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We describe the energy relaxation process produced by surface damping on lattices of classical
anharmonic oscillators. Spontaneous emergence of localized vibrations dramatically slows down
dissipation and gives rise to quasistationary states where energy is trapped in the form of a gas of
weakly interacting discrete breathers. In one dimension, strong enough on-site coupling may yield
stretched-exponential relaxation which is reminiscent of glassy dynamics. We illustrate the
mechanism generating localized structures and discuss the crucial role of the boundary conditions.
For two-dimensional lattices, the existence of a gap in the breather spectrum causes the localization
process to become activated. A statistical analysis of the resulting quasistationary state through the
distribution of breathers’ energies yield information on their effective interactions. ©2003
American Institute of Physics.@DOI: 10.1063/1.1535770#
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Discrete breathers have been widely analyzed as math
ematical objects, but the relevance of their role in physi-
cal systems is still debated. In fact, any mechanism yield
ing the spontaneous formation of breathers is expected to
provide interesting indications in this direction. In this
respect, the phenomenon of relaxation to breather states
by cooling lattices from their boundaries is one of the
most interesting examples. Here we provide a compre
hensive description of this phenomenon in low dimen-
sional lattices. In particular, we review former results and
add new information, mainly concerning the two-
dimensional case. This study is based on a combination o
numerics and theoretical arguments, while we analyze
both dynamical and statistical features of the problem to
clarify the whole scenario.

I. INTRODUCTION

Nonlinearity has revealed one of the key ingredients
describing many relevant features of different states of m
ter. In the realm of lattice dynamics, scattering proces
among phonons, propagation of solitary waves, and slow
ergy relaxation are typical examples. Recently, considera
efforts have been devoted to the study of periodic, localiz
nonlinear lattice excitations, named ‘‘breathers.’’1 They are
quite peculiar~but generic! objects emerging from the inter
play of nonlinearity and space discreteness.2 Their math-
ematical properties, like existence, stability, mobility, et
have been progressively unveiled, while they have b
identified in many different scenarios.

Their role in nonequilibrium dynamics seems to be p
ticularly fascinating. An example is the relaxation to ener
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equipartition of short-wavelength fluctuations.3 Another in-
teresting scenario where breathers are found to emerge s
taneously is observed upon cooling the lattice at
boundaries,4–6 i.e., by considering a nonequilibrium proce
in which energy exchange with the environment is mu
faster at the surface than in the bulk. The numerical simu
tions neatly show that the energy dissipation rate may
significantly affected by the spontaneous excitation
breathers. As the latter exhibit a very weak interacti
among themselves and with the boundaries, the energy
lease undergoes a sudden slowing down and is hardly
tected on the time scales of a typical simulation. Thus,
lattice remains frozen in a pseudostationary, metastable
figuration which is far from thermal equilibrium, which w
shall refer to asresidual state. Despite the absence of diso
der, there is a close similarity to the glassy behavior obser
in disordered systems, as was already pointed out.4,5

But what are the mechanisms leading to spontane
localization? As we have shown in a previous paper,6 the
latter is intimately related to how dissipation acts on vib
tional modes of different wavelengths. If long-waveleng
phonons can be efficiently damped out, the modulation in
bility of short lattice waves7 becomes highly favored an
breathers can easily emerge from an interacting sol
gas.3,8 In this respect, this type of nonequilibrium conditio
is much more effective in exciting localized modes than
equilibrium one~see, e.g., Ref. 9 for a related discussion!.

Spontaneous localization upon cooling has been
served for both on-site4,5 and pure nearest-neighbor~nn!
interactions.6,10 The two classes of models are known to b
have differently, e.g., as to the mobility of breathers, which
much higher in the absence of local coupling. This is a
confirmed by relaxation experiments, where differences
the energy decay laws have been observed. In particular
© 2003 American Institute of Physics
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approach to the residual state follows a simple exponen
law in the Fermi–Pasta–Ulam~FPU! system,6 but turns to
stretched exponential in the presence of local coupling.5

Our aim in this paper is to provide an up-to-date ov
view of the phenomenon of breather localization by coolin
Generalities about the energy release process, inclu
models and indicators, will be presented in Sec. II, alo
with the discussion of the cooling process in an harmo
lattice and the results obtained for one-dimensional~1D!
nonlinear systems. In particular we shall survey the differ
cooling pathways appearing in pure nn and on-site potent
A specific section will be devoted to clarifying the interpr
tation of some recent results.10,11 In Sec. III, we present the
results for the nn two-dimensional~2D! FPU model. We
want to point out that the 2D is not a straightforward exte
sion of the 1D case. Indeed, the existence of an energy
vation threshold for breather solutions12 leads to conjecture
that a thermalized state may be cooled to the residual s
only above some initial energy/temperature. Moreover,
residual state is a static multibreather state, whereby in
1D case it usually contains a single breather. Finally,
perform an analysis of the distribution of breather energ
based on a simple statistical model.

II. RELAXATION AND LOCALIZATION IN 1D

In this section we will describe the lattice models and
generalities of a typical relaxation experiment as well as
relevant indicators used throughout the paper. Let us c
sider a chain ofN atoms of unit mass and denote byup the
displacement of thepth particle from its equilibrium position
pa (a is the lattice spacing!. The atoms are labeled by th
index p50,1,. . . ,N21 and their dynamics is given by th
equations of motion

üp5V8~up112up!2V8~up2up21!2U8~up!

2gu̇p@dp,01dp,N21#,

whereV(x) andU(x) are the interparticle and on-site pote
tials, respectively. We assume thatV8(0)5U8(0)50, denot-
ing with a prime the derivative with respect tox. For conve-
nience, we shall adopt nondimensional units such thata and
V9(0) are set to unity. Moreover, as we want to deal w
systems in a finite volume, we will impose either free-e
(u215u0 , uN215uN) or fixed-end (u215uN50) boundary
conditions~BCs!.

The last term in Eq.~1! represents the interaction of th
atoms with a ‘‘zero-temperature’’ heat bath in the form o
linear damping with rateg. Following Refs. 4 and 5, we
restricted ourselves to the case in which dissipation se
tively acts only on the atoms located at the chain edges
mentioned earlier, this choice is crucial and should mode
physical situation in which energy exchange with the en
ronment is much faster at the surface than in the bulk.

The general layout of a simulation can be summarized
follows. First, an equilibrium microstate is generated by, s
Nosè–Hoover~canonical! method4 or by letting the Hamil-
tonian ~microcanonical! system (g50) evolve for a suffi-
ciently long transient.6 In the following we will follow the
second strategy. The initial condition for the transient is
ownloaded 07 Dec 2005 to 128.178.66.132. Redistribution subject to AIP li
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signed by setting all displacementsup to zero and by draw-
ing velocities at random from a Gaussian distribution. T
velocities are then rescaled by a suitable factor to fix
desired value of the energy density~energy per particle! e0 .
The resulting set ofup and u̇p is then used as initial condi
tion to integrate Eq.~1! with g.0 ~again see Ref. 6 for
details!.

The result of the relaxation process is the residual st
i.e., a state with a finite fraction of the initial energy stored
the form of breathers. Remarkably, such residual state
characterized by a decay time scale which is several or
of magnitude longer than that of the localization process

A. The harmonic lattice

A number of features which characterize the relaxat
dynamics of nonlinear lattices can be better understood
first studying the harmonic lattice, namely

V~x!5 1
2x

2.

We anticipate that the presence of an harmonic on-site
tential does not alter the main conclusions. We thus takeU
50 throughout this section.

For small damping, an approximate analytical soluti
can be found by time-dependent perturbation theory.
va

254 sin2(qa/2) andha (a50,1,. . . ,N21) denote the ei-
genvalues and normalized eigenvectors of the unpertur
Hamiltonian problem, where the allowed wave numbers
qa5ap/N and qa5(a11)p/(N11) for free-end and
fixed-end BCs, respectively. To the lowest order ing one
obtains6

up~ t !5 (
a50

N21

cae2(1/ta 1 iva)thp
a . ~1!

wherehp
a is thepth component of the eigenvectorha andca

are constant amplitudes fixed by the initial conditions. Not
that, since the number of the damped particles is fixed,
perturbative approximation is expected to improve upon
creasing the system sizeN. The wave-number-dependen
damping rates are found to be

1

ta
5H 1

t0
cos2S qa

2 D for free-end BC

1

t0
sin2~qa! for fixed-end BC

~2!

with t05N/2g. The free-end and fixed-end BC systems th
show considerably different behaviors. In the former ca
the least damped modes are the short-wavelength onea
'N), the largest lifetime beingtN21'2N3/p2g, while the
most damped modes are the ones in the vicinity ofa50,
with t0 being the shortest decay time. On the contrary,
fixed ends the most damped modes are those around the
center (a'N/2) while short- and long-wavelength ones di
sipate very weakly, beingtN21'N(N11)2/2p2g. As we
shall illustrate in the following, such difference is crucial fo
the localization in the nonlinear system.

Using the solution~1!, we evaluated the chain energy
the case of equipartition, i.e., by replacingca

2va
2 with its
cense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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average value 2e0 . Finally, recalling Eq.~2! and approximat-
ing for large N the sum overa with an integral (ta

→t(q)), we obtained6

E~ t !

E~0!
5

1

pE0

p

e22t/t(q)dq5e2t/t0I 0S t

t0
D

5H e2t/t0 for t!t0

1

A2p~ t/t0!
for t@t0

~3!

where I 0 is the modified zero-order Bessel function, who
asymptotic expansions have been used to obtain the
equality. We conclude that relaxation is exponential only
short times while a crossover to a power-law decay occur
t't0 . Moreover, despite the differences in the relaxat
times~2!, the decay law forE turns out to be the same in th
free and fixed-end systems.

The above-mentioned formulas must be taken with c
tion when dealing with a large but finite system. In such
case, there is of course a lower cutoff at wave numbers
orderp/N. Therefore, after a time of the order of the lifetim
of the longest-lived mode,tN21;N3/g, formula ~3! no
longer holds and a further crossover to the exponential de
law exp(22t/tN21) occurs. This has been also verifie
numerically.6

B. Nonlinear lattices: The role of discreteness

Since the first results of relaxation experiments in no
linear lattices were reported,4,5 there has been some debate
to the nature of the decay law of the system energy and
relation with the spontaneously emerging localized modes
particular, it has been claimed that the phenomenon of
ergy pinning in the form of discrete breathers would resul
a glassy-like relaxation, i.e., stretched exponential decay
Here we shall describe how the main role in determining
relaxation properties of a nonlinear lattice is indeed play
by the type of potential energy. In particular, we will hig
light the importance of the relative strength of the interp
ticle and on-site potentials, i.e., the degree of discretenes
the system. In order to do so, we study the general clas
nonlinear lattices obeying the equations of motion~1!. In
particular, we shall report here the results of numerical sim
lations performed with

V~x!5 1
2 x21 1

4 x4, U~x!5 1
4 kx4. ~4!

In this case, the relative strength of local and interparti
nonlinearities is accounted for by the parameterk.

In Fig. 1 we show the space–time contour plots of t
symmetrized site energies, defined as

hp5 1
2u̇p

21 1
2 @V~up112up!1V~up2up21!#1U~up!.

The instantaneous total energy of the system is then give
E5(p50

N21 hp . We see that a single localized excitatio
emerges from the relaxation process for both small and la
values ofk. The pathway to localization is the same as t
one observed in the FPU model.6 In particular, the basic
mechanism leading to localization is modulational instabi
ownloaded 07 Dec 2005 to 128.178.66.132. Redistribution subject to AIP li
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of short wavelength modes. The latter can only be effectiv
dissipation of long wavelength phonons is fast enough. A
shows from Eq.~2!, this occurs only in the case of free-en
BCs, whereas fixed-end BCs strongly inhibit such proce
On the other hand, breather mobility is strongly reduced
the highly discrete system@Fig. 1~b!#. Such difference is
even more evident in the decay law of the normalized ene
E(t)/E(0), which turns from pure exponential to stretche
exponential behavior upon increasingk. This is better appre-
ciated by plotting the indicator

D~ t !52 ln@E~ t !/E~0!# ~5!

in a log–log scale, so that a stretched-exponential law of
form E(t)5E(0)exp@2(t/t)s# becomes a straight line with
slopes that intercepts they axis at2s ln t @Fig. 2~a!#. The
scaling regions correspond to the onset of energy local
tion, as can be seen by plotting the localization paramete

L~ t !5N
(php

2~ t !

@(php~ t !#2 ~6!

@Fig. 2~b!#. From its very definition, the fewer sites the e
ergy is localized onto, the closerL is to N. On the other
hand, the more evenly the energy is spread among all
particles, the closerL is to a constant of order 1. It should b
noted thatL is a relative quantity, and bears no informatio
on the amount of energy that is localized. As a matter of fa
the fraction ofe0 that gets trapped in the residual state
found to be greater the higher the degree of discretenes
the system.

To summarize, if the on-site force is weak enough,
behavior is basically the same as the FPU chain which
turn, exhibits in the approach to the residual state the sa
exponential decay law of its linearized counterpart, i.
E(t)/E(0)}exp(2t/t0) @see Eq.~3!#. The reasons for such
behavior are the same discussed for the FPU model.6 First of
all, an effective harmonic Hamiltonian with energy
dependent renormalized frequencies is known to accoun
several equilibrium properties of the FPU chain.13,14Second,
the harmonic approximation becomes increasingly accu
as time elapses, simply because more and more energ
extracted from the system by the reservoir. On the contr
if the system is highly discrete, the first relaxation stage
indeed described by a stretched exponential law. A quan
tive explanation of it is still lacking, but it is clear that in thi
case an effective description of such genuine nonlinear p
nomenon in terms of quasi harmonic modes breaks down
other words, the resulting interactions among linear mo
inhibit the energy flow from the bulk to the boundaries, th
slowing down the dissipation.

The onset of a pseudostationary state corresponds in
2 to the almost flat final portions of the curves. Actual
being the system globally dissipative, energy is still at th
stage exponentially decreasing but with a huge time cons
tb . The latter is expected to be inversely proportional to
breather amplitude at the lattice edges, which, in turn, sho
be of order exp(2N/,), with ,!N being the localization
length.

The above-mentioned scenario is generic for la
enough systems. Nonetheless, failure to spontaneously lo
cense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 1. Relaxation in a FPU chain
with quartic on-site potential,g50.1,
N5100, e051. Space–time contour
plots of the symmetrized site energie
~a! k50.1. ~b! k510.
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ize energy occurs the more frequently the smaller is the
tice. This is because the probability of occurrence of la
enough energy fluctuations at a given energy density
creases with the number of particles. In other words, give
number of different initial equilibrium conditions, only
fraction n of them will give rise to breathers. To give
quantitative idea, for the FPU model withe051, n is only
about 50% for a chain ofN520 particles but rapidly ap
proaches 100% already forN*100. In the absence of spon
taneous localization, the nonlinear systems show no dif
ence with respect to the linear ones andE(t) decays
according to Eq.~3!.
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C. The effective-exponent analysis

We have repeatedly mentioned that for the FPU mo
no stretched exponential relaxation is observed, even in p
ence of a weak on-site force. In this section we wish
expand on this statement by reporting a more detailed an
sis of the energy decay. This can be accomplished by de
ing an effective exponentz(t) through the logarithmic de-
rivative

z~ t !5
d@ ln D~ t !#

d@ ln t#
. ~7!
cense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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It is clear from definition~7! that if a portion of the energy
decay curve goes asE(t)5E(0)exp@2(t/t)s# this would re-
sult in a plateau of heights in the correspondingz(t) curve.
For the problem at hand, interpretation of numerical d
with this indicator is however a delicate matter. Actually, w
want to remark that a naive analysis can lead to mislead
or even incorrect conclusions.10,11

The most convincing way to illustrate this is to discu
the case of the harmonic chain where localization a
stretched-exponential behavior are obviously excludeda pri-
ori. From Eq.~3!, it is easily seen thatz should start from 1
and monotonically vanish as 1/lnt for t@t0 . On the other
hand, we already learned that in a finite chain a further cro
over to an exponential law exp(22t/tN21) occurs so thatz
must again approach 1 fort@tN21 . The net results of those
competing trends is that, for a finiteN, z displays a broad
minimum zmin , at t;tN21 . The valuezmin ~which is inde-
pendent ofg! can be estimated by noting that from Eqs.~7!
and ~3! one hasz(t)'1/ln@2pt/t0# for t@t0 , and hence
zmin'1/2 ln@4N/p#. A simple plot of the curves shows how
the minimumzmin can be incorrectly interpreted as a plate

FIG. 2. FPU chain with quartic on-site potential,N5100, g50.1, ande0

51. ~a! Plot of D vs time. The dashed line is the exponential exp(2t/t0),
while the solid line is a fit with the stretched exponential law exp@2(t/t)s#
(s'0.61). The arrow marks the time at which the system withk510
departs from the initial exponential trend.~b! Localization parameter vs time
for different values of the on-site couplingk. The data of bothD andL are
averaged over 32 initial conditions.
ownloaded 07 Dec 2005 to 128.178.66.132. Redistribution subject to AIP li
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if observed on a too short time scale. Of course, the sa
scenario is likely to appear in relatively short FPU cha
whenever the chosen initial conditions do not yield localiz
tion ~see Fig. 3!.

When localization does occur, the residual state dec
exponentially.6 Therefore one expectsz to converge to 1 as
the residual state is approached. Actually, one observes
very small values ofz, while such a convergence does occ
only on much longer time scales. To see why, let us cons
a one-breather residual state. The total energy decay
E(t)5Ebe2t/tb, where Eb is the initial energy of the
breather andtb its characteristic decay time. The time co
stanttb is huge: in fact, it is roughly inversely proportiona
to the breather amplitude at the edge sites of the chain. F
definitions~7! and ~5! one has

z5
t/tb

t/tb2 ln@Eb /E~0!#
. ~8!

FIG. 3. Plot ofz(t) for a short FPU chain (N520) for differentg’s and
e052. ~a! Short linear time scale.~b! Long logarithmic time scale. The
dotted line is theg-independent minimumzmin ~see the text!. Localization
does not even occur for this initial condition but one can incorrectly c
clude in favor of a stretched-exponential law.
cense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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Since2 ln@Eb /E(0)# is a number of order 1, we see that,
times such thatt!tb ln@Eb /E(0)#, z is very small. The nu-
merical results in this case are just a deceptive by-produc
the wrong normalization. The exponentz will start converg-
ing to 1 only whent@tb ln@Eb /E(0)#, which is a huge time,
being alsoEb!E(0). In this case thez analysis may be
misleading in identifying the nature of the decay law. T
way around such problem would be to calculate the effec
exponent by normalizing the total energy toEb . However,
this solution is in turn complicated by the intrinsic unce
tainty in locating the time origin for the decay of the breath
state.

III. 2D LATTICES

Since a careful study of the 2D Klein–Gordon model h
already been presented,5 we focus here on the 2D FPU
model. In this respect, the most natural extension of mo
~1! should involve a two-component displacement vec
For the sake of simplicity, we rather consider here a sc
model with only one degree of freedomui , j per lattice site.
Actually, a preliminary series of simulations of the 2D vect
version showed no appreciable differences with what is
ported here, and will be discussed elsewhere.

With the same choice of nondimensional units intr
duced in Sec. II, the model on anN3N lattice (i , j
50,...,N21) with damping on all edges is defined by th
equations of motion

üi , j5V8~ui 11,j2ui , j !2V8~ui , j2ui 21,j !1V8~ui , j 112ui , j !

2V8~ui , j2ui , j 21!2 (
p,q50

N21

G i , j
p,qu̇p,q ,

where G i , j
p,q5g@gi ,pd j ,q1d i ,pgj ,q2gi ,pgj ,q#, with gi ,p

5d i ,p@dp,01dp,N21#. Since localization has been shown
be strongly inhibited by fixed-end boundary conditions,
consider here free-end BCs.

Calculations identical to the one described in Sec. I
can be easily extended to the case of a simple 2D harm
lattice. It turns out that the contributions from the two spat
coordinates are identical for anN3N lattice, and therefore
factorize, yielding

E~ t !

E~0!
5Fe2t/t0I 0S t

t0
D G2

'H e22t/t0 for t!t0,

1

2p~ t/t0!
for t@t0

, ~9!

with t05N/2g. In particular, the law~9! applies in the ab-
sence of localization, as well as during the first stage be
the onset of localization. In Fig. 4 we plot the energy dec
curves of a FPU lattice withN532 relaxing from different
values of the energy densitye0 . The first stage of the deca
indeed follows the theoretical prediction Eq.~9!. Moreover,
it is clear that localization does not occur below a finite va
of e0 ~located betweene050.2 ande050.3 in this case!. In
particular, in the absence of localization the energy deca
again described by the two-crossover scenario. Notice t
also in this case, failure to spontaneously localize ene
ownloaded 07 Dec 2005 to 128.178.66.132. Redistribution subject to AIP li
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results in a minimum of the effective exponentz, due to the
competition of the power law decay 1/t and the exponentia
law exp(22t/tN21).

A. Fluctuation-activated localization

The relaxation process described in terms of the ene
decay curves is identical to the two-crossover picture wh
applies to the 1D FPU case. Nonetheless, the scenario m
edly differs from the 1D case in two respects. First of all, t
mobility of the localized excitations which spontaneous
emerge is drastically reduced. In fact, after a first stage
which strong interaction is observed, they arrange on a ‘‘r
dom lattice,’’ which, on the time scale of our typical simul
tions, appears indeed to be frozen. One such state is i
trated in Fig. 5~a!. This is presumably due to a smalle
‘‘scattering section’’ in 2D. Obviously, due to the presence
dissipation, this state decays on a much longer time sc
which ~as discussed earlier! scales exponentially with the
linear size of the lattice.

The second important difference with the 1D case ste
from the appearance of a finite energy thresholdD for the
existence of breathers~akin to envelope solitons in the smal
amplitude limit! in 2D.12 As a consequence, we expect th
localized modes are generated in the relaxation dynam
only by fluctuations that are large enough to overcome s
threshold. The spontaneous excitation of breathers can
be seen as an activated process. Accordingly, their num
will be exponentially small in the ratio betweenD and some
quantity measuring the strength of fluctuations. Therefo
one expects the average density of breathers~i.e., the average
number of breathers per lattice site! in the residual state to
follow an Arrhenius law of the form

^nB&}exp~2bD!. ~10!

From Eq.~10!, it is tempting to identifyb with some inverse
temperature. However, one has to keep in mind that we
dealing with a nonequilibrium process and this identificati
can only make sense if energy release is adiabatically slow

FIG. 4. 2D FPU lattice,N532, g50.1. Plot ofD(t) for different values of
the initial energye0 ~symbols!. The dashed line is a plot of Eq.~9! for t
!t0 . The inset shows the corresponding effective exponentsz(t) calculated
from Eq. ~7!. Notice the minimum associated with the absence of locali
tion.
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this is true, 1/b should be proportional to~and smaller than!
the initial temperature, which, in turn, is roughly propo
tional to the initial energy density.

In our numerical simulations we clearly observe thatnB

strongly depends on the initial specific energy. In Fig. 5~b!
we plot ^nB& for two system sizes as a function ofe0 , along
with a fit performed with the laŵnB&5C exp(2D8/e0), with
D8}D. As it shows, the agreement is good. We conclude t
the spontaneous localization of energy in our system is
deed an activated process. In particular, the fit givesD8
'0.9. We note that a quantitative analysis of the timet0

required to reach the residual state~localization time! reveals
that t0}1/̂ nB&}exp(bD).15 By fitting the numerical data for
the localization time, it is possible to get an independ
confirmation of the thermal activation scenario. In particu

FIG. 5. 2D FPU lattice.~a! N580, g50.1, e051, symmetrized site ener
gies in the residual state state.~b! Average breather densitŷnB& vs initial
energy density forN530 andN550 and Arrhenius plot. The inset show
the average density measured in theN550 system vs 1/e0 in lin–log scale,
and an exponential fit.
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we getD8'0.7, in good agreement with the above-obtain
value.

B. Statistics of breathers’ energies

It is important to realize that the ‘‘pseudostationary’’ di
tribution of breathers in the residual state emerges as a re
of two competing mechanisms, namely the birth out of flu
tuations from the homogeneous state and the decay du
both the coupling with the external reservoir and to the va
ous inelastic interactions~phonon–breather, breather
breather, etc.!. Although the former can be safely neglecte
it is very difficult to understand the latter in full detail. In
deed, to the best of our knowledge, only a few studies
available16,17 and a full description in terms of elementa
interactions seems hardly feasible. Nonetheless, simple
tistical arguments can be of help in understanding the ene
distribution to a greater detail. Let us consider the fraction
breathersP(e,t) having energy betweene and e1de with
e>D ~in the FPU model breathers of arbitrarily large ener
exist due to the unboundedness of the interaction poten!
and let us defineB(e) andD(e) to be some phenomenolog
cal birth and decay rates, respectively. Furthermore, let
assume that birth of a breather can only occur by a spo
neous fluctuation from the ground state (e50). Stationarity
requires the flux-balance condition

B~e!P~0!5D~e!P~e!. ~11!

Since the birth is an activated process we expectB(e)
}exp@2be#. ~In principle, one could have a further energ
dependent prefactor in front of the exponential. That wo
affect the form of the distribution. We neglect it for simplic
ity.! This assumption yields~for a constantP~0!!

P~e!5
P~0!

D~e!
exp~2be!. ~12!

In this simplified description, the prefactor of the exponent
term is thus interpreted as a measure of the effective brea
lifetime t~e! (D(e)}1/t(e)) and isa priori unknown. In all
simulations we observe that small-amplitude breathers de
more easily. This observation agrees with the accepted e
tence of a preferred energy flow from small-amplitu
breathers to large-amplitude ones in breather–brea
collisions.17 Moreover, Eq.~12! requires thatt(D)50. Thus,
we postulate

D~e!}~e2D!2z, ~13!

where the exponentz.0 can be estimated by measuring t
distribution of breather energies in the vicinity of the thres
old D. We can estimate the average density of breather
the residual state from Eqs.~12! and ~13! as

^nB&5E
D

`

P~e!de}b2(z11)e2bD. ~14!

This result is consistent with our initial hypothesis@Eq. ~10!#.
From Eqs. ~12! and ~13! it follows that the average

breather energŷe& can be expressed as a function ofb and
cense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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D. Hence, we can write the normalized distribution Eq.~12!
as a function of the three parametersz, ^e&, and D in the
following fashion:

P~e!5
~z11!z11

G~z11!~^e&2D! F e2D

^e&2DGz

3expS 2(z11)F e2D

^e&2DG D , ~15!

whereG(z) is the gamma function and̂e&5D1(z11)/b.
From the point of view of the numerics, it is more accurate
deal with the cumulative~integrated! distributions. These are
easily obtained from the histograms without actually p
forming the integration, by noting that they are nothing b
rank-size plots with the axes inverted. The cumulative dis
bution of the function~15! is

C~e!5E
e

`

P~e8!de8

5
1

G~z11!
gS z11,~z11!F e2D

^e&2DG D , ~16!

whereg(z,e) is the incomplete gamma function, defined

g~z,e!5E
e

`

yz21e2ydy. ~17!

In principle one could evaluateD explicitly by calculating
the energy of exact breather solutions of vanish
amplitude.12 However, we expect thatD!^e&. Therefore, if
the population of breathers used to calculate the experim
tal distributionC~e! is large enough, we can assume that
smallest breather energy recordedemin is close to the thresh
old D. Hence, we can perform a two-parameter fit with t
theoretical prediction Eq.~16! with D5emin . The quality of
such fits is illustrated in Fig. 6 for a lattice withN570. As it
shows, the agreement of our simple model with the nume
is excellent. In particular, the analysis of the small-ene
portion of the distributions yieldsz52 ~see the inset in Fig

FIG. 6. 2D FPU lattice,N570, g50.1, ande051. Experimental cumula-
tive distribution of breather energies~dashed line! and fit with formula~16!
~solid line!. Both curves have been shifted to the left byemin . The breather
population is here of 1742 breather ‘‘events,’’ recorded in 50 different re
izations of the initial condition. The inset shows a quadratic fit of the sm
energy portion of the distribution.
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6!. We stress that the result of our fits were well reproduc
irrespective of the particular realization ofemin . The fit of the
experimental distributions over the whole range of availa
energies yields a slightly greater value,z'2.6. This is be-
cause the large-energy tail of the distributions accounts
the rarest events, which are under-represented within rea
ably large breather populations.~The main constraint come
from the time required to numerically integrate the equatio
of motion of large lattices for a large number of realizatio
of a given initial condition.! In order to convince oneself tha
this is the case, it is enough to introduce an ener
dependent weight function in the fit, which gauges the re
tive weights of the small-energy and large-energy portions
the curves. In this case, the best estimates ofz monotonically
decrease toward the valuez52 upon lowering the relative
weight assigned to the large-energy region.

The analysis of energy distributions also provides an
dependent confirmation that localization is in the pres
case an activated process. To check this, we fitted the di
butions obtained by letting systems of given size relax fr
different values ofe0 . Then, we evaluatedb from the best-fit
values of the fitting parametersz and ^e& according to

1

b
5

^e&2emin

z11
. ~18!

As shown in Fig. 7,b turns out to be inversely proportiona
to e0 as expected.

IV. CONCLUSIONS

The mechanisms yielding the spontaneous formation
localized periodic excitations, i.e., breathers, in spatially d
crete nonlinear dynamical systems are of primary importa
for the understanding of their physical interest. In this pa
we have focused on the phenomenon of relaxation
breather states by cooling from the boundaries 1D and
lattices. We have provided a detailed description of the m
facets of this phenomenon by combining numerical stud

l-
-FIG. 7. 2D FPU lattice,g50.1, N550. Plot of Eq.~18! evaluated from the
best-fit values of the floating parametersz and ^e& vs initial energy density
~symbols! and linear fit.
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with theoretical arguments. In particular, we have shown t
in models with sufficiently weak ‘‘substrate’’ forces the e
ergy loss process can be explained on the basis of a sim
perturbative analysis, which applies independently of
boundary conditions and of the nature of the nonlinearity
this sense, we can claim that this is a general feature of
class of models, where an initial exponential decay is f
lowed by a power-law behavior. In the second stage of
decay process, boundary conditions play a crucial role
allowing for the formation of a long-living breather stat
when they are taken free. On the contrary, fixed ends y
complete cooling of the lattice eventually ruled by the exp
nential decay rate of the longest-lived Fourier mode.
have also pointed out that the presence of a sufficie
strong ‘‘substrate’’ force can turn the initial exponential d
cay to a stretched-exponential law, while maintaining all
other features of the previously described scenario. A th
retical explanation of the origin of this stretched exponen
behavior and its dependence on the strength and on the
ture of the local potential is a problem that deserves furt
and more refined investigations. We have also commen
about the technical difficulties that can be encountered
identifying the correct time behavior in these models, wh
the crossover between different regimes can be easily
taken for an indication in favor of other scaling laws.

Another crucial aspect that we have widely analyz
concerns the main differences between 1D and 2D syste
At variance with the former case, in 2D we have found n
merical evidence of the existence of a finite energy thresh
for breather formation. We have also proposed a statist
model that provides an effective agreement with numer
results concerning the breather residual state. This s
eventually sets in as an almost static stationary configurat
where breathers of different amplitudes coexist. The stat
cal model is based on the hypothesis that this state eme
ownloaded 07 Dec 2005 to 128.178.66.132. Redistribution subject to AIP li
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as a result of the competition between breather activation
mutual interaction. Moreover, it allows one to determine
effective breather lifetime and its dependence on energy
this framework the initial energy density plays the role of t
control parameter regulating the strength of fluctuations.

In our opinion these results provide a satisfactory und
standing of the phenomenon of spontaneous breather fo
tion by cooling. As a final remark, it seems worth investig
ing experimentally the capability of real systems to sto
energy in the form of long-lived localized excitations.
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