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We describe the energy relaxation process produced by surface damping on lattices of classical
anharmonic oscillators. Spontaneous emergence of localized vibrations dramatically slows down
dissipation and gives rise to quasistationary states where energy is trapped in the form of a gas of
weakly interacting discrete breathers. In one dimension, strong enough on-site coupling may yield
stretched-exponential relaxation which is reminiscent of glassy dynamics. We illustrate the
mechanism generating localized structures and discuss the crucial role of the boundary conditions.
For two-dimensional lattices, the existence of a gap in the breather spectrum causes the localization
process to become activated. A statistical analysis of the resulting quasistationary state through the
distribution of breathers’ energies yield information on their effective interaction20@3
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Discrete breathers have been widely analyzed as math-
ematical objects, but the relevance of their role in physi-
cal systems is still debated. In fact, any mechanism yield-
ing the spontaneous formation of breathers is expected to
provide interesting indications in this direction. In this
respect, the phenomenon of relaxation to breather states
by cooling lattices from their boundaries is one of the
most interesting examples. Here we provide a compre-
hensive description of this phenomenon in low dimen-
sional lattices. In particular, we review former results and
add new information, mainly concerning the two-
dimensional case. This study is based on a combination of
numerics and theoretical arguments, while we analyze
both dynamical and statistical features of the problem to
clarify the whole scenario.

I. INTRODUCTION

equipartition of short-wavelength fluctuatiohénother in-
teresting scenario where breathers are found to emerge spon-
taneously is observed upon cooling the lattice at its
boundaried;®i.e., by considering a nonequilibrium process
in which energy exchange with the environment is much
faster at the surface than in the bulk. The numerical simula-
tions neatly show that the energy dissipation rate may be
significantly affected by the spontaneous excitation of
breathers. As the latter exhibit a very weak interaction
among themselves and with the boundaries, the energy re-
lease undergoes a sudden slowing down and is hardly de-
tected on the time scales of a typical simulation. Thus, the
lattice remains frozen in a pseudostationary, metastable con-
figuration which is far from thermal equilibrium, which we
shall refer to agesidual state Despite the absence of disor-
der, there is a close similarity to the glassy behavior observed
in disordered systems, as was already pointed"dut.

But what are the mechanisms leading to spontaneous

Nonlinearity has revealed one of the key ingredients for°calization? As we have shown in a previous péptire

describing many relevant features of different states of mati2ter is intimately related to how dissipation acts on vibra-
ter. In the realm of lattice dynamics, scattering processelonal modes of different wavelengths. If long-wavelength
among phonons, propagation of solitary waves, and slow enQ_h_onons can be e_ff|C|entIy damped out, t_he modulation insta-
ergy relaxation are typical examples. Recently, considerablBility of short lattice wave’ becomes  highly favored and
efforts have been devoted to the study of periodic, localizedoreathers can easily emerge from an interacting soliton
nonlinear lattice excitations, named “breathersThey are ~ 9as-” In this respect, this type of nonequilibrium condition
quite peculiar(but generi¢ objects emerging from the inter- is much more effective in exciting localized modes than an
play of nonlinearity and space discretenéskheir math-  equilibrium one(see, e.g., Ref. 9 for a related discusgion
ematical properties, like existence, stability, mobility, etc., ~ Spontaneous localization upon cooling has been ob-
have been progressively unveiled, while they have beeserved for both on-sife and pure nearest-neighbonn)
identified in many different scenarios. interaction:1° The two classes of models are known to be-
Their role in nonequilibrium dynamics seems to be par-have differently, e.g., as to the mobility of breathers, which is
ticularly fascinating. An example is the relaxation to energymuch higher in the absence of local coupling. This is also
confirmed by relaxation experiments, where differences in
the energy decay laws have been observed. In particular, the
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approach to the residual state follows a simple exponentiadigned by setting all displacementg to zero and by draw-
law in the Fermi—Pasta—UlarfFPU) systen® but turns to  ing velocities at random from a Gaussian distribution. The
stretched exponential in the presence of local coupling.  velocities are then rescaled by a suitable factor to fix the
Our aim in this paper is to provide an up-to-date over-desired value of the energy densignergy per particlee,.
view of the phenomenon of breather localization by cooling.The resulting set ofi, and U, is then used as initial condi-
Generalities about the energy release process, includingpn to integrate Eq(1) with y>0 (again see Ref. 6 for
models and indicators, will be presented in Sec. Il, alongletails.
with the discussion of the cooling process in an harmonic  The result of the relaxation process is the residual state,
lattice and the results obtained for one-dimensiofid) i.e., a state with a finite fraction of the initial energy stored in
nonlinear systems. In particular we shall survey the differenthe form of breathers. Remarkably, such residual state is
cooling pathways appearing in pure nn and on-site potentialsharacterized by a decay time scale which is several orders
A specific section will be devoted to clarifying the interpre- of magnitude longer than that of the localization process.
tation of some recent resuft!! In Sec. Ill, we present the
results for the nn two-dimension#a2D) FPU model. We
want to point out that the 2D is not a straightforward exten- A number of features which characterize the relaxation
sion of the 1D case. Indeed, the existence of an energy actilynamics of nonlinear lattices can be better understood by
vation threshold for breather solutidAdeads to conjecture first studying the harmonic lattice, namely
that a thermalized state may be cooled to the residual state 12
only above some initial energy/temperature. Moreover, the V(x) =%~

residual state is a static multibreather state, whereby in thgye anticipate that the presence of an harmonic on-site po-

1D case it usually contains a single breather. Finally, Waenial does not alter the main conclusions. We thus take
perform an analysis of the distribution of breather energies.- g throughout this section.

based on a simple statistical model.

A. The harmonic lattice

For small damping, an approximate analytical solution
can be found by time-dependent perturbation theory. Let
Il. RELAXATION AND LOCALIZATION IN 1D w?=4sirf(q,/2) and 7 («=0,1,... ,N—1) denote the ei-

In this section we will describe the lattice models and thegenv_alue_s and normalized eigenvectors of the unperturbed
Hamiltonian problem, where the allowed wave numbers are

generalities of a typical relaxation experiment as well as th% —amIN and q,=(a+1)m/(N+1) for free-end and

relevant indicators used throughout the paper. Let us Cor}'i;ed-end BCs, respectively. To the lowest orderqirone

sider a chain oN atoms of unit mass and denote by the .
. . : g .~ obtaing
displacement of theth particle from its equilibrium position
pa (a is the lattice spacing The atoms are labeled by the N-1 .
index p=0,1,...,N—1 and their dynamics is given by the Up()= > c e Mratioatpe, 1)
equations of motion a=0
U=V (Ups1—Up) = V' (Up—Up_1)— U’ (up) wherez; is thepth component of the eigenvectgf andc,,
) are constant amplitudes fixed by the initial conditions. Notice
~ YUpl Fp ot Fpn-1l, that, since the number of the damped particles is fixed, the

whereV/(x) andU(x) are the interparticle and on-site poten- perturbative approximation is expected to improve upon in-
tials, respectively. We assume th&t(0)=U’(0)=0, denot- ~ creasing the system siz¥. The wave-number-dependent
ing with a prime the derivative with respectxo For conve- ~damping rates are found to be

nience, we shall adopt nondimensional units such ahand

V”(0) are set to unity. Moreover, as we want to deal with icog(%) for free-end BC
systems in a finite volume, we will impose either free-end 1 ) 7o 2 5
(u_1=ug, Uy_1=uy) or fixed-end (1_;=un=0) boundary T_a_ 1 i @
conditions(BCs). T—Osmz(qa) for fixed-end BC

The last term in Eq(1) represents the interaction of the
atoms with a “zero-temperature” heat bath in the form of awith 7=N/2y. The free-end and fixed-end BC systems thus
linear damping with ratey. Following Refs. 4 and 5, we show considerably different behaviors. In the former case,
restricted ourselves to the case in which dissipation seledhe least damped modes are the short-wavelength ames (
tively acts only on the atoms located at the chain edges. As-N), the largest lifetime beingy_,~2N3% 72y, while the
mentioned earlier, this choice is crucial and should model anost damped modes are the ones in the vicinitywefO,
physical situation in which energy exchange with the envi-with o being the shortest decay time. On the contrary, for
ronment is much faster at the surface than in the bulk. fixed ends the most damped modes are those around the band

The general layout of a simulation can be summarized asenter (x~N/2) while short- and long-wavelength ones dis-
follows. First, an equilibrium microstate is generated by, saysipate very weakly, beingy_;~N(N+1)%/272y. As we
Nose-Hoover (canonical method or by letting the Hamil-  shall illustrate in the following, such difference is crucial for
tonian (microcanonical system (=0) evolve for a suffi- the localization in the nonlinear system.
ciently long transient.In the following we will follow the Using the solutior(1), we evaluated the chain energy in
second strategy. The initial condition for the transient is asthe case of equipartition, i.e., by replacinﬁwi with its
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average value &, . Finally, recalling Eq(2) and approximat-  of short wavelength modes. The latter can only be effective if
ing for large N the sum overa with an integral ¢,  dissipation of long wavelength phonons is fast enough. As it

—1(q)), we obtainefl shows from Eq(2), this occurs only in the case of free-end
E(t) 1 (= i BCs, whereas fixed-end BCs strongly inhibit such process.
— _f ez“T(Q)dq:e“TOIo(—) On the other hand, breather mobility is strongly reduced in
E(0) 7o 7o the highly discrete systerfFig. 1(b)]. Such difference is
et for t<r, even more evident in the decay law of the normalized energy
E(t)/E(0), which turns from pure exponential to stretched-
= 1 for ts 7, (3 e_xponential be_havior upon increasirgThis is better appre-
m ciated by plotting the indicator

wherel, is the modified zero-order Bessel function, whose ~ DP(t)=—In[E(t)/E(0)] )

asymptotic expansions have been used to obtain the lag{ 5 log-log scale, so that a stretched-exponential law of the
equality. We conclude that relaxation is exponential only atgrm E(t) =E(0)ex{d —(t/7)°] becomes a straight line with
short times while a crossover to a power-law decay 0ccurs &jope o that intercepts thg axis at— o In 7 [Fig. 2a)]. The
t~7,. Moreover, despite the differences in the relaxationscaling regions correspond to the onset of energy localiza-

times(2), the decay law foE turns out to be the same in the tion, as can be seen by plotting the localization parameter
free and fixed-end systems.

The above-mentioned formulas must be taken with cau- L(O=N Ephg(t)
tion when dealing with a large but finite system. In such a B [Ephp(t)]2

case, there is of course a lower cutoff at wave numbers O[fF' 2Ab)]. F i definit the f ites th
ordera/N. Therefore, after a time of the order of the lifetime '9. . ’ _rom IS very detfini |on,_ e fewer sites the en-
ergy is localized onto, the closet is to N. On the other

of the longest-lived modesy_;~N%y, formula (3) no hand. th W th . q Il th
longer holds and a further crossover to the exponential deca and, the more evenly the energy 1S spread among ai the
B/artlcles, the closef is to a constant of order 1. It should be

law exp(2t/my_,) occurs. This has been also verified

(6)

numerically? noted thatl is a relative quantity, and bears no information
' on the amount of energy that is localized. As a matter of fact,
the fraction ofe, that gets trapped in the residual state is

B. Nonlinear lattices: The role of discreteness found to be greater the higher the degree of discreteness of

the system.

Since the first results of relaxation experiments in non- TE; summarize, if the on-site force is weak enough, the
linear lattices were reporté‘ds,there has been some debate aSbehavior is basica”y the same as the FPU chain Which’ in
to the nature of the decay law of the system energy and itgrn, exhibits in the approach to the residual state the same
relation with the spontaneously emerging localized modes. liaxponential decay law of its linearized counterpart, i.e.,
particular, it has been claimed that the phenomenon of erE(t)/E(0)=exp(—t/n) [see Eq.(3)]. The reasons for such
ergy pinning in the form of discrete breathers would result inpehavior are the same discussed for the FPU nfbBikt of
a glassy-like relaxation, i.e., stretched exponential decay lavg||, an effective harmonic Hamiltonian with energy-
Here we shall describe how the main role in determining thejependent renormalized frequencies is known to account for
relaxation properties of a nonlinear lattice is indeed playedeveral equilibrium properties of the FPU ch&it* Second,
by the type of potential energy. In particular, we will high- the harmonic approximation becomes increasingly accurate
||ght the importance of the relative Strength of the interpar'as time e|apseS, S|mp|y because more and more energy is
ticle and on-site potentials, i.e., the degree of discreteness @ktracted from the system by the reservoir. On the contrary,
the system. In order to do so, we study the general class qf the system is highly discrete, the first relaxation stage is
nonlinear lattices obeying the equations of motid. In  indeed described by a stretched exponential law. A quantita-
particular, we shall report here the results of numerical simutjve explanation of it is still lacking, but it is clear that in this
lations performed with case an effective description of such genuine nonlinear phe-
U= 2 rx, 4) nomenon in terms of qqasi _harmon_ic modes bre_aks down. In

other words, the resulting interactions among linear modes
In this case, the relative strength of local and interparticlanhibit the energy flow from the bulk to the boundaries, thus

V()= 3x7+ oxt,

nonlinearities is accounted for by the parameter slowing down the dissipation.
In Fig. 1 we show the space—time contour plots of the  The onset of a pseudostationary state corresponds in Fig.
symmetrized site energies, defined as 2 to the almost flat final portions of the curves. Actually,

being the system globally dissipative, energy is still at that
stage exponentially decreasing but with a huge time constant
The instantaneous total energy of the system is then given by, . The latter is expected to be inversely proportional to the
E=Eg;01 h,. We see that a single localized excitation breather amplitude at the lattice edges, which, in turn, should
emerges from the relaxation process for both small and largke of order exptN/{), with {<N being the localization
values ofk. The pathway to localization is the same as thelength.

one observed in the FPU modeln particular, the basic The above-mentioned scenario is generic for large
mechanism leading to localization is modulational instabilityenough systems. Nonetheless, failure to spontaneously local-

hp=305+3[V(Ups1—Up) +V(Up—Up_1) ]+ U(Up).
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ize energy occurs the more frequently the smaller is the lat€. The effective-exponent analysis
tice. This is because the probability of occurrence of large
enough energy fluctuations at a given energy density deﬁo
creases with the number of particles. In other words, given
number of different initial equilibrium conditions, only a
fraction n of them will give rise to breathers. To give a
guantitative idea, for the FPU model widy=1, n is only
about 50% for a chain oN=20 particles but rapidly ap-
proaches 100% already fdk=100. In the absence of spon-
taneous localization, the nonlinear systems show no differ-
ence with respect to the linear ones aBqt) decays
according to Eq(3).

We have repeatedly mentioned that for the FPU model
stretched exponential relaxation is observed, even in pres-
Bnce of a weak on-site force. In this section we wish to
expand on this statement by reporting a more detailed analy-
sis of the energy decay. This can be accomplished by defin-
ing an effective exponeni(t) through the logarithmic de-
rivative

_dlInD(t)]

(= —dint )
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FIG. 2. FPU chain with gquartic on-site potentidl=100, y=0.1, ande, 0 H = = v 5
=1. (a) Plot of D vs time. The dashed line is the exponential exif,), 10 10 10 10 10
while the solid line is a fit with the stretched exponential law[ex{t/7)’] time

(0=~0.61). The arrow marks the time at which the system with 10

departs from the initial exponential trer(th) Localization parameter vs time  FIG. 3. Plot of{(t) for a short FPU chainN=20) for differenty’s and

for different values of the on-site coupling The data of bottD and £ are e,=2. (a) Short linear time scale(b) Long logarithmic time scale. The

averaged over 32 initial conditions. dotted line is they-independent minimund i, (see the text Localization
does not even occur for this initial condition but one can incorrectly con-
clude in favor of a stretched-exponential law.

It is clear from definition(7) that if a portion of the energy

decay curve goes ds(t)=E(0)exd —(t/7)?] this would re-

's:lélrt 'tr;]: plﬁslaelé]og??gg'ni::grC:’;{;ﬁgﬁn:;nfégecﬁgf' dat if observed on a too short time scale. Of course, the same

with this [i)ndicator is howe\’/er a dpelicate matter. Actuall weascenario 's likely to appear in relatively short FPU chains

: ) ' ay: We\, henever the chosen initial conditions do not yield localiza-
want to remark that a naive analysis can lead to mlsleadlngon (see Fig. 3

H H ,11
or even incorrect cpnglusmﬁ% . o . When localization does occur, the residual state decays
The most convincing way to .|Ilustrate this |s.to Q'SCUSS xponentially Therefore one expectsto converge to 1 as
trt'e tcﬁss of the tr_lalrrgor?lc_ chain vgh_ere llocalllzglor) N%he residual state is approached. Actually, one observes first
2rr_el<:: Oem'Eng;e_? 'Iaeae _lavnéreirteho V'ﬁgslg et);t ¢ gg'l very small values of, while such a convergence does occur
'('j ' tq.' ’”' 'S _Sr:y S LA a{; u OS h ' th only on much longer time scales. To see why, let us consider
and monotonically vanish as ~AMor 1>7o. DN e oer 5 5n0 hreather residual state. The total energy decays as
hand, we already learned that in a finite chain a further CrOSSE(t)—E e, where E, is the initial energy of the
=Ep , b

;Jnvertto air:] expc:nenrtlla;l ]lg;v eXﬁQt/ﬁ:_% c;crcursltso ftft\s‘g“ breather andr, its characteristic decay time. The time con-
ust again approac 7N-1- (N MNELTESUlLs of those stant7, is huge: in fact, it is roughly inversely proportional

cqmpetmg trends is that, for a finitg, £ dlsplgys a proad to the breather amplitude at the edge sites of the chain. From
minimum ¢, att~7my_41. The valuel, (which is inde- definitions(7) and (5) one has

pendent ofy) can be estimated by noting that from E¢8).
and (3) one has{(t)~1/In[2at/7y] for t>7,, and hence
Lmin=1/2 I4N/7]. A simple plot of the curves shows how _ t/

the minimum({,,,i, can be incorrectly interpreted as a plateau t/7,—In[E,/E(0)]"

()
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Since —In[E,/E(0)] is a number of order 1, we see that, at 10° : . . ¥ .

times such that<r, In[E,/E(0)], ¢ is very small. The nu- 0e=0.1 s/ o
merical results in this case are just a deceptive by-product of o €Z=0-2 , -
the wrong normalization. The exponehwill start converg- 100 b ©e=03 VA =

ing to 1 only whent> 7, In[E,/E(0)], which is a huge time,
being alsoE,<E(0). In this case the/ analysis may be
misleading in identifying the nature of the decay law. The
way around such problem would be to calculate the effective
exponent by normalizing the total energy Eg. However,
this solution is in turn complicated by the intrinsic uncer-
tainty in locating the time origin for the decay of the breather
state.

[ KRNI IRIR IR

100

—In[E(t)/E(0)]

Ill. 2D LATTICES time

. . FIG. 4. 2D FPU latticeN=32, y=0.1. Plot of D(t) for different values of
Since a careful study of the 2D Klein—Gordon model hasye intial energye, (symbolg. The dashed line is a plot of E9) for t

already been presentddye focus here on the 2D FPU <14. The inset shows the corresponding effective expongftjscalculated
model. In this respect, the most natural extension of mode‘rom Eq. (7). Notice the minimum associated with the absence of localiza-
(1) should involve a two-component displacement vector o™
For the sake of simplicity, we rather consider here a scalar
model with only one degree of freedom; per lattice site. ~results in a minimum of the effective exponefitdue to the
Actually, a preliminary series of simulations of the 2D vector competition of the power law decaytldnd the exponential
version showed no appreciable differences with what is relaw exp(—2t/7y_1).
ported here, and will be discussed elsewhere.

With the same choice of nondimensional units intro-A. Fluctuation-activated localization

duced in Sec. II, the model on aNXN lattice (,] The relaxation process described in terms of the energy
=0,...N—1) with damping on all edges is defined by the gecay curves is identical to the two-crossover picture which
equations of motion applies to the 1D FPU case. Nonetheless, the scenario mark-

edly differs from the 1D case in two respects. First of all, the
mobility of the localized excitations which spontaneously
N-1 emerge is drastically reduced. In fact, after a first stage in
=V (uj = U j-1)— 2 Fip,]qu,q, which strong interaction is observed, they arrange on a “ran-
P.a=0 dom lattice,” which, on the time scale of our typical simula-
where TP9=9[gi ;8),qt 6 59),q—9,09j,q)» With g, tions, appears indeed to be frozen. One such state is illus-
=68 o[ 8p0F Sp.n—1]. Since localization has been shown to trated in Fig. %a). This is presumably due to a smaller
be strongly inhibited by fixed-end boundary conditions, we"“scattering section”in 2D. Obviously, due to the presence of
consider here free-end BCs. dissipation, this state decays on a much longer time scale,
Calculations identical to the one described in Sec. Il Awhich (as discussed earliescales exponentially with the
can be easily extended to the case of a simple 2D harmonitnear size of the lattice.
lattice. It turns out that the contributions from the two spatial ~ The second important difference with the 1D case stems
coordinates are identical for X N lattice, and therefore from the appearance of a finite energy threshildor the

Ui j=V' (Uit —ui ) = V' (U j— Ui 1) + V(Ui j 11— U; j)

factorize, yielding existence of breathefakin to envelope solitons in the small-
g amplitude limif in 2D As a consequence, we expect that
E(t) 2 e or t<o, localized modes are generated in the relaxation dynamics
—=[ ‘”TOIO(—> ~ 1 , (90 only by fluctuations that are large enough to overcome such
E(0) 7o 27 (/) for t>1 threshold. The spontaneous excitation of breathers can thus

be seen as an activated process. Accordingly, their number
with 7o=N/2y. In particular, the law9) applies in the ab- will be exponentially small in the ratio betweenand some
sence of localization, as well as during the first stage beforgquantity measuring the strength of fluctuations. Therefore,
the onset of localization. In Fig. 4 we plot the energy decayone expects the average density of breattiegs the average
curves of a FPU lattice wittN=32 relaxing from different number of breathers per lattice gii@ the residual state to
values of the energy densigy. The first stage of the decay follow an Arrhenius law of the form
indeed follows the theoretical prediction E§). Moreover,
it is clear that localization doespnot occur be(:?ow a finite value (ng)exp(— BA). (10
of e, (located betweery,=0.2 andey;=0.3 in this casg In From Eq.(10), it is tempting to identifyB with some inverse
particular, in the absence of localization the energy decay isemperature. However, one has to keep in mind that we are
again described by the two-crossover scenario. Notice thatlealing with a nonequilibrium process and this identification
also in this case, failure to spontaneously localize energgan only make sense if energy release is adiabatically slow. If
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FIG. 5. 2D FPU lattice(a) N=80, y=0.1, e,=1, symmetrized site ener-
gies in the residual state statk) Average breather densifng) vs initial
energy density foN=30 andN=>50 and Arrhenius plot. The inset shows
the average density measured in fthe 50 system vs #; in lin—log scale,
and an exponential fit.

this is true, 18 should be proportional tand smaller than
the initial temperature, which, in turn, is roughly propor-
tional to the initial energy density.

In our numerical simulations we clearly observe that
strongly depends on the initial specific energy. In Fig)5
we plot({ng) for two system sizes as a function &f, along
with a fit performed with the lawng)= C exp(—A'/ey), with
A'xA. As it shows, the agreement is good. We conclude th

the spontaneous localization of energy in our system is in-

deed an activated process. In particular, the fit gixes
~0.9. We note that a quantitative analysis of the titge
required to reach the residual stél@calization time reveals
thattyc 1/ ng) < exp(BA).1° By fitting the numerical data for

the localization time, it is possible to get an independent
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we getA’'~0.7, in good agreement with the above-obtained
value.

B. Statistics of breathers’ energies

It is important to realize that the “pseudostationary” dis-
tribution of breathers in the residual state emerges as a result
of two competing mechanisms, namely the birth out of fluc-
tuations from the homogeneous state and the decay due to
both the coupling with the external reservoir and to the vari-
ous inelastic interactions(phonon—breather, breather—
breather, etg¢. Although the former can be safely neglected,
it is very difficult to understand the latter in full detail. In-
deed, to the best of our knowledge, only a few studies are
availablé®'’ and a full description in terms of elementary
interactions seems hardly feasible. Nonetheless, simple sta-
tistical arguments can be of help in understanding the energy
distribution to a greater detail. Let us consider the fraction of
breathersP(e,t) having energy betweer and e+ de with
e=A (in the FPU model breathers of arbitrarily large energy
exist due to the unboundedness of the interaction potgntial
and let us defin®(e) andD(€) to be some phenomenologi-
cal birth and decay rates, respectively. Furthermore, let us
assume that birth of a breather can only occur by a sponta-
neous fluctuation from the ground state=0). Stationarity
requires the flux-balance condition

B(e)P(0)=D(e)P(¢). (11

Since the birth is an activated process we expB(t)
«exd —Be]. (In principle, one could have a further energy-
dependent prefactor in front of the exponential. That would
affect the form of the distribution. We neglect it for simplic-
ity.) This assumption yield§or a constantP(0))

P(0)

P(E):D(f)

exp — Be). (12

In this simplified description, the prefactor of the exponential
term is thus interpreted as a measure of the effective breather
lifetime r(e€) (D(€)>1/7(€)) and isa priori unknown. In all
simulations we observe that small-amplitude breathers decay
more easily. This observation agrees with the accepted exis-
tence of a preferred energy flow from small-amplitude
breathers to large-amplitude ones in breather—breather
collisions!” Moreover, Eq(12) requires that-(A)=0. Thus,

we postulate

D(e)x(e=A)"7 (13

where the exponert>0 can be estimated by measuring the
distribution of breather energies in the vicinity of the thresh-
Id A. We can estimate the average density of breathers in
e residual state from Eq6l2) and(13) as
(nB>=f P(e)dex g™ e A4, (14)
A

This result is consistent with our initial hypothefi&y. (10)].
From Egs.(12) and (13) it follows that the average

confirmation of the thermal activation scenario. In particular,breather energye) can be expressed as a function@and
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FIG. 6. 2D FPU latticeN=70, y=0.1, ande,= 1. Experimental cumula- 0 0 é "1 é é 1'0
tive distribution of breather energiédashed lingand fit with formula(16)
(solid line). Both curves have been shifted to the left&qy,. The breather eo

population is here of 1742 breather “events,” recorded in 50 different real-

izations of the initial condition. The inset shows a quadratic fit of the small-FIG. 7. 2D FPU lattice;y=0.1, N="50. Plot of Eq.(18) evaluated from the

energy portion of the distribution. best-fit values of the floating parameterand(e) vs initial energy density
(symbols and linear fit.

A. Hence, we can write the normalized distribution ELR)
as a function of the three parametars(e), and A in the
following fashion:

o (z+*t
Ple)= T(z+1)((e)—A)

6). We stress that the result of our fits were well reproduced
irrespective of the particular realization gf;,. The fit of the
experimental distributions over the whole range of available
e—A |? energies yields a slightly greater values2.6. This is be-
(e)—A} cause the large-energy tail of the distributions accounts for
the rarest events, which are under-represented within reason-
ably large breather populationdhe main constraint comes
from the time required to numerically integrate the equations

e—
xXexp —(z+1)| ———+
° "( (2 1) <e>—A}
whereT'(2) is the gamma function angk)=A + (z+1)/5. of mopon c_)f_lgrge Iatt_|pes for a large numper of realizations
) 4 A of a given initial condition. In order to convince oneself that
From the point of view of the numerics, it is more accurate to

deal with the cumulativéintegrated distributions. These are this is the case, It 'S en_ough FO |nt'roduce an energy-
: . ; . dependent weight function in the fit, which gauges the rela-
easily obtained from the histograms without actually per-

forming the integration, by noting that they are nothing buttlve weights of the small-energy and_large-energy portions of
) . : . .. .the curves. In this case, the best estimatesrabnotonically
rank-size plots with the axes inverted. The cumulative distri- . .
. . : decrease toward the valuwe=2 upon lowering the relative
bution of the function(15) is ; . )
weight assigned to the large-energy region.

e Nde! The analysis of energy distributions also provides an in-
Cle)= . P(e’)de dependent confirmation that localization is in the present
case an activated process. To check this, we fitted the distri-
butions obtained by letting systems of given size relax from
different values ok, . Then, we evaluate@ from the best-fit
values of the fitting parametersand(e) according to

1 <E> ~ €min

y(z,e)=JWyZ‘1e‘ydy. (17) B z+1 (18

In principle one could evaluatd explicitly by calculating gseihggvgxlge?tga?ﬂ turns ouit to be inversely proportional
the energlzjzy of exact breather solutions of vanishing

amplitude. ‘However, we expect that <(e). Therefore, |_f V. CONCLUSIONS

the population of breathers used to calculate the experimen-
tal distributionC(e) is large enough, we can assume that the  The mechanisms yielding the spontaneous formation of
smallest breather energy recordegl, is close to the thresh- localized periodic excitations, i.e., breathers, in spatially dis-
old A. Hence, we can perform a two-parameter fit with thecrete nonlinear dynamical systems are of primary importance
theoretical prediction Eq.16) with A= €,;,. The quality of  for the understanding of their physical interest. In this paper
such fits is illustrated in Fig. 6 for a lattice with=70. Asit we have focused on the phenomenon of relaxation to
shows, the agreement of our simple model with the numericbreather states by cooling from the boundaries 1D and 2D
is excellent. In particular, the analysis of the small-energylattices. We have provided a detailed description of the many
portion of the distributions yields=2 (see the inset in Fig. facets of this phenomenon by combining numerical studies

, (19

e—A
1) B ) (16)

where y(z,¢€) is the incomplete gamma function, defined as

1
= —y(z+ 1(z+1)
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with theoretical arguments. In particular, we have shown thaas a result of the competition between breather activation and
in models with sufficiently weak “substrate” forces the en- mutual interaction. Moreover, it allows one to determine an
ergy loss process can be explained on the basis of a simpétdfective breather lifetime and its dependence on energy. In
perturbative analysis, which applies independently of thehis framework the initial energy density plays the role of the
boundary conditions and of the nature of the nonlinearity. Incontrol parameter regulating the strength of fluctuations.

this sense, we can claim that this is a general feature of this In our opinion these results provide a satisfactory under-
class of models, where an initial exponential decay is fol-standing of the phenomenon of spontaneous breather forma-
lowed by a power-law behavior. In the second stage of theion by cooling. As a final remark, it seems worth investigat-
decay process, boundary conditions play a crucial role inng experimentally the capability of real systems to store
allowing for the formation of a long-living breather state, energy in the form of long-lived localized excitations.

when they are taken free. On the contrary, fixed ends yield
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