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Abstract – We investigate how nonlinearity and topological disorder affect the energy relaxation
of local kicks in coarse-grained network models of proteins. We find that nonlinearity promotes
long-range, coherent transfer of substantial energy to specific functional sites, while depressing
transfer to generic locations. In some cases, transfer is mediated by the self-localization of discrete
breathers at distant locations from the kick, acting as efficient energy-accumulating centers.

editor’s choice Copyright c© EPLA, 2009

It is now well established that the functional dynam-
ics of proteins is deeply rooted in the peculiar topological
arrangement of their native folds, as revealed by many
experimental and computational studies [1,2]. In particu-
lar, the success of coarse-grained elastic network models
(ENMs) in describing atomic fluctuations at room temper-
ature have helped elucidate, at the harmonic level, the
subtle interplay between structure and dynamics on one
side and biological function on the other [3–10].
However, protein dynamics is strongly anharmonic

[11,12], a property which has to be taken into account
in order to rationalize crucial biological processes such
as energy storage and transfer upon ligand binding,
chemical reaction, etc. [13,14]. Yet, even though many
theoretical studies suggest that nonlinear excitations may
play an active role in protein functioning [15–17], the
rich phenomenology residing in the interplay between
protein topology and nonlinearity still remains widely
unexplored. Along these lines, we have recently intro-
duced the Nonlinear Network Model (NNM), showing
how known nonlinear effects can be modulated by the
underlying non-regular topology of protein systems. For
instance, within a large collection of enzyme structures,
the formation of localized, robust nonlinear modes
appears strongly favored at few specific sites, that often
lie in close proximity of known catalytic sites [18,19].

(a)E-mail: Francesco.Piazza@epfl.ch
(b)E-mail: Yves-Henri.Sanejouand@univ-nantes.fr

In this paper we examine the effects of the nonlin-
earity/topology interplay on energy transfer phenomena
across protein structures. Within the NNM framework a
protein is represented by N fictive particles (amino acids)
of identical mass M = 110 a.m.u., at equilibrium at the
corresponding Cα site as specified in the experimentally
determined structures (X-ray or NMR). By imposing a
fixed cutoff Rc on the latter set of coordinates, a protein
is mapped onto a network of nonlinear oscillators, whose
potential energy reads
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where rij is the distance between residues i and j, Rij their
distance in the equilibrium structure and cij = {1 if Rij �
Rc, 0 otherwise} is the connectivity matrix. As in previous

studies [18], we take Rc = 10 Å, k4 = 5kcal/mol/Å
4
and fix

k2 so that the low-frequency part of the linear spectrum
match actual protein frequencies, as calculated through

realistic force fields [20–22]. This gives k2 = 5kcal/mol/Å
2
.

The case k4 = 0 corresponds to the Anisotropic Network
Model (ANM) [3–5].
Our aim is to investigate how energy initially imparted
at a specified site i redistributes across a given structure.
To do this, we perform microcanonical simulations with
all residues initially at rest at their equilibrium position
but for a kinetic energy kick at site i of magnitude E0.
Sites in a 3D protein network are not equivalent, featuring
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e.g. varying connectivity, clustering coefficient and bond
directions. Thus, in order to allow for a comparison of
energy relaxation from all sites in a given structure, the
initial kick direction ought to be specified by a unique
protocol. We chose to calculate the directions of the initial
velocities �vi(0) through the Sequential-Maximum-Strain
(SMS) algorithm [19], which provides an unbiased measure
of the maximum-strain direction at site i for a fixed
displacement (here 1 Å), êSMS . During the simulation, we
record at regular intervals tk, k= 1, 2, . . . , Ns the site that
carries the highest energy, nk, and the value of the latter,
enk =Mv

2
nk
/2+unk . Corresponding to a fixed simulation

time (about 500 ps), we define a transfer probability from
site i (the kicked one) to site j and the fraction of energy
transferred as

Pi→j =
1

Ns

Ns
∑

k=1

δnk,j , f
e
i→j =

1

NsPi→j

Ns
∑

k=1

ejδnk,j
E0

. (2)

The first striking result comes from the calculation of
average transfer probabilities. These gauge the mean
transfer to a given site from kicks at all other sites,
〈Pj〉=

∑

i�=j Pi→j/(N − 1), obtained from N independent
simulations. A typical probability transfer plot is shown
in fig. 1. The first notable feature is that the effect of
nonlinearity is to substantially increase the probability of
energy funneling to a few selected sites, while depressing
transfer to all other locations with respect to the harmonic
(ANM) case. Remarkably, the preferred target sites lie in
close proximity to the known catalytic sites, within the
stiffest regions1. Thus, topology and nonlinearity team in
this case together to sharpen energy funneling to specific
functional regions.
The case shown in fig. 1 is not a singular one. In fig. 2
we show the stiffness patterns for four other enzymes
along with the sites ranking first to tenth as to the
energy delivered on average to spherical shells with 6 Å
radius around each site. For residue j, this amounts to
further averaging the mean energy deposited at sites
within the j-th ball B(j), i.e. 〈〈fej 〉〉= 〈

∑

i�=j f
e
i→j/(N −

1)〉B(j). As it shows, the sites around which most of the
energy is deposited invariably spotlight the stiffest regions,
at the same time identifying functionally relevant loca-
tions (see catalytic sites). Moreover, the same locations
clearly attract substantial fractions of the initial exci-
tation energy, as revealed by surveying the maximum
transferred energies to each ball B(j), that is fmax(j) =
〈maxi�=j f

e
i→j〉B(j) (empty circles). Many events featuring

transfers of energy fractions in the range 20 to 25% were
indeed observed.
We can learn more on the mechanisms underlying

the energy transfer process by examining in detail the
outcome of a single kick. Figure 3 pictures a long-range

1We measure the local stiffness si as a sum over the set S of ten
highest normal modes �ξk, that is the eigenvectors of the Hessian of
the ANM total potential energy, si =

∑
j,α

∑
k∈S cij [ξ

k
jα]
2/Ni, with

Ni =
∑
j cij [18].

Fig. 1: Average transfer probability in Riboflavin Synthase
(PDB id. 1KZL, N = 202) on logarithmic (upper panel) and
linear (lower panel) scale. Thick solid line: ANM. Dashed line:
NNM. The staircase plot in the lower panel reproduces the
stiffness pattern (arbitrary units). Filled circles flag catalytic
sites. E0 = 75 kcal/mol.

transfer event occurring when kicking at site LEU 42 in the
enzyme Subtilisin. The middle-lower panel (a) shows a plot
of the most energetic site nk as a function of time, clearly
illustrating the transfer to site VAL 177, some 23 Å away,
occurring at t∗ ≈ 275 ps. The transfer process also involves
site ALA 85, as a passage site. Remarkably, a plot of the
energy emax(t) of the most energetic site at time t clearly
shows that such passage coincides with a redistribution of
energy across the structure (see middle panel (c)). Subse-
quently, energy is garnered from the neighborhood and
stabilized in a localized mode centered at VAL 177, finally
carrying about 20% of the total energy. This marks the
true transfer event. Such energy-harvesting, self-localized
vibrations are generic in discrete nonlinear systems and
are well known as Discrete Breathers (DB) [23]. These
are robust, time-periodic exponentially localized modes,
whose vibrational frequency lies outside the linear spec-
trum of the system. In the context of the NNM, we
have shown how accurate approximations of such peri-
odic orbits can be calculated analytically, reproducing
the marked affinity of DB self-localization in topologically
disordered media for the stiffest spots [18,19]. Here we have
shown that DBs may also be excited as a consequence of
localized impulses at considerable distances from the exci-
tation, playing the role of energy-accumulating transfer
vectors. Incidentally, this is why in fig. 2 we measure the
energies delivered to local spherical neighborhoods around
target sites.
In order to substantiate the above interpretation, we
have performed Principal Component Analysis (PCA) on
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Fig. 2: Stiffness plots (staircases) and first ten sites in the ranked list of average energies delivered to 6 Å-balls around each site
(dashed impulses) for four enzymes: HIV-I protease (PDB id. 1A30, N = 201), Astacin (PDB id. 1AST, N = 200), Imidazole
glycerol phosphate synthase subunit hisF (PDB id. 2A0N, N = 200), SARS coronavirus main proteinase (PDB id. 2BX4,
N = 299). Filled circles flag catalytic sites. Right axes report the ten largest average fractions of the initial energy transferred
to 6 Å balls (empty circles). The abscissas denote the centers of the 6 Å-radius spheres. E0 = 75 kcal/mol.

an extended portion of the post-transfer dynamics. The
power spectrum of the system trajectory projected on the
first principal mode (PM1) is shown in the upper left panel
of fig. 3, clearly revealing the existence of a nonlinear,
time-periodic excitation, reminiscent of chaotic DBs that
self-localize through modulational instability in nonlinear
lattices [24].
More insight as to why energy is transferred from LEU

42 a long distance away can be obtained by turning to the
space of Normal Modes (NM) �ξ k (k= 1, 2, . . . , 3N − 6).
Middle panel (b) of fig. 3 reports the mode carrying the
highest energy εk(t) = (Q̇

2
k +ω

2
kQ
2
k)/2 at time t, where

Qk =
∑

j,α xjαξ
k
jα is the NM-transform of the system

coordinates xjα (j = 1, 2, . . . , N, α= x, y, z) and ωk are
the NM frequencies. Before the transfer event, energy is
bounced among four high-frequency modes, NMs 1, 3, 8
and 9. This can be understood by constructing the NM
overlap network starting from the NMs with the largest
projections on the initial excitation unit vector êSMS
(four modes in the first column of the bottom network in

fig. 3, NMs 138, 127, 67 and 37, making up about 60% of
êSMS). For a given NM p, two links are drawn to the two-
highest ranking NMs in the ordered list of absolute overlap
coefficients tpq =

∑

j,α |ξ
p
jα||ξ

q
jα|. By doing this for the four

NMs involved in the SMS vector, a closed network emerges
identifying the NM3 ⇄ NM8 ⇄ NM9 loop. Thus, in the
presence of nonlinearity energy is immediately directed to
a reduced group of NMs via resonant overlap mechanisms.
This finding agrees with results of atomistic simulations
highlighting the importance of spatial overlap for NM-NM
energy transfer [25].
High-frequency NMs are strongly localized in space.
In particular, ALA 85 is the NM site (the site with
largest displacement) in NM3 and the second NM site in
NM8, which explains the role of ALA 85 in the energy
circulation process. Before transfer, however, energy also
bounces back and forth from NM1, the highest-frequency
mode, reflecting the nonlinear frequency shift on NM3
toward greater frequencies (see again fig. 3(b)). At t= t∗
energy starts departing the region around LEU 42 and a
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Fig. 3: (Colour on-line) Kick at site LEU 42 in Subtilisin (PDB id. 1AV7, N = 274). Middle panels: most energetic site vs. time
(a), most energetic normal mode vs. time —NMs being ranked in order of decreasing eigenfrequency— (b), highest site energy
vs. time (c), energies of two NMs vs. time (d). Power spectrum of the system trajectory for t > t∗ = 275 ps projected on the
first principal mode; ωM = 101.2 cm

−1 is the band-edge linear frequency (e). The inset shows the same plot in logarithmic scale.
(f) NM overlap network. Nodes are NMs, red and blue links connect to nodes ranking first and second, respectively, in overlap
(see text). Link weights are the overlap coefficients tpq. (g) Network relating principal modes (PM), NMs and the analytical
Discrete Breather pattern (DB). Link weights are the absolute cosines (normalized scalar products). In both graphs the link
width is proportional to its weight. E0 = 100 kcal/mol.

fluctuation pumping up NM3 occurs (fig. 3(d)), shifting its
frequency upwards by virtue of nonlinearity. The energy
at stake is sufficient to trigger nonlinear localization and
a DB finally installs at VAL 177, the NM site of NM1,
gathering vibrational energy from the background. Corre-
spondingly, the energy on NM1 increases (see fig. 3(d)). To
substantiate the above analysis, we have calculated analyt-
ically the DB mode pattern centered at site VAL 177 with
the technique described in ref. [19]. Then we have built the
network connecting the first two principal modes, the first
three NMs and the DB, where the links are weighted by
the normalized scalar products (upper network in fig. 3).
As it shows, the PMs essentially reflect the underlying
competition between NM1 and NM3. In particular, the
first principal mode confirms the excitation of a DB emerg-
ing as a nonlinear continuation of the edge normal mode,
as predicted theoretically in ref. [19]. In agreement with
this picture, kicks at ALA 42 of weaker energy resulted in

a DB installing at MET 199, the NM site of NM2. That
is, less energy causes a smaller frequency shift and the DB
branch originating from the continuation of NM2 is excited
instead. Reducing E0 further, the transfer is observed
to halt at ALA 85, as explained by the NM overlap
network.
In this paper we have shown how nonlinearity in a topo-
logically non-regular system boosts energy transfer to few
specific locations. In enzyme structures, these coincide
invariably with the stiffest regions, also hosting the func-
tionally relevant sites. Nonlinearity sharpens the trans-
fer selectivity, by reducing at the same time the transfer
probability to generic locations. The energy transferred
by virtue of nonlinearity may be a conspicuous portion of
the initial excitation, in which cases localized vibrations
akin to Discrete Breathers self-localize as energy-collecting
centers, often realizing amazingly efficient energy transfer
channels across considerable distances.
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