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We investigate the propagation of temperature perturbations in an array of coupled nonlinear oscillators at
finite temperature. We evaluate the response function at equilibrium and show how the memory effects affect
the diffusion properties. A comparison with nonequilibrium simulations reveals that the telegraph equation
provides a reliable interpretative paradigm for describing quantitatively the propagation of a heat pulse at the
macroscopic level. The results could be of help in understanding and modeling energy transport in individual
nanotubes.
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I. INTRODUCTION

The propagation of temperature fluctuations under non-
equilibrium conditions may display significant deviations
from a simple diffusive behavior. As it is known,1 heat can
propagate in a wavelike form on time scales comparable with
some typical relaxation time. This is accounted for by suit-
able extensions of the standard Fourier law to include, for
example, a finite response time for the heat current. On the
other hand, it is of primary interest to derive such phenom-
enological laws from microscopic dynamics. In this respect,
much work has been performed recently, mostly on simpli-
fied models, with the goal of understanding nonequilibrium
heat-conducting states from first principles.2 Much emphasis
has been put on violations of Fourier law in the stationary
case2 as well as in describing anomalous heat diffusion.3

Transient heat propagation has received much less
attention.4,5 As a matter of fact, the spreading of the energy
perturbation field yields complementary information on how
heat propagates through the system6 and provides useful in-
sight on the nature of heat-carrying excitations.

Besides those fundamental issues, there is a growing in-
terest in understanding how heat is transported at the
nanoscale.7 In this context, carbon nanotube materials are of
special relevance due to their exceptionally high thermal
conductivity related to their quasi-one-dimensional vibra-
tional structure.8,9 Recently, Osman and Srivastava10 investi-
gated the propagation of intense heat pulses in single-walled
carbon nanotubes by means of molecular dynamics. They
observed that, together with pulses traveling with the sound
velocity, a secondary and slower peak can also propagate as
a “second sound” type of wave.11 Shiomi and Maruyama12

argued that this should be related to relatively fast optical
phonons that due to the quasi-one-dimensional structure have
very long relaxation times and thus contribute to wavelike
heat propagation.

It is thus relevant to study simplified models that can help
to understand better the conduction properties. In this re-
spect, an example is the length dependence of conductivity
in carbon and boron nitride nanotubes which has been very
recently observed experimentally.13 Indeed, experimental
data are compatible with scaling laws theoretically predicted

for simple nonlinear models. In this spirit, in the present
paper we analyze the heat-pulse propagation in a classical
lattice model, a chain of classical harmonically coupled os-
cillators with a quartic pinning �on-site� potential. In particu-
lar, we compare the linear-response predictions with non-
equilibrium molecular dynamics.

The paper is organized as follows. In Sec. II we discuss
the microscopic one-dimensional model. After some general
considerations about linear response we present the response
functions as computed from molecular-dynamics simulations
�Sec. III�. Based on the numerical data, we present an ap-
proximated �single-pole� form for the response that leads to
the telegraph equation for the temperature-field evolution.
This equation, along with the phenomenological values of its
parameters, is compared in Sec. IV with nonequilibrium
simulations of the transient evolution of a heat pulse. Quali-
tative and quantitative deviations from the behavior expected
for the simple telegraph equation are highlighted.

II. NONLINEAR CHAIN

The model consists of an anharmonic chain of N particles
�each with unit mass� whose displacements are denoted by
ui,

üi = − ui − ui
3 + C�ui+1 − 2ui + ui−1� . �1�

In the linear approximation, where the cubic force term is
dropped, the eigenfrequencies � of the associated normal
modes are expressed as a function of the wave number q by

�2�q� = 1 + 2C�1 − cos q� . �2�

The units have been fixed in such a way to have a unitary
gap in the spectrum. With this choice the only free param-
eters of the model are the energy per particle �=E /N and the
coupling constant C.

Several numerical studies �see, e.g., Refs. 14 and 15 as
well as Ref. 2 and references within� clarified that for models
like Eq. �1� the thermal conductivity is finite, and that a
diffusive heat propagation is expected at long times. How-
ever, on time scales which are on the order of the energy
current relaxation time some wavelike transient behavior
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could be expected. However, a rigorous derivation of a mac-
roscopic transport law from the microscopic equations of
motion, especially for small systems in a low-dimensional
environment, remains as a formidable challenge.

To conclude this section we mention that the we limit
ourselves here to the case of a single-well on-site potential.
The double-well case has been studied in Ref. 16. A detailed
analysis of second sound propagation in the three-
dimensional lattice is given in Ref. 17.

III. LINEAR RESPONSE

At a coarse-grained level, the most general linear consti-
tutive relation between the energy current J�x , t� and the lo-
cal temperature gradient can be written as an extension of the
usual Fourier law �we limit ourselves for simplicity to a one-
dimensional case�,

J�x,t� = − �
−�

�

dx��
−�

t

dt� K�x − x�,t − t��
�T

�x
�x�,t�� . �3�

Substituting into the continuity equation and assuming a de-
cay of the kernel K at infinity, one obtains

�T

�t
= �

−�

�

dx��
−�

t

dt� K�x − x�,t − t��
�2T

�x2 �x�,t�� �4�

�up to the heat capacity�. The generalized heat diffusion
equation is formally solved by means of the Fourier-Laplace
transform with the convention

f�q,z� �
1

�2�
�

−�

�

dx�
0

�

dt f�x,t�e−i�qx−zt�, �5�

yielding

T�q,z� =
T0�q�

− iz + q2K�q,z�
�6�

with T0 being the initial condition. The standard diffusive
pole is recovered for a constant K�q ,z�=D, i.e., for an in-
stantaneous response, with D being the thermal diffusivity.
The simplest improvement would be to include a single re-
laxation time � and no spatial memory effects, namely, an
exponentially decaying kernel in time of the Cattaneo-
Vernotte type.1 In the above notation this means choosing a
single-pole response of the form

K�q,z� =
v2

− iz + 1/�
. �7�

The quantity v has the physical dimensions of a velocity and
is defined as1

v =�D

�
. �8�

Substituting approximation �7� into Eq. �6� one can
readily recognize that the resulting T�q ,z� is nothing but the
Laplace transform of the equation

�2T

�t2 +
1

�

�T

�t
= v2�2T

�x2 . �9�

This is known as the telegraph equation.1 The equation con-
tains an additional term with respect to the standard heat
equation that affects the solution for times of order �. Indeed,
the second-order derivative with respect to time leads to a
finite velocity of perturbations. For instance, for a pulse ini-
tially localized at the origin, T=0 at distances �x��vt. For
t��, ordinary diffusive behavior is recovered.18 It should be
also remembered, that Eq. �9� arises as a continuum limit of
the persistent random walk �see Ref. 19 and references
within�.

According to the fluctuation-dissipation theorem20 the
imaginary part of the response function K�q ,	� is propor-
tional to 	 times the equilibrium power spectrum of the ob-
servable that couples to the external field. In the case of a
temperature gradient, the observable to consider is the en-
ergy current, whose microscopic expression for model �1�
reads2

jn = −
C

2
�u̇n+1 + u̇n��un+1 − un� . �10�

In order to test for the validity of approximation �7� we
have first of all evaluated the power spectra of the q=0 com-
ponent of the flux, j�q=0, t�=�njn from molecular dynamics.
To this aim, we have performed microcanonical simulations
by integrating Eq. �1� �with periodic boundary conditions,
un=un+N� by means of a fourth-order symplectic algorithm.21

Initial conditions were chosen with the particles at equilib-
rium. Their velocities were drawn at random from a Gauss-
ian distribution and rescaled by suitable factors to assign the
total energy per particle � to the prescribed value and to set
the total initial momentum equal to zero. A suitable transient
is elapsed before data acquisition for statistical averaging.
Conservation of energy and momentum was monitored dur-
ing each run. The chosen time steps �0.05–0.1� ensure energy
conservation better than a few parts per million. The reliabil-
ity of the spectra has been checked against different choices
of the run duration and sampling times.

Figure 1 reports ��j�q=0,	��2	, where the average is per-
formed over about 100 trajectories. The data show that, in
agreement with Eq. �7�, the spectra are fitted very well by a
single Lorentzian over a wide range of energies and frequen-
cies. The relaxation time decreases as a power of the energy
density, �
�−
 with 
�1.4 �Fig. 2�. To compute the veloc-
ity v we measured independently the thermal conductivity �
by the standard Green-Kubo formula, i.e., by integrating the
flux autocorrelation in the time domain.2 It turns out that the
diffusivity D is approximately equal to the thermal conduc-
tivity since the heat capacity is very close to one in our units
�it varies only by a few percent in the considered energy
range�. As shown again in Fig. 2, � decreases as a power of
the energy density. This is in agreement with previous work
on related models.15,22 The corresponding exponent is very
close to 
 meaning the that v as defined by Eq. �8� is roughly
constant.

In a second series of simulations, we computed the dy-
namical structure factor, namely, the square modulus of tem-
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poral Fourier transform of the energy density on the lattice,

en =
u̇n

2

2
+

un
2

2
+

un
4

4
+

C

2
�un+1 − un�2, �11�

e�q,t� =
1

N
�

n

en exp�− iqn� , �12�

which is defined as

S�q,	� = ��e�q,	��2	 . �13�

The square brackets denote an average over a set of indepen-
dent molecular-dynamics runs. By virtue of the periodic
boundaries, the allowed values of the wave number q are
integer multiples of 2� /N.

The data in Fig. 3 are representative of the numerical
results. At low enough temperatures we see a peak at finite
frequency which suggests some kind of oscillating response,
i.e., the propagation of damped temperature waves. Upon
increasing � and/or decreasing q, the spectra display a central
peak akin to the one of an overdamped oscillator which sig-
nals the onset of diffusive behavior.

For not too large q the spectra are well fitted by a Lorent-
zian shape

S�q,	� =
S0

�	2 − 	0
2�q�
2 + �	/��q�
2 . �14�

We found that the dependence of the parameters 	0�q� and
��q� from the wave number q is

	0�q� = c�q�,
1

��q�
=

1

�
�1 + � q

q0
�� , �15�

where c and q0 are fitting parameters �see Fig. 4�.
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FIG. 1. �Color online� Power spectrum of energy current for a
chain of N=4096, C=1 and different energies. Dashed lines are
best fit with a Lorentzian line shape a / �1+�2	2�.
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FIG. 2. �Color online� The relaxation time � as a function of
energy for N=2048, C=1. The dashed line is a power-law fit.
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=1.0. Dashed lines are best fit with Eq. �14�.
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The observed form of the line shape �Eq. �14�
 is fully
consistent with that expected from Eq. �9�. However, the
origin of the dependence of ��q� cannot be accounted for by
the simplified kernel �7� and is presumably a signature of
spatial correlations. Nonetheless, we note that the value �
obtained by extrapolating at q→0 in the second of Eq. �15�
is in very good agreement with the value measured from flux
spectra �see again Fig. 2�. Another important quantitative
difference is in the characteristic velocities. In Fig. 4�b� we
compare the velocity c from the fitting �15� with v as given
by definition �8�. Since we found above that D and � are both
proportional to �roughly� the same power law �−
, in Fig. 4
we report also the ratio of the corresponding proportionality
constants. The measured values of v in Fig. 4 show that v
�c in the considered range.

We may surmise that the velocity c should be related to
the group velocity of the harmonic waves. To account for
finite-temperature effects we have computed the renormal-
ized dispersion relation in the self-consistent phonon
approximation,23

�̃2�q� = 	2�T� + 2C�1 − cos q� , �16�

where

	2�T� = 1 +
�u4	
�u2	

. �17�

The second and fourth momenta of the displacements have
been evaluated numerically. The data for c are very close to
the maximum group velocity cmax, namely, the largest value

of d�̃�q� /dq as computed from formula �16� �see Fig. 4�.
We conclude that, although the telegraph equation �9� ac-

counts for the line shape of the energy correlators, there are,
at least in the considered times and length ranges, some
quantitative deviations. The fact that v and c are different can
be partly understood by noting that v is associated with dif-
fusive processes and results from interaction of all possible
lattice waves. The maximum group velocity c will thus be an
upper bound to v, but the two need not be equal.1 Yet, for the
telegraph equation to yield a good approximation of the
structure factor �at least at small wave numbers� the two
velocities should be somehow related. The observed discrep-
ancy is likely to be due to the drastic simplification in the
choice of kernel �7�. It is interesting to mention that differ-
ences in the measured velocities were previously reported
also in a model of hard-point particles.5

IV. HEAT-PULSE PROPAGATION

The linear-response results reported so far suggest that the
propagation of heat waves could be described at the macro-
scopic level, at least for small enough energies, through the
telegraph equation �9�. In order to test this conjecture, we
performed nonequilibrium numerical simulations where a
heat pulse of temperature T0 is excited in a small region of
width 
N within a chain otherwise at equilibrium at the bulk
temperature Tb�T0 and observed as it evolves. A typical
pulse experiment proceeds as follows. First the chain is let
evolve at a fixed energy �=Tb for a long enough equilibra-
tion time. Subsequently, the portion ��N−
N� /2, �N
+
N� /2
 is put in contact with a Langevin thermostat at the
temperature T0, while the rest of the chain is kept frozen in
its equilibrium configuration. When the heated portion has
reached thermal equilibrium with the thermostat, the latter is
removed and the equations of motion of the whole chain are
integrated at constant energy. For the pulse propagation ex-
periments we used the symplectic “position extended Forest-
Ruth-like” �PEFRL� algorithm of Omelyan et al.24 and a
velocity Verlet algorithm for the microcanonical and Lange-
vin integrations, respectively. Furthermore, since we used
free-end boundary conditions, we took care to choose the
integration time so as to avoid the propagating pulse to be
reflected at the chain edges. In order to obtain highly accu-
rate results, we averaged the time-dependent temperature
profiles over a large ensemble of N independent realizations
of the equilibrium configuration of both the bulk and the
excited regions of the chain. All results reported in the fol-
lowing were obtained with N=2�104 and 
N=90, except
where explicitly indicated otherwise.
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Typical spatiotemporal portraits of the temperature pro-
files describing the evolution of a heat pulse are reported in
Fig. 5 for two different values of the bulk temperature. For
small values of Tb, the heat excitation gives rise to two sym-
metrical pulses, traveling in opposite directions at a constant
speed. Such speed is extremely close to the maximum group
velocity of the linear modes, cmax=0.618. As the bulk tem-
perature is increased, the correlation time � is expected to
decrease thus reducing the window of ballistic propagation.
In fact, a diffusionlike evolution of the pulse is observed
already at Tb=0.04 �Fig. 5�b�
. However, it can be clearly
appreciated that the bulk temperature is still not sufficiently
large for the pulse to spread homogeneously at all heights. At
a closer inspection, it is not difficult to realize that the front
base line still clearly moves at a constant speed close to cmax.

Stated more precisely, our conjecture implies that, if the
telegraph equation holds, then the motion of the heat-pulse
front should carry the information on the microscopic param-
eters that enter the continuum description, namely, the speed
v and the correlation time � �see again Eq. �9�
. Let us imag-
ine cutting the time-dependent temperature profiles that de-
scribe the chain dynamics after excitation of the heat pulse at
a given temperature T � with Tb�T ��T0. Then, one may
extract useful information by tracking the sites occupied by
the pulse front at the height T � during its evolution. In other
words, one may study the trajectories defined implicitly as

T„x�t…,t� = T �, �18�

where T�n , t�= �u̇n
2�t�	 is the temperature field, with the aver-

age being computed over an ensemble of N independent

trajectories. If T � is sufficiently close to the bulk temperature
Tb, the linear response results should hold and the persistent
random walk should be recovered, namely,

x�t� − x0 ��2v2

� � t −
1

�
�1 − e−�t�� . �19�

The analysis summarized in Fig. 6 proves the validity of our
inference. Close to the background temperature, the propa-
gation crosses over from ballistic to diffusive on a time scale
that is well predicted by the equilibrium simulations �see Fig.
2�. For Tb=0.01, the equilibrium prediction would be a time
scale on the order of 1 /��2�104. Correspondingly, on our
observation window we observe purely ballistic propagation
�upper right panel of Fig. 6�. Conversely, for Tb=0.3 the
equilibrium relaxation time is about 150. Accordingly, we
indeed observe a crossover to diffusion within the time span
of our simulations. From the fit we get 1 /�=127, in good
agreement with the equilibrium prediction �lower right panel
of Fig. 6�. At intermediate temperatures, an increase in the
cut temperature height in the vicinity of Tb causes the
ballistic/diffusive crossover to occur on shorter time scales,
as expected since the relaxation time approaches the obser-
vation time. In fact, this can be seen as the very definition of
the intermediate time scale. This is clearly illustrated in the
middle right panel of Fig. 6 �Tb=0.1�, where the transition
becomes visible in the simulation time window upon raising
the cut temperature from T�=0.104 to T�=0.15.

As a further check of consistency, we have examined the
time variations of the temperature field second moment
�2�t�, defined as

�2�t� = �
n

�n − �n	�2zn, �20�

where zn= u̇2 /�mu̇m
2 and �n	=�nnzn. However, straight calcu-

lation of the second moment from its definition requires ex-
tremely accurate averages due to the strong amplification of
the fluctuations in the bulk regions away from �n	. For this
reason, in order to monitor �2 over time, two copies of the
system were evolved starting from identical initial conditions
but for the small region around the center of the chain, where
the heat pulse is generated. An accurate estimate of the pulse
spread for finite values of Tb can then be obtained from the
second moment of the difference between the profiles of the
two system clones.

The result of such procedure is shown in Fig. 7 for two
values of the bulk temperature in the case of a narrow exci-
tation. As it shows, the heat pulse spreads according to the
prescription of the telegraph equation, that is,

�2�t� = �2�0� +
2v2

�
�t −

1

�
�1 − e−�t�� . �21�

The time scales extracted from the fits are �=917.5 �Tb
=0.1� and �=53.9 �Tb=0.5�. These figures are in good agree-
ment with the equilibrium relaxation times that we found by
fitting the results of microcanonical simulations �data shown
in Fig. 2�, �=760.8 �Tb=0.1� and �=76.2 �Tb=0.5�.

0
0.2
0.4
0.6
0.8
1
1.2

Site

T
im

e

0 300 600 900 1200 1500
0

150

300

450

600

750

0
0.2
0.4
0.6
0.8
1
1.2

Site

T
im

e

0 300 600 900 1200 1500
0

150

300

450

600

750

(a)

(b)

FIG. 5. �Color online� Spatiotemporal density maps of the nor-
malized temperature profiles T�n , t� /T0 of two heat pulses propagat-
ing in chains at temperatures �a� Tb=0.001 and �b� Tb=0.04. Other
parameters are T0=20�Tb, C=1, and N=1500.
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The best-fit values of the velocities v prove rather insen-
sitive to the bulk temperature. We find v=0.095 �Tb=0.1�
and v=0.1 �Tb=0.5�. Interestingly, these values are smaller
than all estimates shown in Fig. 4. This is likely to reflect the
temperature dependence of the relaxation times at different
heights within the pulse. For a finite-temperature distur-
bance, the fronts do not spread at the same rate, causing the

hotter portions to lag behind the advancing base line. Over-
all, this should reflect in a lower value of the pulse velocity
during its first ballistic stage.

V. DISCUSSION

In this paper we have investigated the relaxation of tem-
perature fluctuations in a discrete nonlinear chain. At low
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temperatures the relaxation time � of the energy current must
be taken into account, leading to correction to the standard
diffusive behavior. Starting from numerical calculation of the
response function and to the simplest level of approximation,
we obtained the telegraph equation �Eq. �9�
 and estimated
the temperature dependence of its parameters.

The comparison between the linear-response prediction
and the nonequilibrium simulations reveals that the telegraph
equation provides a reliable macroscopic interpretative
framework for quantifying the front propagation. In particu-
lar, we have shown that the second moment of the tempera-
ture field displays the ballistic/diffusive crossover on a time
scale in accordance with the correlation times of energy fluc-
tuations extracted from equilibrium simulations. The same is
true for the front propagation at temperatures close to the
background. It might be surmised that this type of macro-

scopic description should apply to all models displaying nor-
mal energy transport, such as chains of coupled rotors or
other one-dimensional models with pinning potentials2 or
three-dimensional systems.25

By following the propagation at higher temperatures, the
front appears to smear out in the course of time. It is likely
that this effect could be captured by a kernel of the Jeffreys
type, as shown by Shiomi and Maruyama.12 Another possible
improvement would be to include spatial memory effects, by
allowing for a space-dependence memory dependence in the
kernel K �Eq. �3�
. This is especially important if one wishes
to describe systems with anomalous transport properties.2 In-
deed, in this case heat propagation is quantitatively described
by a Levy walk process,3,5 which is precisely the generaliza-
tion of the persistent random walk for of a memory decaying
as a power law. As a consequence, the macroscopic equation
generalizing the telegraph equation should involve mixed
spatiotemporal fractional derivatives.26 Possible nonlinear
heat wave propagation could also be taken into account by
including higher-order powers of the local gradient. Further
work along these lines is in progress.

Finally, we remark that our results confirm that wavelike
transport of energy is associated with the presence of optical
branches in the linear spectrum. This could be of interest for
heat transport in single-walled carbon nanotubes, where a
significant contribution of optical phonons to wavelike con-
duction has been reported.12 In this respect one may conjec-
ture that our simplified model may provide an effective de-
scription of more complex quasi-one-dimensional
nanostructures.
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