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Theory of diffusion-influenced reactions in
complex geometries†

Marta Galanti,abcde Duccio Fanelli,ac Sergey D. Traytakf and Francesco Piazza*a

Chemical transformations involving the diffusion of reactants and subsequent chemical fixation steps are

generally termed ‘‘diffusion-influenced reactions’’ (DIR). Virtually all biochemical processes in living

media can be counted among them, together with those occurring in an ever-growing number of

emerging nano-technologies. The role of the environment’s geometry (obstacles, compartmentalization)

and distributed reactivity (competitive reactants, traps) is key in modulating the rate constants of DIRs,

and is therefore a prime design parameter. Yet, it is a formidable challenge to build a comprehensive

theory that is able to describe the environment’s ‘‘reactive geometry’’. Here we show that such a theory

can be built by unfolding this many-body problem through addition theorems for special functions. Our

method is powerful and general and allows one to study a given DIR reaction occurring in arbitrary

‘‘reactive landscapes’’, made of multiple spherical boundaries of given size and reactivity. Importantly,

ready-to-use analytical formulas can be derived easily in most cases.

Diffusion-influenced reactions (DIRs) are ubiquitous in many
contexts in physics, chemistry and biology1,2 and they keep on
sparking intense theoretical and computational activity in
many fields.3–10 Modern examples of emerging nanotechnologies
that rely on the controlled alteration of diffusion and reaction
pathways in DIRs include different sorts of chemical and bio-
chemical catalysis involving complex nano-reactors,11,12 nanopore-
based sequencing engines,13 morphology control and surface
functionalization of inorganic-based delivery vehicles for controlled
intracellular drug release.14,15

However, while the mathematical foundation for the description
of such problems has been laid nearly a century ago,16 many present-
day problems of utmost importance at both the fundamental and
applied levels are still challenging. Notably, arduous difficulties
arise in the quantification of the important role played by the
environment’s geometry (obstacles, compartmentalization)17 and
distributed reactivity (patterns of competitive reaction targets or
traps) in coupling transport and reaction pathways in many
natural and artificial (bio)chemical reactions.1,18,19

A formidable challenge in modeling environment-related
effects on chemical reactions is represented by the intrinsic
many-body nature of the problem. This is brought about essentially
by two basic features, common to virtually all realistic situations,
namely the (i) finite density of reactants and other inert species (in
biology also referred to as macromolecular crowding20,21) and (ii)
confining geometry of natural or artificial reaction domains in 3D
space. In general, the presence of multiple reactive and non-reactive
particles/boundaries cannot be neglected in the study of (bio)-
chemical reactions occurring in real milieux, where the geometrical
compactness of the environment may have profound effects, such
as first-passage times that are non-trivially influenced by the starting
point.22 Relevant complex media include the cell cytoplasm,8,23–25

porous or other artificial confining media,22,26–31 which can be
considered as offering important tunable features for technological
applications.11,13,15

In this paper, we take a major step forward by solving the
general problem of computing the steady-state reaction rate for
an irreversible bulk diffusion-influenced chemical reaction
between a mobile ligand and an explicit arbitrary, static 3D
configuration of spherical reactive boundaries of arbitrary sizes
and intrinsic reactivities.

To set the stage for the forthcoming discussion, let us first
consider the simple problem of two molecules A and B of sizes
R and a, respectively, diffusing in solution. Upon encountering,
the two species can form a complex, which catalyzes the
transformation of species B into some product P with rate
constant k,

Aþ B !k Aþ P (1)
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Under the hypotheses that (i) A molecules diffuse much more
slowly than B molecules, (ii) both species are highly diluted and
(iii) the bulk concentration of A molecules rA is much smaller
than the bulk concentration of B molecules rB,2,32 the rate
constant k can be computed by solving the following stationary
two-body boundary problem1

r2u ¼ 0 with uj@O¼ 0; lim
r!1

u ¼ 1 (2)

where qO is a spherical sink of radius s = R + a (the encounter
distance) and u(r) = r(r)/rB is the stationary normalized concen-
tration of B molecules around the sink. The rate constant is
simply the total flux into the sink, i.e.

k ¼ D

ð
@O0

@u

@r

����
r¼s

dS (3)

where D = DA + DB is the relative diffusion constant. The
solution to the boundary-value problem (2) is u(r) = 1 � s/r,
which yields the so-called Smoluchowski rate constant for an
isolated spherical sink, namely kS = 4pDs. These simple ideas,
originally developed to describe coagulation in colloidal sys-
tems,16,33 together with the related subsequent major advances
by Debye34 and Collins & Kimball35 represent the basic building
block of many modern theoretical approaches in chemical and soft-
matter36,37 kinetics.

In many realistic situations in chemical and biochemical
kinetics, a single ligand (B) molecule has to diffuse among
many competing reactive particles A. In addition, it might be
forced to find its target within a specific confining geometry,
which in principle can be modeled through a collection of
reflecting boundaries. Such settings define a genuine many-
body problem, as the overall flux of ligands is shaped by the
mutual screening among all the different reactive boundaries
(the reactive environment), known as diffusive interaction.38–40

In the following, we show how these kinds of problems can be
formulated and solved in a rather general form.

Let us imagine a reaction of kind (1) to be catalyzed at N + 1
spherical boundaries qOa of radius (encounter distance) sa = Ra

+ a, a = 0, 1,. . ., N arranged in space at positions Xa. With
reference to the Smoluchowski problem, this means that we
are explicitly relaxing the assumption of vanishing density
of the reactive centers A. In the most general setting, each
sphere can be endowed with an intrinsic reaction rate constant
ka*, which specifies the conversion rate from the encounter
complex to the product at its surface. Then, the stationary
density of B molecules is the solution of the following boundary
value problem

r2u = 0 (4a)

sa
@u

@ra
� hau

� �����
@Oa

¼ 0 a ¼ 0; 1; . . . ;N (4b)

lim
r!1

u ¼ 1 (4c)

where ha = ka*/kSa with kSa = 4pDsa. The boundary conditions
(BCs) (4b) are called radiative or Robin boundary conditions.
The limits ha -N and ha = 0 correspond to perfectly absorbing

(sink) and reflecting (obstacle) boundaries, respectively, while
the values 0 o ha oN correspond to finite surface reactivity.35

The boundary problem (4a)–(4c) provides a rigorous mathe-
matical description of a wide assortment of physical situations,
ranging from one or many sinks screened by the neighboring
competing reactive boundaries to hindered diffusion to a sink
located among a collection of static reflecting obstacles placed at
given positions in space. As a worked example in molecular
biology, a parallel paper by the same authors describes how
our algorithm can be employed to investigate an important
problem in molecular biology, i.e. the role of protein conformation
in the binding process with a small ligand.41

In order to solve the problem, it is expedient to consider as
many sets of spherical coordinate systems as there are boundaries,
ra � (ra,ya,fa) (see Fig. 1). Hence, for any point P A O, the solution
can be written formally as an expansion in a series of irregular
solid harmonics, namely

u ¼ 1þ
XN
a¼0

ua
� rað Þ; ua

� ¼
X1
‘¼0

X‘
m¼�‘

Ba
m‘

r‘þ1a
Ym‘ rað Þ (5)

where ra are the coordinates of P in the local frame centered on the
a-sphere and Yml(ra,ya,fa) are spherical harmonics.‡

The coefficients Ba
ml should be determined by imposing the

BCs (4b). In order to do so, we use the known translation
addition theorems for solid spherical harmonics42,43 to express
the solution (5) in all the N + 1 different coordinate systems

Fig. 1 Illustration of a multi-sink configuration. A number of active
spheres of radius sa are located at positions Xa within the spherical
domain O0 of radius R0. In this paper we solve the problem in the
unbounded domain (R0 - N, see ESI† for the general solution). A given
point P is identified by as many position vectors as there are spherical
boundaries.

‡ Here we use the definition Yml(y,f) = Pm
l (cos y)eimf, where Pm

l (cos y) are
associated Legendre polynomials.42
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centered at each sphere. The result is the following infinite-
dimensional system of linear equations

Ba
gq �

q� ha

ha þ qþ 1
dg0dq0 þ

X1
‘¼0

X‘
m¼�‘

XN
b¼0
baa

Bb
m‘W

abgq
m‘

0
BB@

1
CCA ¼ 0 (6)

for a = 0, 1,. . .,N, q = 1, 2,. . .,N and g = �q, �q + 1,. . .,q � 1, q
(see ESI† for a detailed derivation and the explicit expression of
the matrix elements W abgq

ml ). To solve the problem one simply
needs to truncate the sum on l in eqn (6), by including a finite
number of multipoles so as to attain the desired accuracy for
the overall rate constant. In analogy to eqn (3), and taking into
account definition (5), the rate constant corresponding to a
given subset of reactive boundaries S can be computed as

k ¼ D
X
a2S

ð
@Oa

@u

@r

����
r¼sa

dS ¼ �
X
a2S

kSaB
a
00 (7)

The theoretical framework that culminates in formula (7)
serves as an extremely powerful tool to investigate how specific
geometries of obstacles and/or competitive reactive boundaries
modulate the rate constant of a given diffusion-influenced
reaction.

A clear and instructive illustration of our general approach
can be outlined by focussing on the simplest model of diffusion-
influenced reaction, namely diffusion of a ligand to a perfect
sink. Even if our method could be employed to examine far
more complex reactive geometries, realized by assembling a
large number of spherical boundaries of arbitrary sizes and
reactivities, for the sake of clarity, we shall focus here on the
case of a sink of radius s surrounded by N identical spheres of
radius s1 = ls arranged randomly at a fixed distance d. This
problem has been tackled recently for l = 1 and N r 4 through a
numerical finite-element (FE) method in ref. 40. This study
provided clear-cut hints of the subtle effects brought about by
the environment’s geometry, but also highlighted the impossibility
of brute-force numerical approaches to assess the impact of more
crowded and sophisticated reactive environments.

In Fig. 2 we compare the FE numerical results with the exact
solution for N = 2. It appears clear that the screening effect is
harder to capture via a FE scheme in the case of reflecting
obstacles than in the presence of competitive sinks. However,
our exact approach allows one to dig much further into this
problem and investigate analytically the screening effect of
configurations comprising a large number of spheres. For
example, one can expand the system (6) in powers of e � s/d
to derive simple analytical estimates of the rate constant to the
sink (see ESI† for detailed calculations). In the case of reflecting
obstacles, one gets

k

kS
¼ 1� l3N

2

� �
e4 � 2l5N

3

� �
e6 þ . . . (8)

which is independent of the screening configuration and linear
in N, as suggested in ref. 40. However, we find that this only
holds up to the sixth order in e – it can be seen from the
expansion that the configuration enters explicitly successive

powers of e (see ESI†). On the other hand, a similar procedure
in the case of N screening sinks yields

k

kS
¼ 1� lNeþ lN þ l2

XN
a;b¼1
baa

1

Gab

2
664

3
775e2

� l2N2 þ l2
XN
a;b¼1
baa

1

Gab
þ l3

XN
a;b;d¼1
b;daa

1

GabGad

2
664

3
775e3 þ . . .

(9)

where Gab = 2 sin(oab/2), oab being the angle formed by the
sinks a and b with respect to the origin. Eqn (9) makes it very
clear that the configuration of competitive reactive boundaries
does influence the screening effect on the central sink. A clear
signature of this is also that the corrections in eqn (9) alternate
in sign. This behavior sheds considerable light on the many-
body character of the rate constant, whose perturbative series is
alternatively reduced by the diffusive interactions between the
screening boundaries and the sink (shielding the ligand flux
from it) and increased by the diffusive interactions among the
screening particles (shielding the flux from each other). In
contrast, the screening action of inert obstacles is largely
dominated by the excluded-volume effect, and thus can only
yield negative corrections at all orders.

Due to its perturbative nature, eqn (9) can be used to
quantify the shielding action of specific 3D arrangements of
sinks only for Ne p N/d { 1.44 However, it still provides a
powerful analytical tool to compare different geometries, as the
perturbative rate is always proportional to the true rate (see
ESI†). For example, eqn (9) could be used to design the special

Fig. 2 The approximate finite-element calculations compared with the
exact results. Total flux into a sink of radius s normalized to kS = 4pDs (flux
into an isolated sink) in the presence of two spherical screening boundaries
of the same radius placed at a fixed distance d from the sink and forming an
angle y. Light blue and dark orange denote reflecting and absorbing
particles, respectively. Symbols are numerical results of finite-element
calculations from ref. 40. Solid lines are the corresponding exact results,
obtained by solving eqn (6) with a relative accuracy of 10�4 with the same
choices of parameters as indicated by the symbol legends (orange: absorbing,
light blue: reflecting).
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configurations that minimize or maximize the screening effect
on the central sink for the given values of N and d.

The average shielding action exerted by N equidistant sinks
can be easily obtained analytically in the monopole approximation,
i.e. by keeping only the c = 0 and q = 0 terms in eqn (6). The
ensuing reduced system can be averaged over different con-
figurations in the hypothesis of vanishing many-body spatial
correlations, i.e. by integrating over the probability density
PN ¼

Q
aab

sin oab
� ��

4p, with 2 arcsin(s1/d) r oab r p (excluded-

volume constraint between screening sinks). The result is (see
ESI† for the details)

k

kS

� 	
¼ 1� le½N � ðN � 1Þð1� leÞ�

1� le½Ne� ðN � 1Þð1� leÞ� (10)

Fig. 3 shows that for l = 1, eqn (10) provides an extremely good
estimate of the configurational averages of the exact results at
separations greater than a few diameters, highlighting the
dramatic screening action of competitive reactive boundaries
with respect to inert obstacles. Furthermore, a simple analysis
of the rate fluctuations over the configuration ensembles at a
fixed d allows one to gauge how sensitive competitive screening
is to the specific 3D arrangement of the sinks. Remarkably, this
analysis reveals stretches between the minimum and maximum
rates for a given value of d as high as 40% of the average (see
shaded bands in Fig. 3). More precisely, we remark that the
variability associated with different geometries is greater (i) at
short distances and (ii) for few screening particles.

Eqn (8)–(10) and the ensuing arguments are rather exemplary
illustrations of the powerful analytical insight afforded by our

general approach. The case of small screening sinks, lo 1, provides
a further demonstration of non-trivial effects that are captured by
our analysis. It turns out that the function (10) displays a minimum
for certain choices of the parameter N, l. More precisely, a minimum

exists at a fixed N for l � l�ðNÞ � ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4N þ 1
p

� 1Þ=ð2NÞo 1, or,
alternatively, at a fixed l for N r N*(l) � (1 � l)/l2. Fig. 4
provides a clear illustration of this subtle effect.

The flux into a large sink features a minimum for screening
configurations of tiny absorbing particles close to its surface.
This is the result of the competition between two effects. When
the small particles lie very close to the surface of the large sink
Ss, the latter behaves as an effective isolated sink of size
seff o s, absorbing a flux Feff = 4pDseff t kS. Upon increasing
the distance d, the total flux to the screening sinks will increase
(their active surfaces get larger and they also get farther apart
from each other). Now it is clear that the effect of this on the
flux to Ss will depend on the size of the screening particles. If
s1 is small enough, seff is not much smaller than s, so that
Fd=s+s1

� Feff is not much smaller than FN = kS. Under these
conditions, the flux into the large sink starts decreasing, as the
screening ensemble effectively steals more and more flux from
it. However, upon increasing d past a critical distance, the small
particles can no longer catch enough ligand flux, so that the
flux to Ss starts increasing, as it should, towards kS.

Fig. 3 Competitive screening greatly reduces the rate constant compared
to inert obstacles, and is strongly modulated by the configuration. The total
flux into a sink of radius s surrounded by N spherical boundaries of the
same size is arranged randomly at distance d (normalized to kS = 4pDs).
Symbols denote the exact results (solution of eqn (6)), averaged over 100
independent configurations for each value of d. The shaded bands highlight
the regions comprised between the minimum and maximum rates. For
reflecting screening boundaries, these regions are as small as the truncation
error. The light blue and orange lines are plots of eqn (8) and (10),
respectively, with l = 1. The arrows flag values of d corresponding to the
two configurations shown (N = 50) with the screening spheres made all
absorbing (bottom) and all reflecting.

Fig. 4 Making the screening boundaries smaller makes the flux into
the sink non-monotonic. Total flux into a sink of radius s surrounded by
N = 50 smaller sinks of radius s1 = s/10 is arranged randomly at a distance
d (normalized to kS = 4pDs). The left-most and right-most cartoons depict
two configurations that screen exactly the same amount of flux, despite
being at considerably different distances (d/s = 1.1 and d/s = 8). The
configuration shown in the middle corresponds to the predicted minimum
at d=s ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l½1þ ðN � 1Þl�

p
� 1:64. The solid line is a plot of formula

(10). Each symbol is the average over 250 independent configurations,
while the filled band comprises the region between the minimum and
maximum rates. The top panel illustrates the case of screening by a large
number of tiny particles, highlighting the sizeable non-monotonic effect.
The curves are plots of eqn (10).
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Summarizing, in this paper we have introduced a general
theoretical framework to quantify how the geometry and distributed
reactivity patterns of the environment modulate the rate constant of
diffusion-influenced chemical reactions. Our method can be used
to examine arbitrary reactive landscapes, made by assembling
spherical boundaries of selected size at given locations in space
and endowed with arbitrary surface reactivity. Moreover, our
method can be extended to Laplace space,45,46 so as to work out
exactly the effect of the environment on time-dependent problems.
This technique could be employed to shed further light on the
intriguing sensitivity of time-dependent effects on initial conditions,
which seems to constitute a rather generic feature of complex
media.22

Finally, we stress that our method can be easily employed to
derive approximate closed analytical formulas, which can be
used to investigate naturally occurring reactive geometries and
assist in the design of effective artificial nano-reactors for
different technological applications.
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