Ca atoms (MSD), translational diffusion coefficients and
rotational relaxation dynamics of the protein, the mechanical
description of the conformational basins and the dynamics of
water and glucose molecules interacting with the protein
surface. The mechanical description of conformational basins
was achieved using a formulation developed by Hess,*” which
characterizes each basin in terms of an harmonic force constant
k and an internal friction-like coeflicient # for each principal
component of motion inside the basin. Interactions between
water or glucose molecules and the protein were investigated by
computing and fitting the survival probabilities of their contacts
with protein residues, as reported in previous formulations.®*%°
Details on how these analyses were performed are given in the
SL

B RESULTS

Ubiquitin dynamics have been vastly studied through experi-
ments and simulations, disclosing the importance of collective
motions in producing conformations that resemble those
observed in different complexes of the protein bound to its
targets. As shown in many works, 0.5 to 1 ps-long MD
simulations of ubiquitin can reproduce NMR order parameters
and residual dipolar couplings very well, indicating good
agreement between simulations and experimental observ-
ables."**7>%° Also, such simulations reproduce local and
large-scale conformational fluctuations observed in X-rays
structures. The latter are easily visualized by projecting the
MD trajectory on a two-dimensional plane built from available
X-rays structures as shown in a number of recent works.”>**~*>
Figure 1A shows such a projection for a 600 ns-long simulation
of ubiquitin in water, relative to 72 structures used to build the
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reference frame and converted into a logarithmic probability
distribution as described under methods. Segments of ubiquitin
that experience collective conformational variability according
to the PCA analysis correspond to residues 6—11, 33—36, and
46—49 as shown in Figure 1B.

The conformational landscape of ubiquitin simulated in
water displays two main basins: a smaller one centered at
around [—4.5, 0.5] A in the reference space, and a larger one
centered at around [0, 0] A (Figures 1A and 2A). Based on the

>
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Figure 1. Conformational space and flexibility of ligand-free ubiquitin
in water. (A) Conformational landscape (color-coded as a logarithmic
probability distribution) explored by ubiquitin during a 600 ns-long
simulation in water, as derived from its projection on the 2 first
principal components which describe 42.6% and 12.5% of the
variability observed in X-ray structures (gray points). Asterisks denote
starting states L, C, and R for simulations under glucose-crowded
conditions. (B) The flexible segments of ubiquitin (increased flexibility
from blue to red) as revealed from the analysis of variation in X-ray
structures.

shape of this landscape and on our previous results,'® we
defined three relevant conformations for subsequent simu-
lations: state L (after “left”) corresponding to the deepest point
of the smallest basin, state C (after “center”) corresponding to
the structure of ligand-free ubiquitin employed for the
simulation in water, and state R (after “right”) corresponding
to the deepest point of the largest basin. Placing two starting
states on the larger basin serves two purposes: first, in some
simulation studies this large basin is actually seen as two basins
separated by a very small energy barrier (with minima
approximately on states C and R);”° second, a starting state
at C corresponds to static structures of unbound ubiquitin. In
what follows, we compare simulations of ubiquitin dynamics in
water, 108 g/L glucose and 325 g/L glucose, started from
structures that correspond to these different initial states.
Effect of Increasing Glucose Concentration on the
Dynamics of Ubiquitin. In a free MD simulation of ubiquitin
in water, in only 40 ns the protein has already explored most of
the conformational space that it will explore in the rest of the
simulation (Figure 2A) and that it is known to explore in
microsecond-long simulations.®””>?° Instead, the projections of
the simulation in 108 g/L glucose (Figure 2B, center) show
that after 500 ns the protein is stuck in what corresponds
roughly to the rightmost basin of the simulation in water. After
1 ps of simulation, the protein has sampled also part of the
leftmost basin, albeit incompletely. When the glucose
concentration is raised to 325 g/L, the situation is more
extreme, with only one basin visited that corresponds to the left
area of the rightmost basin observed in water (Figure 2C,
center). These observations predict that crowding slows down
conformational sampling. However, we cannot say from these
simulations whether the crowded conditions are wiping out the
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Figure 2. Effects of increasing glucose concentration on free MD trajectories of ubiquitin. Logarithmic probability distributions (color-coded as in
Figure 1) for projections of the Ca coordinates of ubiquitin at increasing simulation times in water (A), 108 g/L glucose (B), and 325 g/L glucose
(C). MD simulations in B and C were started from structures that correspond to states L, C, and R (represented by white asterisks) of the

conformational landscape observed in water (Figure 1A). Glucose is abbreviated as “glc”.
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Figure 3. Ubiquitin’s conformational space under glucose crowding explored by REMD simulations. Logarithmic probability distributions (color-
coded as in Figure 1A) for the projections of ubiquitin trajectories computed using REMD simulations in water (left), 108 g/L glucose (center) and
325 g/L glucose (right). Only the series at 301.1 K was projected. Glucose is abbreviated as “glc”.

left and right basins from the conformational landscape, or if
they are still present but accessible on longer time scales.

In order to enhance sampling and answer this question, we
used REMD simulations as an exploratory tool to probe the
conformational space beyond that sampled in the free MD
simulations. The replica-exchange method is one of the few
enhanced sampling techniques that do not introduce bias into
the simulation and do not require predefined reaction
coordinates (more details are given in the Methods section). 8
We have not used this method to compute full landscapes, but
simply to test whether the proteins could gently get out of the
basins. From the projections of these simulations (Figure 3,
where only the frames at 301.1 K were projected), it is evident
that roughly the whole conformational space observed in water
is available in the crowded conditions. [The apparent
differences between the three landscapes cannot be regarded
as significant, as they are most likely a problem of limited
sampling. We provide in the SI text, Figure S11, and Table S6,
parameters for the assesment of convergence, which show
qualitatively partial convergence only. Yet, this suffices to probe
that the protein can escape from its conformational basins
under crowding by glucose.] This implies that the lack of a
complete conformational landscape in the free MD simulation
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at 325 g/L glucose is only due to a problem of insufficient
sampling, and already suggests that crowding increases the
energy barriers that separate the basins observed in water, thus
slowing down the rate of exploration of the conformational
space.

Exploring the Conformational Landscape under Crowded
Conditions. The REMD simulations show that conformational
states L and R, although not visited in a simulation started from
point C at 325 g/L glucose and only seldom visited at 108 g/L,
do exist in the accessible conformational landscapes under the
crowded conditions. However, analysis of the resulting
trajectories is not straightforward, complicating the derivation
of accurate details about the explored conformational space and
its individual basins, especially considering that those under
glucose crowding might not have fully converged. In order to
improve the description of the landscape easily reachable upon
unbiased, unforced MD, we performed standard microsecond-
long simulations of ubiquitin in 108 g/L and 325 g/L glucose,
starting from structures that correspond to states L and R states
of the conformational landscape observed in water (in Figure
1A).

Starting from state R at 108 g/L glucose (Figure 2B)
ubiquitin is able to sample roughly the same conformational
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landscape seen for state C, i.e., that corresponding to the broad
rightmost basin of the landscape observed in water. In both
simulations, the leftmost basin is explored only once. Starting
from state L in 108 g/L glucose, the protein sampled the
leftmost basin for ~150 ns, then shifted to the right part of the
landscape and spent there most of the remaining simulation
time. In the three simulations at 325 g/L glucose ubiquitin
remains stuck around each starting conformation during the
whole simulation time (Figure 3B). This hampers proper
computation of the conformational landscapes for these
simulations and precludes any accurate estimation of the
relative energy of the basins, but for sure indicates that each
conformation is very stable against interconversion into other
conformations in a submicrosecond time scale, implying very
high energetic barriers between them relative to those in water.

Taken together with the replica-exchange data, these results
confirm that crowding increases the energy barriers that
separate basins (or conformational states) giving place to a
much slower conformational exchange. Based on the
observation that it takes the simulation in 108 g/L glucose
0.5—1 us to explore the same extent of conformational space
that is explored in only 50—100 ns of simulation in water, we
can very roughly estimate that conformational fluctuations are
around an order of magnitude slower already in 108 g/L
glucose relative to water. The effect at 325 g/L is so much
stronger that the magnitude of the dampening cannot be
estimated at all. Notably, atomic mean square displacements for
Ca atoms (Figure S2) show a much softer decrease in the
average diffusion of Ca atoms through the conformational
space as the concentration of glucose increases, reaching at
most a ratio of ~5.5 when going from 0 to 325 g/L (Table S2).
This implies that collective motions, ie., those evident in the
trajectory projections, are far more sensitive to glucose-crowded
conditions than atomic fluctuations.

Residue-Specific Measurements of Flexibility through Ca
Fluctuations and N—H Order Parameters. Root-mean square
fluctuations (RMSF) and N—H order parameters (s*) measure
local motions helping to highlight which protein regions are
more affected by a given perturbation, in this case crowded
conditions. RMSF profiles computed for the Ca atoms of
ubiquitin in all simulations show that loops are the most
affected regions (Figures S3A,C). Notably, regions of low
RMSF in dilute conditions are unaffected in the crowded
media.

N—H order parameters are especially interesting because
they can be compared directly with the values obtained from
NMR relaxation data. Interestingly, calculated order parameters
(Figure S3B,D) show reduced mobility of the loops at
increasing crowder concentrations, but the effect is milder
than that observed in RMSF profiles. This is in agreement with
the only experimental measurement of ubiquitin’s order
parameters in nearly crowded conditions mimicked by micelle
encapsulation, which showed mild increases of s* in the loops
under confinement.®®

Both for Ca and N—H order parameters, the effects are more
important at 325 g/L glucose and barely noticeable at 108 g/L.
However, in any case, the predicted effects are of lower
magnitude than those reported above for the collective motions
that drive exploration of the conformational space, or than the
impacts expected on molecular diffusion.

Mechanical Descriptions of the Basins Observed in the
Conformational Landscapes. In order to explore the effect of
crowding on motions within conformational basins, we
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computed their mechanical descriptions according to a
formalism introduced by Hess, which models the diffusion of
a protein through a conformational basin in terms of internal
friction-like coefficients (1) and harmonic force constants (k)
for the principal components of motions inside the basin. For
each main basin in each simulation, we analyzed the five first
components during ~10—25 ns-long sections of the trajectories
in which the protein remained inside the basin. The full results
are given in SI Table S3.

Internal friction coeflicients and harmonic force constants
turned out to be very sensitive to glucose concentration, for all
five principal components of motion. The case of component 1,
taken as an example, shows an exponential increase of its
harmonic force constant with glucose concentration leading to
sharper and more conformationally restricted basins (Figure
4A). In parallel, internal friction grows roughly linearly with
glucose concentration hampering diffusion through the basin
(Figure 4B).

A 2.6 B 2
=L state -=L state
T 24 1 ~Cstate o 161 —Cstate
—— (=]
£ 22 R state s 12 ~R state
S =1
E 2 g
< S 0.8
<18 g
% 1.6 =04
o
14 0
0 100 200 300 0 100 200 300

[glucose] (g/L) [glucose] (g/L)

Figure 4. Influence of glucose crowding on the mechanical features of
basins in ubiquitin’s conformational space. Plots of harmonic force
constants k (A) and internal friction coefficients # (B) for the first
principal component of the main basins explored during free MD
simulations (the remaining components show a similar behavior; see

Table S3).

Effect of Crowding on Translational and Rotational
Diffusion of Ubiquitin. One of the expected outcomes of
crowding is a reduction of the translational and rotational
diffusion of solutes—proteins in our case of interest. Works
dealing with computational simulations of artificially crowded
or cytoplasm-like environments pay close attention to how well
experimental translational diffusion is reproduced.”® The
rotational reorientation time is also related to parameters
available from fluorescence and NMR relaxation experiments,
thus it should be considered as well. Both rotational and
translational diffusion depend inversely on the viscosity of the
solution and hence on solute concentrations, but positive or
negative deviations are introduced by interacting and/or big
solutes, creating special scenarios as described recently.*® In
vivo measurements and in vitro experiments at physiologically
relevant concentrations of crowding agents have shown 5- to
10-fold reductions in translational and rotational diffu-
sion 309497

In the simulations, we observe that the translational diffusion
coeflicient is reduced by around 50% in 108 g/L glucose and by
as much as 80% (i.e, S-fold) at 325 g/L (Table S4). These
numbers imply little deviation from ideality, as observed by
NMR experiments for glycerol and proteins as crowding
agents.”® Given that this ratio is expected to vary among
proteins of different sizes, charges and shapes, and on the
properties of the crowding agent(s), our results are reasonable.
The second-rank rotational relaxation time (7,) computed for
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ubiquitin in the simulation in water is 1.8 ns (Table S4), which
lies on the same time scale of its global correlation time of (~4
ns) obtained from NMR data in diluted conditions.”® [The
second-rank rotational relaxation time (computed from the
simulations) and the global correlation time (from model-free
analysis of *N relaxation data) both relate to the time it takes
the protein to make a full rotation. However, it is not clear that
they correspond exactly to the same quantity, thus we have
avoided any further comparison. The important points are (i)
that they are both in the nanoseconds regime, and (ii) that the
simulations predict their steep increase (ie., decrease of
rotational diffusion) upon crowding by glucose.] In 108 g/L
glucose the 7, increases by 3.7—5.4 times, thus comparing also
reasonably against experimental values. At 325 g/L glucose, the
ratio ranges from 22 to 64, suggesting a positive deviation from
the linear prediction, as observed by NMR for some crowding
agents™” but somewhat overestimated.

Structure and Dynamics of Water and Glucose
Molecules Contacting Ubiquitin. At least two previous
works reporting fully atomistic simulations of proteins in
crowded media predicted extensive interactions between the
small polar molecules and the proteins, which could potentially
perturb protein hydration and protein dynamics.'®*” In order
to characterize the extent of these interactions and explore their
impact on ubiquitin’s dynamics and hydration, we computed
and analyzed the residence times of water and glucose
molecules on its surface as a whole and the lifetimes of
contacts between water molecules and individual residues of
the protein.

The more global analysis, ie, quantifying interactions
between water molecules and the whole protein surface, was
based on a formalism that involves the calculation of survival
probabilities for protein—solvent/solute interactions followed
by analysis of the resulting decay curves.*” From a glance at the
resulting curves (Figure S4), it is evident that water molecules
tend to stay on the protein surface for longer times in the
presence of glucose as a crowding agent. This can be quantified
by fitting the decay curves to obtain the residence times of
water molecules on the surface of the protein on different time
scales in the different simulations, as reported in Table SS and
Figure S. A previous work based on ~10 ns-long simulations of
different proteins in explicit water identified three main
exchange regimes for water molecules reaching and leaving
the surface of the protein.*” Our fit of the survival probabilities
in water requires that one more exchange regime be added to
account for the full decay of survival probabilities in
microsecond-long simulations. In the simulation in water,
most water molecules (~80%) experience the fastest possible
exchange regime with a residence time of 30 ps diffusing
slightly off the ideal limit (Kohlrausch’s stretching parameter y
= 0.899 against a value of 1 for ideal diffusion, Table SS).
Around 17% of the water molecules are in the second time
regime with an average residence time of 140 ps, and 2% have
an average residence time of 920 ps corresponding to the third
group reported from 10 ns simulations. Very few molecules
(~0.45%) have residence times longer than 10 ns, which seems
to be the true slowest possible time scale since any time longer
than that should be evident in such long simulation.

In the simulations at high glucose concentrations, these
molecules interact with the protein removing water molecules
from its surface, quickly reducing the average number of water
molecules in contact with the protein (Figure SA). The effect is
stronger at higher glucose concentrations and independent of
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Figure S. Structure and dynamics of water and glucose on ubiquitin.
(A) Average number of water (blue) and glucose (red) molecules
interacting with the whole protein throughout the simulations. (B)
Number of water molecules exchanging interactions with the protein
surface on different time scales: subnanosecond (g, in red), 0.1—100
ns (n, and ny, in green and blue), and the slowest process (1, pink)
reaching up to 380 ns. (C) Number of water molecules under each
residence time scale in the seven simulations; each line goes through
time scales S, 2, 3, and 4 (for clarity, only S and 4 are shown). Full data
corresponding to this analysis is given in Table SS of the SL (D)
Structure of ubiquitin colored according to the ratio between residence
times of water molecules in 325 g/L glucose (taken from the
simulation started on state C) and in water, as computed for individual
residues.

the starting conformation. More interestingly, despite the drop
in the total number of water molecules wetting the protein
surface, the numbers of water molecules with the two longest
residence times (n; n,) increase with increasing glucose
concentration (Figure SB). Moreover, the residence times of
water molecules increase in glucose-crowded conditions
(although they are still sampled properly thanks to the lengths
of the simulations) (Figure SC), while the distribution of the
number of bound molecules on different time scales shrinks. In
turn, the presence of glucose in the solution induces strong
non-Brownian diffusion on the fastest time scale of water
motions on the protein surface, as revealed by the drop in
Kohlrausch parameters. Notice that longer time scales seem to
be more affected, so that the shortest one increases at most 3
times (i.e., from 30 ps in water to 100 ps in 325 g/L glucose
simulated from point L of the landscape, see Table S5) while
the longest increases between 3 and up to 20 times (from 13 ns
in water to 246 ns in 325 g/L simulated from point L of the
landscape).

Analysis of water contacts with individual residues also
returns longer average residence times as glucose concentration
increases (Figure SS). Protein regions where water residence
times are affected the most correspond to flexible segments and
very polar/charged exposed residues, followed by structured
exposed segments of lower polarity and finally by buried
residues, on which water resides for very short times with
almost no effect of the crowded conditions (Figure SD). Put
together, all this evidence suggests that binding of glucose
molecules to the surface of the protein dehydrates it but traps
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the remaining water molecules, slightly reducing their capacity
to jump from residue to residue, and more strongly slowing
down their exchange with the bulk. Importantly, these changes
in hydration dynamics do not involve changes in the structure
of hydration layers, which display conserved features in radial
distribution functions (i.e., peaks centered at 2.75 and 3.65 A as
in pure water, perfectly matching with X-rays data””) and only
lowered intensities due to the lower number of molecules
wetting the protein (Figure S6A).

Survival probability curves for glucose molecules could not
be analyzed under the same formalism employed for water, as
most of them led to bad fits. This is possibly due to their very
long residence times and hence insufficient sampling of the
events as suggested from the survival curves in Figure S4.
Notably, there are a few glucose molecules that do not leave the
protein surface in the whole simulation times. The lower limit
for glucose detaching time scales would hence be around 1-2
orders of magnitude larger than those for water in crowded
conditions, explaining their effect in restricting water mobility.
Notice from the position of the main peak in the radial
distribution function of glucose molecules (Figure S6B) that
there is a large density of glucose molecules around the protein,
decaying oft at longer distances. This means that sugar
molecules have been attracted to the protein; indeed, a glance
at snapshots from advanced parts of the simulations reveal
large, dense, but dynamic cages of sugar molecules formed
around the protein, just as predicted by Sidebottom and Tran®
and supporting the idea of a water-replacement model for the
protective effects of sugars on biomaterials (Figure S7).
Notably, the first shell of glucose molecules leaves enough
space to accommodate and trap water molecules close to the
protein surface. This trapping of water molecules is in line with
the observation that the numbers of water molecules in the
slowest-exchanging regimes (nj, n,) increase with glucose
concentration, in opposition to the case of fast exchanging
waters and the total number of waters.

In one final analysis, we have computed the average number
of water and glucose molecules interacting with each residue
throughout the simulations (Figure S8). There are no strongly
preferential sites for glucose binding and dehydration; in other
words, the interactions are unspecific, which is consistent with
the chemical structure of sugars and polyols.

Insights from Systems Containing Three Ubiquitin
Proteins in a Concentrated Glucose Solution. The large
shells of glucose molecules predicted to form around protein
molecules could potentially impact properties and processes
such as oligomerization or aggregation, i.e., applicable to two or
more proteins that make part of the same system. These effects
relate in turn to the solubility of the proteins in question and to
the effects that intracellular crowders could potentially exert on
them. In order to explore these situations, we performed one
more set of simulations on systems containing three ubiquitin
molecules (one in each of the three states described above)
inside cubic boxes of volume ~10° A% containing either pure
water or 325 g/L glucose. The estimated protein concentration
is around 5 mM, at which ubiquitin is expected to dimerize
noncovalently by 50% in a dilute buffer, as shown very
recently.'®

After 250 ns of simulation at 300 K, the trajectories were
analyzed by looking at translational diffusion, internal dynamics,
and the structure of water and glucose molecules around the
proteins. As observed for the simulations of single proteins,
glucose molecules move rapidly forming again cages around the
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protein molecules (Figure 6A). The resulting dehydration of
the proteins’ surfaces and the slowdown of internal dynamics

T Oy

i”

Radial Distribution Function

r(A)

Figure 6. Caging of glucose molecules on ubiquitin. (A) Final
snapshot from the simulation of three ubiquitin molecules in glucose
proteins are shown as gray cartoons, glucose molecules are shown as
sticks (red for those within 8 A of any protein, green for the rest);
water molecules are omitted for clarity. (B) Radial distribution
functions of glucose molecules around each protein, averaged
throughout the simulation.

are similar to those observed in the simulations involving single
protein molecules (Figure S8). The radial distribution functions
for glucose molecules show two main shells, also as observed in
the simulations of single protein molecules, but with the second
shell (peak at around 9—10 A) being more dense (Figure 6B).
Notably, the second glucose layers of any two proteins overlap
partially, and the first layers seem to clash possibly protecting
the proteins from aggregation.

The three ubiquitin molecules placed in these systems are far
from one another in the starting state, with the minimum
distance between any two atoms from different proteins being
~26 A. However, the simulation times are sufficiently long to
allow molecules to eventually meet each other as an outcome of
diffusion. In fact, two of the protein molecules simulated in
water meet at around 170 ns; moreover, they then reorient
many times until they form a dimeric structure that remains
quite stable for the last 80 ns of the trajectory. Plots of mean
square displacements for the three proteins during the first 150
ns of both simulations (i.e., before the binding event so as to
exclude interference from dimerization in the simulation in
water) reveal that a ratio of ~5—10-fold slower diffusion in
glucose holds (with an average of 2.1 X 107" m?/s for the three
molecules in water against 3.2 X 107 for the molecules in
glucose) as determined from the simulations of single proteins.
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On the contrary, no protein—protein interactions are
observed in the simulation of three protein molecules in a
concentrated glucose solution. Although this could be an
outcome of limited sampling, which is computationally more
demanding on this large system, the description of the glucose
structures given above suggests that the first glucose shells
prevent direct aggregation of proteins (Figure 6B). This could
stand as one contribution of glucose crowding toward
enhancing protein stability in solution, i.e., by preventing self-
association, a prediction that could be tested directly through
experiments. Prospective studies should also assess the
contributions from slower diffusion itself, alterations in the
dielectric constant, and possibly other factors arising from the
high concentration of sugar, in suppressing protein aggregation.

One final remark is that the glucose cages that surround the
proteins are interconnected, and seem to form dynamic
networks that exclude water in the vicinity of the protein,
much like in the “noncovalently interacting metabolite
structures” proposed by Cossins et al. in their simulation of
the bacterial cytosol.”” Like in that work and as shown above
for single-molecule simulations, these structures are dynamic in
that the interacting small molecules are constantly reshuffled so
that, on average, all exposed residues contact water and glucose
molecules, and there are no protein regions especially prone to
interact with one or the other; in other words, the interactions
are unspecific.

B DISCUSSION

We have herein looked at the effects of concentrated glucose
solutions on the properties of ubiquitin, a small globular
protein. One nearly trivial effect of cosolvents and crowders on
the kinetic properties of a molecule is a decrease of its
translational and rotational diffusion capabilities. This slow-
down is reproduced by the simulations, reaching 4- to 5-fold
reductions in the translational diffusion coeflicients of single
proteins at 325 g/L glucose relative to diffusion in water, in the
range determined experimentally for different crowded
systems.’**~%” For rotational diffusion, stronger effects and
deviations are predicted by the simulations, which could be due
to the simultaneous effect of increasing not only viscosity but
also the apparent mass of the protein due to glucose binding
and water retardation (see below). These kinds of deviations
from linearity are indeed expected for molecules that interact
with cosolvents or crowders.>® But beyond these effects on
diffusion, our simulations show a number of other effects that
we discuss in what follows. We observe that sugars cluster
irreversibly on ubiquitin molecules within the length of the
simulations, consistent with Sidebottom and Tran’s prediction
that proteins could act as nucleation seeds for the process of
sugar clustering.8 According to our simulations, this process
ends up forming dynamic cages of glucose molecules around
the proteins, removing most water molecules from their
surfaces but trapping some of them inside a first shell. An
important consequence is a generalized slowdown of all
collective, large scale internal motions of the proteins, which
can in turn modulate processes and properties that depend on
internal dynamics.

How Crowding by Small Hydrophilic Molecules Alters
the Conformational Landscape of Proteins. In our
previous work we reported that proteins simulated under
high glucose concentrations were restricted in internal mobility.
Our new results allow us to further dissect this effect. First, we
observe that the most affected motions are those involving
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exploration of the conformational space through collective, and
thus slower, fluctuations, whereas fast motions are not much
dampened. In fact, the reduction observed for the mean
squared fluctuations of Ca atoms (Ca MSD) is similar in
magnitude to the drop observed in the translational diffusion
coefficient, but the resulting slowdown in the rate of
exploration of the conformational space seems to be much
stronger (Figures 2 and 3). Indeed, when the concentration of
glucose is moderate (108 g/L) it takes the protein around 0.5—
1 us of simulation time to explore only once the whole
conformational space that is explored in only 50—100 ns of
simulation in water. This suggests a very roughly estimated
~10-fold decrease in the rate of exploration of the conforma-
tional space at 108 g/L glucose, compared to an only 2-fold
reduction in the Ca MSD. At 325 g/L, the slow-down is so
much stronger that not even a single transition is observed
between two basins within the microsecond time scale,
although the replica exchange MD simulation shows that
alternative conformations are still accessible. Finally, projec-
tions on increasing principal components show that the effect
of crowding decreases too, again indicating that the larger-scale,
collective motions are the most affected ones (Figure S9).

One possible explanation for the difference observed in the
dampening of local and collective motions is that local
fluctuations (to which the Cae MSD is sensitive) are dampened
to the same extent as overall diffusion is, but dampening the
motions of several individual atoms results in a “multiplicative”
(i-e, more than simply additive) dampening of their concerted
(i.e, collective) motions, which are the ones that lead to
effective exploration of the conformational space. This would
also explain why the s> and RMSF profiles determined under
crowded conditions are not too different from those observed
in water, both in simulations and in experimental data, 58656
with only mild reductions in the flexibility of loops but almost
no effect on the structured regions. As a corollary, future
experimental investigations on the effect of cosolvents or
crowding on internal dynamics should look for differences in
microsecond and slower time scales, for example, through
deuterium exchange or relaxation dispersion NMR experi-
ments.

The REMD simulations definitely show that conformations
similar to those observed in water are accessible in glucose-
crowded conditions. Putting these ideas together, we can state
that crowding alters the conformational landscape of the
protein, but it does not reshape it drastically, keeping roughly
the same main conformational states that exist in dilute solution
but separating them by higher energy barriers. Going into finer
detail, analysis of the individual basins observed in the
landscapes further reveals that the conformational space
explored by the protein becomes much rougher and deeper
in the presence of glucose, and that these two effects increase
steeply with glucose concentration. The latter effect results in
larger energetic walls around the stable conformations leading
to the basins crossing at higher energies. Thus, our results are
consistent with a dual effect of crowding on internal dynamics,
ie. (i) imposing higher energy barriers between conformational
basins but also (i) making the basins rougher to structural
diftusion. This double effect is depicted schematically in Figure
7, where the “conformational coordinate” is here a generic
coordinate that refers not only to exchange between different
conformations as in this study of ubiquitin dynamics but also to
other coordinates. It is not clear from our studies what the
contributions of entropic and enthalpic effects are on each of
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Figure 7. Scheme illustrating our proposition on how crowding by
small, polar molecules affects the conformational landscape of proteins,
by (i) imposing higher energy barriers between conformational states
and (ii) making conformational basins rougher.

these two perturbations of the conformational landscape; these
issues deserve further studies.

Among coordinates affected by crowding, those driving
protein folding would be important targets of dynamic
slowdown by crowding and encapsulation, so as to facilitate
protein folding. In this regard, a recent article has briefly
commented on how “a sticky cage can slow down folding”."""

Atomistic Basis for the Conformational Trapping by
Crowders. At the atomic level, we attribute the observed
effects to the extensive network of interactions established
between glucose molecules and the protein surface. We observe
that the presence of glucose shells around the protein induces a
large dehydration of its surface, but at the same time traps the
remaining water molecules. These water molecules jump
between residues more slowly than they do in the absence of
glucose, but, more importantly, their exchange with bulk water
is much hampered under glucose-crowded conditions. This
produces an increase in the total number of molecules attached
to the protein, dragging its flexible parts. In other words, the
long-residing water and glucose molecules become a significant
“extension” of the protein, like in the noncovalently interacting
metabolite structures proposed to exist in the cytosol.”” Similar
interpretations of crowding effects as due to increases in the
effective mass of the protein have been suggested, highlighting a
more important impact on its less compact, i.e., more flexible
parts,'®> just as reported here.

The increase in effective mass can be estimated by
considering the trajectory-averaged numbers of water and
glucose molecules attached to the protein in each simulation
(Table SS): an average of 5.2 kDa of mass coming from water
molecules attached to the protein simulated in water; around
12 kDa coming from bound water and glucose molecules are
attached in the simulations run at 108 g/L; and around 23 kDa
in the simulations run at 325 g/L. These numbers are of
considerable magnitude relative to ubiquitin’s mass of 8.5 kDa,
and even bigger considering that the loops (whose collective
motions determine the conformational landscape) have masses
smaller than 1 kDa. Finally, the very long residence times of
water and glucose molecules on the surface of the protein in the
crowded conditions make the effect of increased effective mass
even more dramatic.

Potential Impact of Crowding-Perturbed Dynamics
on Protein Functional Properties. Although we have dealt
here with a simplified model system containing glucose as a
crowding agent, the only available atomistic simulation of
proteins in media mimicking the bacterial cytosol has suggested
the existence of temporal aggregates made up of proteins and
metabolites that could induce on proteins effects similar to
those reported here.”” Based on this analogy, we can
extrapolate potential effects of crowding on protein properties
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important for the cellular biology. Flexibility of the protein
backbone and side chains underlies catalytic mechanisms,
allosterism, interactions with other proteins, etc. by allowing for
the exploration of transient and functionally relevant states. The
slow-down induced by crowding on internal motions could
kinetically stabilize these transient conformations allowing for
example substrates or interacting protein partners to bind to
the protein. These effects could thus help to modulate
interactions, allosterism, and possibly even catalysis.

Relevance of the Observed Effects Regarding the
Roles of Sugars as Preservation Agents and of Small
Hydrophilic Molecules on Intracellular Crowding. Inter-
estingly, sugars and polyols in general behave as nearly
universal stabilizers of proteins in solution and in dried
conditions, protecting them against hot, cold, and even
chemical denaturation. This effect is exploited by Nature and
also by mankind as a way to preserve biological material,' > and
although it is not completely understood, all explanations link it
to the hydration and vitrifying potentials of these small, highly
soluble molecules.> ! Our results are consistent with this idea,
more specifically with the water-replacement model, which
states that glucose molecules replace hydration water removing
its entropic effects close to the protein surface at high
temperature and favoring vitrification over crystallization
processes at cold temperatures. The effects reported here for
glucose crowding on hydration patterns further reveal that
clustering of glucose molecules around the proteins traps a thin
layer of water molecules. Whereas the first shell of glucose
molecules could help to prevent aggregation in solution state,
the water molecules could keep the protein surface wet inside
the glucose cage, which would be of paramount importance to
maintain its structure especially in the dried state. Upon
cooling, these water molecules would not form a crystal, as their
motions are restricted by strong interactions with the
immediate layer of glucose molecules. In turn, water molecules
located between different protein—glucose clusters could
crystallize, but the resulting crystals would be far from the
protein molecules; in other words, clustering of sugars in a
process nucleated by proteins allows for effective separation of
the proteins from the crystalline ice phase.

Our results can also provide a hint to the new view of the
bacterial cytosol as a biphasic system made up by a dilute sol
and a crowded gel.76 Although the intracellular concentrations
of sugars are much lower than those employed in the
simulations presented here, this is compensated by the presence
of many other very hydrophilic molecules which could behave
similarly. It is thus possible that processes like those described
here, triggered by these kinds of molecules albeit likely to a
lower extent, be responsible for favoring their clustering into
networks of noncovalently interacting metabolites around
proteins. Indeed, atomistic simulations employing types and
concentrations of small molecules like those found inside cells
have suggested the formation of structures similar to those
observed here,” where many small polar molecules cluster
around protein molecules and even connect them. These
structures could form the gel phase of the cytoplasm, whereas
the excluded water would contribute to the sol phase, thus
giving place to the biphasic gel—sol state. Inside the gel phase,
interactions between proteins and other molecules could be
responsible for their stabilization, both thermodynamically and
kinetically, as well as for anchoring macromolecules, establish-
ing gradients of different molecules and defining fine-grained
compartments inside cells as recently hypothesized.'® In this
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regard, MD simulations have a huge potential for providing
quantitative insights into the physics of “sol—gel” phases in the

cytoplasm.

B CONCLUSION

We have herein thoroughly described the effects of glucose
crowding on the hydration, diffusion, and internal dynamics of
ubiquitin as predicted from extensive MD simulations at fully
atomistic level. Beyond the basic findings related to protein
hydration, internal motions and dynamics, the outcomes of this
work have direct implications toward understanding (i) why
sugars are such good protein stabilizers, and (ii) the effects of
crowding by small hydrophilic molecules on proteins under
biological environments. This contribution thus raises a
number of new explanations to known phenomena related to
the behavior of proteins inside concentrated solutions of polar
molecules, as well as new hypotheses about these solutions and
about crowded biological media, to be explored by future
experiments and simulations.
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