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I. DERIVATION OF THE SYSTEM OF EQUATIONS (6).

We describe here the analytical procedure that enables one to solve the steady-state diffusion equation (i.e. the

Laplace equation) for diffusion-influenced reactions with any finite number of spherical reactive boundaries.

Having in mind applications of boundary problems both in bounded (e.g. reactive boundaries within some kind

of nanoreactor) and unbounded domains, we consider the general case of N active spheres Ωα of (encounter)

radius σα located within some larger spherical domain Ω0 of radius R0, whose (inner) boundary represents the

wall of this confining domain. The N spheres within Ω0 are located at position Xα with respect to a Cartesian

reference frame with origin at the center of Ω0. The problem in Ω = Ω0 \
∑N

α=1 Ωα for the normalized density

of ligands u = ρ/ρB (ρB being the bulk ligand density) can be cast in the following form

52 u = 0 (1a)(
∂u

∂ξα
− hαu

)∣∣∣∣
∂Ωα

= 0 ∀α = 1, 2, . . . N (1b)(
∂u

∂ξ0
− h0(1− u)

)∣∣∣∣
∂Ω0

= 0 (1c)

for any choice of the intrinsic reactivity of each sphere. Here ξα = rα/σα and we take into account the (N +1)

spherical coordinate systems corresponding to each boundary: r0 = (r0, θ0, φ0), rα = (rα, θα, φα), ∀α =

1, 2, . . . N , where θ and φ identify respectively the polar angle and the azimuthal angle. The parameter h0 is

the intrinsic reactivity of the inner surface of the spherical domain Ω0 that contains all the N spheres Ωα. The

physical meaning of h0 is to provide an effective representation for the existence of an outside world for the

ligand molecules B, even if the boundary problem is stricto sensu solved in the bounded domain Ω. More

precisely, for an isolated sink (N = 1) lying at the origin of the reference frame with the origin at the center of

Ω0, one can prove that

h0 =
Dout

Din

where Dout and Din are the values of the ligand diffusion coefficient outside and inside, respectively, an imag-

inary penetrable surface that coincides with the boundary of Ω0. Of course, the actual value of h0 is utterly

irrelevant in the limit of a reaction occurring in the unbounded domain, i.e. for R0 →∞.

The boundary problem (1a), (1b), (1c) can be solved by looking for solutions as combinations of regular and

irregular harmonics, since the solution inside a single sphere can be written as a linear combination of regular

harmonics,

u+
0 =

∞∑
n=0

n∑
m=−n

Amnu
+
mn(r0) =

∞∑
n=0

n∑
m=−n

Amnξ
n
0 Ymn(r0) =

∞∑
n=0

n∑
m=−n

Amn

(
r0

R0

)n
Pmn (µ0)eimφ0 (2)

where µ0 = cos θ0, while the basis of irregular harmonics should be used outside spherical domains (regular

harmonics diverge at infinity):

u−α =
∞∑
n=0

n∑
m=−n

Bα
mnu

−
mn(rα) =

∞∑
n=0

n∑
m=−n

Bα
mnξ

−n−1
i Ymn(rα) =

∞∑
n=0

n∑
m=−n

Bα
mn

(
rα
σα

)−n−1

Pmn (µα)eimφα .

(3)
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where µα = cos θα. Using the superposition principle for the Laplace equation, we can write the solution in Ω

as a sum of linear combinations of regular (for Ω0) and irregular (for each Ωα) harmonics, namely

u = u+
0 +

N∑
α=1

u−α =
∞∑
n=0

n∑
m=−n

Amnξ
n
0 Ymn(r0) +

N∑
α=1

∞∑
n=0

n∑
m=−n

Bα
mnξ

−n−1
α Ymn(rα). (4)

If one wishes to investigate a problem in an open domain, which is the case considered in this work, it is

sufficient to let R0 → ∞ and to take into account only combinations of irregular harmonics. In this case, all

coefficients Amn vanish but for the constant A00, so that the general expression appropriate to the unbounded

domain reads

u = 1 +
N∑
α=1

u−α = 1 +
N∑
α=1

∞∑
n=0

n∑
m=−n

Bα
mnξ

−n−1
α Ymn(rα). (5)

In general, the coefficients of the expansion are determined by imposing the boundary conditions: in a

neighbourhood of each boundary one has to express all the bases as functions of the local coordinates. More

precisely, to determine the values of Amn and Bα
mn in a neighbourhood of each ∂Ωα(α = 1, 2, . . . , N), one

has to express u+
0 and u−β , β 6= α, as functions of the rα coordinates. Similarly, in a neighbourhood of ∂Ω0,

one has to write every u−α as a function of r0. For this purpose, one can make use of the addition theorems for

spherical harmonics [1].

More precisely, while imposing the condition on ∂Ω0 one needs to pick the re-expansion formula for

irregular-irregular harmonics, that is,

r−n−1
α Ymn(rα) =

∞∑
l=0

n∑
s=−n

(−1)l+s(n+ l −m+ s)!

(n−m)!(l + s)!
Ll0αYsl(−L0α)r

−(n+l)−1
0 Ym−s,n+l(r0) (6)

where L0α = Xα is the constant vector connecting the center of ∂Ω0 to the center of ∂Ωα, so that rα =

r0 − L0α. The addition theorem together with the uniqueness of decomposition lead to the first family of

equations: ∀ q = 0, 1, 2, . . . ,∞,∀g = −q − q + 1, ..q − 1, q

Agq +
−h0 − q − 1

(q − h0)

N∑
α=1

q∑
n=0

n∑
m=−n

Bα
mnV

α,m,n
g,q 1{g−(q−n)≤m≤g+(q−n)} = 1, (7)

where 1{m∈I} = 1 if m ∈ I and zero otherwise, and

V α,m,n
g,q =

(−1)q−n+m−g(q − g)!

(n−m)!(q − n+m− g)!

(
L0α

R0

)q−n(R0

σα

)−n−1

Ym−g,q−n(−L0α) (8)

Writing the boundary conditions on each internal sphere ∂Ωα requires to express u+
0 and u−β , β 6= α, in rα

coordinates. This calculation implies considering, respectively, the re-expansion formula for regular-regular

harmonics, namely

rn0Ymn(r0) =

n∑
q=0

q∑
g=−q

(n+m)!

(n− q +m− g)!(q + g)!
Ln−q0α Ym−g,n−q(L0α)rqαYgq(rα) (9)

and the theorem for irregular-regular harmonics, i.e.

r−n−1
β Ymn(rβ) =

∞∑
q=0

q∑
g=−q

(−1)q+g
(n−m+ q + g)!

(n−m)!(q + g)!
L
−(n+q)−1
βα Ym−g,n+q(Lβα)rqαYgq(rα), (10)
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where Lβα = −Lαβ = Xα −Xβ is the constant vector connecting the center of ∂Ωβ to the center of ∂Ωα,

so that rα = rβ − Lβα. After some algebra, the previous formulae, together with the use of the properties of

harmonics decomposition, give ∀α = 1, 2, . . . , N , ∀q = 0, 1, 2, . . . ,∞,∀g = −q,−q + 1, , . . . , ..., q − 1, q,

the following family of equations

−Bα
gq +

q − hα
hα + q + 1

∞∑
n=0

n∑
m=−n

(
AmnH

αgq
m,n1q≤n +

N∑
β=1,β 6=α

Bβ
mnW

αβgq
m,n

)
= 0 (11)

where

Hαgq
m,n =

(
n+m

q + g

)(
σα
R0

)q(L0α

R0

)n−q
Ym−g,n−q(L0α) (12a)

Wαβgq
m,n = (−1)q+g

(n−m+ q + g)!

(n−m)!(q + g)!

(
Lβα
R0

)−(n+q)−1(σα
R0

)q(Rβ
R0

)n+1

Ym−g,n+q(Lβα) (12b)

Thus, we reduced the original boundary problem (1a), (1b), (1c) to an infinite-dimensional set of equations,

whose variables are the coefficients Amn and Bα
mn of the expansion in spherical harmonics

−Bα
gq +

q − hα
hα + q + 1

∞∑
n=0

n∑
m=−n

(
AmnH

αgq
m,n1q≤n +

N∑
β=1,β 6=α

Bβ
mnW

αβgq
m,n

)
= 0

Agq −
h0 + q + 1

(q − h0)

N∑
α=1

q∑
n=0

n∑
m=−n

Bα
mnV

α,m,n
g,q 1{g−(q−n)≤m≤g+(q−n)} = δg0δq0

(13)

with the matrices V , W , H containing the parameters which characterize the configuration and distributed

reactivity of the spheres. The general block-matrix structure of system (13) is illustrated in Fig. 1 for a number

of multipoles NM . The block matrices Ṽ , H̃, W̃ appearing in Fig. 1 are defined as follows

Ṽ α,m,n
g,q = −h0 + q + 1

q − h0
V α,m,n
g,q 1{g−(q−n)≤m≤g+(q−n)}

H̃αgq
m,n =

q − hα
hα + q + 1

Hαgq
m,n 1q≤n (14)

W̃αβgq
m,n =

q − hα
hα + q + 1

Wαβgq
m,n

If we denote with U the coefficient matrix illustrated in Fig. 1 and with Y the vector of unknown coefficients,

the linear system one has to solve can be written as

N∑
j=1

UijYj = δi1 (15)

whereN = (N+1)(NM+1)2 is the dimension of matrixU . The row and column indexes of U can be obtained

through a simple unfolding procedure as follows. Let ib = 1, 2, . . . , N+1 denote the ib-th block. If the number

of multipoles included in the calculation is NM , each block has dimensions (NM + 1)2× (NM + 1)2. This can

be seen easily, as

NM∑
`ib=0

(2`ib + 1) = (NM + 1)2
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N + 1 blocks!

(NM + 1)2

rows and columns!

Figure 1: Scheme of the matrix structure (15) of the linear system (13). The matrix of unknown coefficients U has

N + 1 blocks if there are N spherical boundaries within Ω0. If the maximum number of multipoles included in the

calculation is NM , each block has dimension (NM + 1)2. Eq. (16) illustrates the unfolding rule that can be used to

compute the indexes of the coefficient matrix Uij . The block matrices Ṽ , H̃, W̃ are defined by equations (14).

where `ib is the index that specifies the multipole within the ib-th block. Thus, the general unfolding rule for,

e.g., the row index of U can be written as

i(ib, `ib ,mib) = (NM + 1)2(ib − 1) +

`ib−1∑
k=0

(2k + 1) + `ib + 1 +mib (16)

It easy to check that the unfolding rule (16) prescribes i = (NM + 1)2(iib − 1) + 1, 2, . . . , (NM + 1)2 as

mib = −`ib ,−`ib + 1, . . . , `ib − 1, `ib for `ib = 0, 1, . . . , NM .

The reaction rate corresponding to a given reactive boundary ∂Ωα is nothing but the flux of ligands to its

surface (number of ligands per unit time)

k = −
∫
∂Ωα

Jα|∂ΩαdS

where

Jα = −D ∂ρ

∂rα
= −DρB

σα

∂u

∂ξα
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Using the expression of the solution in local coordinates and taking into account the properties of Legendre

Polynomials, we have

kα
kSα

=
1

2

∞∑
q=0

q∑
g=−q

[
(−q − 1)Bα

gq + q

( N∑
β=1,β 6=α

∞∑
n=0

n∑
m=−n

Bβ
mnW

αβgq
m,n

+

∞∑
n=0

n∑
m=−n

AmnH
αgq
m,n1q≤n

)]∫ 2π

0
eigφαdφα

∫ 1

−1
Pgq(µα)dµα

= −1

2

∞∑
q=0

[
(q + 1)Bα

0q − q
( N∑
β=1,β 6=α

∞∑
n=0

n∑
m=−n

Bβ
mnW

(α,β,0,q)
m,n

+

∞∑
n=0

n∑
m=−n

AmnH
α0q
m,n1q≤n

)]∫ 1

−1
P0q(µα)dµα = −Bα

00

(17)

where we recall that µα = cos θα and we have introduced the Smoluchowsky rate constant kSα = 4πDσα,

which is the rate constant for an isolated sink of (encounter) radius σα in the unbounded domain.

To solve the system (17) one needs to truncate the expansion to include a finite number of multipoles, Nt.

Thus, the resulting truncated system for N internal boundaries comprises (N + 1)(Nt + 1)2 equations. The

value of Nt that one should consider is dictated by the requested accuracy. Operatively, we have implemented

a simple iterative scheme, which compares the solutions computed for Nt and Nt + 1 until the necessary

accuracy is attained. The accuracy considered in this paper corresponded to relative variations of the rate from

one iterations to the following equal or smaller than 10−4. We note that the number of multipoles to retain

for a given value of the accuracy strongly depends on the specific geometry and reactivity of the considered

boundaries.

II. OUTLINE OF THE PROCEDURE LEADING TO THE PERTURBATIVE EXPANSIONS (9) AND (10)

As an example of the procedure that we followed to obtain eqs. (9) and (10) in the main text, we will describe

here in some detail the steps that led us to compute the first two non trivial terms. The extension to higher orders

involves longer but straightforward calculations along similar lines. Let us rewrite the linear system obtained

for the case of N reflecting spheres, and let us single out the coefficients of the central sink B0
gq from the Bα

gq

that characterize the reflecting boundaries,
−B0

gq −
(
δg0δq0 +

∞∑
n=1

n∑
m=−n

N∑
β=1

Bβ
mnW

0βgq
m,n

)
= 0

−Bα
gq +

q

1 + q

 ∞∑
n=0

n∑
m=−n

B0
mnW

α0gq
m,n +

∞∑
n=1

n∑
m=−n

N∑
β=1,β 6=α

Bβ
mnW

αβgq
m,n

 = 0

(18)

where

Wαβgq
m,n = (−1)q+g

(n−m+ q + g)!

(n−m)!(q + g)!

(
σqασ

n+1
β

Lβα
n+q+1

)
Ym−g,n+q(Lβα) (19)
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Our goal is to obtain an expansion of the rate to the central sink, k/kS = −B0
00 in powers of the parameter

ε = σ/d. For this purpose, we have to consider the following expressions for all the coefficients of the linear

system:

B0
m,n =

∞∑
j=0

εjQ0,j
m,n

Bα
m,n =

∞∑
j=0

εjQα,jm,n

(20)

We have to take into account the number of multipoles which is necessary to obtain the desired order of ap-

proximation. The fourth order of the expansion in powers of ε requires only the terms for n = 0 and n = 1,

namely

B0
00 = −1− λ2ε2

N∑
β=1

(
− 1

2
sin θβ0e

−iφβ0Bβ
−11 + cos θβ0B

β
01 + sin θβ0e

iφβ0Bβ
11

)
+ o(ε2)

Bα
−11 =

λ

2
ε2 sin θ0αe

iφ0αB0
00 + o(ε2)

Bα
01 = −λ

2
ε2 cos θ0αB

0
00 + o(ε2)

Bα
11 = −λ

4
ε2 sin θ0αe

−iφ0αB0
00 + o(ε2)

. (21)

Substituting the expressions (20) in the above equations, the unknown coefficients Qα,jm,n are determined by

equating the coefficients of equal powers of ε. With the use of basic trigonometric identities, including θ0β =

π − θβ0 and φ0β = π + φβ0 , we get the first coefficients of the expansion:

Q0,0
00 =− 1

Q0,1
00 =Q0,2

00 = Q0,3
00 = 0

Q0,4
00 =− λ2

N∑
α=1

(
− 1

2
sin θβ0e

−iφβ0Qβ,2−11 + cos θβ0Q
β,2
01 + sin θβ0e

iφβ0Qβ,211

)
= λ3N

2

(22)

The corresponding expression for a collection of N reactive boundaries can be obtained with the same proce-

dure, the only additional difficulty being the contribution of the pairwise distance between the neighbouring

boundaries Lαβ , which enter the expansion already in the first-order terms. To carry out the approximation, it

is necessary to express Lαβ as a function of the perturbative parameter by using basic trigonometry, i.e.

σ

Lαβ
=

ε

2 sin(ωαβ/2)

where ωαβ is the angle formed by the sinks α and β with respect to the central sink. As a consequence, the

perturbative approximation (10) will depend on the configuration of the surrounding boundaries.
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A. Evaluating the order of the expansion coefficients

The perturbative expansion of the rate to a central sink of radius σ in the case of N absorbing boundaries of

radius σ1 = λσ reads

k

ks
= 1− λNε+

[
λN + λ2

N∑
α,β=1
β 6=α

1

Γαβ

]
ε2 −

[
λ2N2 + λ2

N∑
α,β=1
β 6=α

1

Γαβ
+ λ3

N∑
α,β,δ=1
β,δ 6=α

1

ΓαβΓαδ

]
ε3 + . . . (23)

The expansion coefficients in the previous expression are not linear in the number of neighbouring boundaries,

unlike the corresponding formula for the reflecting spheres (eq. (9) in the main text). To justify this claim, we

can estimate explicitly the leading power in N of the second-order coefficient. For the sake of clarity, we will

confine ourselves to a planar configuration with the N centres of the spheres lying at the vertices of a regular

polygon and also take λ = 1. In this case, the pairwise distances for each pair Ωα,Ωβ can be written explicitly,

so that

k

ks
= 1−Nε+

(
N +

N∑
α=1

N∑
β 6=α=1

1

Γ(α, β)

)
ε2 + o

(
ε2

)

= 1−Nε+

(
N +N

N−1∑
k=1

1

2 sin(πk/N)︸ ︷︷ ︸
a(N)

)
ε2 + o

(
ε2

). (24)

It can immediately be concluded that the order in N of Q0,2
00 = N + a(N) is higher than two. One has

lim
N→∞

a(N)

N2
= lim

N→∞

1

N

N−1∑
k=1

1

2 sin(πk/N)
=

∫ 1

0

dx

2 sin(πx)
=

∫ π
2

0

dx

sin(x)
≥
∫ π

2

0

dx

x
→∞

A more precise estimate can be obtained using the approximation

1

sin(πk/N)
=
N

πk
+ r(k,N)

where r(k,N) is the rest. Assuming N odd and using the properties of the harmonic series (for large values of

N one has
∑N

k=1 k
−1 ∼ lnN ), we get

N
N−1∑
k=1

1

2 sin(πk/N)
= N

N−1
2∑

k=1

1

sin(πk/N)
∼ N2

π

(N−1)/2∑
k=1

1

k
∼ N2

π
ln

(
N − 1

2

)
Since it is possible to show that N

∑(N−1)/2
k=1 r(k,N) has order N2, we conclude that, at least in the planar

ordered configurations considered here, the second coefficient of the expansion has order N2 lnN . In fact, we

have
(N−1)/2∑
k=1

r(k,N) =

(N−1)/2∑
k=1

(
1

sin(πk/N)
− N

πk

)
and

lim
N→∞

1

2N

N∑
k=1

(
1

sin(πk/2N)
− 2N

πk

)
=

1

π

∫ π
2

0

(
1

sin(y)
− 1

y

)
dy <∞

because

lim
y→0

y − sin y

y sin y
= 0
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III. THE MONOPOLE APPROXIMATION

Let us write explicitly the linear system (6) for a configuration of N sinks randomly placed at a distance d from

the central sink in the monopole approximation, that is, ` = q = 0. We get ∀ i = 1, 2, . . . , N

B0
00 = −1−

N∑
i=1

Bi
00W

0i00
00 (25a)

Bi
00 = −1−B0

00W
0i00
00 −

N∑
β 6=i=1

Bβ
00W

iβ00
00 (25b)

We recall that in general the rate to the α-th sink is simply

kα
kSα

= −Bα
00

where kSα = 4πDσα is the (Smoluchowski) rate constant for an isolated sink of radius σα (in this special case

we either have σα = σ or σα = σ1). After summing equation (25b) over i, and letting x = B0
00, y =

∑N
i=1B

i
00,

we obtain

x+ 1 + λε y = 0 (26a)

y +N +Nεx+ λε
N∑
i=1

N∑
β 6=i=1

Bβ
00

Γαβ
= 0 (26b)

Physically, the variable x is the negative of the rate constant to the central sink, k/kS = −x, while the variable

y stands for the total rate constant for the ensemble of N screening spheres, namely

N∑
α=1

kα
kSα

= −y

Obviously the solution to eqs. (26a) and (26b) will depend on the configuration of the spherical bound-

aries, which is embodied in the functions Γαβ . We can give an estimate of the mean rate to the central

sink by averaging both equations over the multi-variate totally uncorrelated probability density of the an-

gles between each pair of spherical sinks, P(−→w ) ≡
∏
α 6=β P (ωαβ), with P (ωαβ) = sinωαβ/2, normalized

such that
∫ π

0 dω1

∫ π
0 dω2 . . .

∫ π
0 dωN(N−1)/2P(−→w ) = 1. The excluded-volume constraint between screening

sinks requires two given particles to lie at a distance greater than or equal to their diameter. This means that

2 arcsin(λε) ≤ ωαβ ≤ π ∀α, β, with λ = σ1/σ and ε = σ/d. The average of the configuration-dependent

terms gives 〈
1

Γαβ

〉
=

∫ π

2 arcsinλε

P (ω) dω

2 sin(ω/2)
= 1− λε.

Noting that

N∑
i=1

N∑
β 6=i=1

Bβ
00 = (N − 1)

N∑
i=1

Bi
00 = (N − 1)y
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we finally get 〈
k

kS

〉
= −〈x〉 =

1− λε[N − (N − 1)(1− λε)]
1− λε[Nε− (N − 1)(1− λε)]

(27)

We note that for N = 1 eq. (27) reduces to the well-known formula for a system of two identical sinks [2],

k/kS = 1/(1 + ε). It is straightforward to prove that this function displays a minimum as a function of the

distance d for certain choices of the parameters N and λ. Since ε ∝ d−1, the condition for the existence of a

stationary point as the distance d is changed reads

d

dε

〈
k

kS

〉
= − λN [ε(λε(λ(N − 1) + 1)− 2) + 1]

[λε(λ(N − 1)ε+N(ε− 1) + 1)− 1]2
= 0 (28)

From eq. (28) it follows that a minimum exists for

λ2(N − 1) + λ− 1 ≤ 0 (29)

In this case, the distance d∗ at which a minimum is found is

d∗ = σ
[√

1− λ[1 + λ(N − 1)] + 1
]

(30)

If a minimum exists, it has to occur at a distance greater than or equal to the contact distance between the central

sink and the screening particles. Thus, one should enforce the condition d∗ ≥ σ + σ1. Therefore, in view of

expression (30), it follows that one has to complement eq. (29) with the additional requirement

√
1− λ[1 + λ(N − 1)] + 1 ≥ 1 + λ (31)

As quoted in the main text, the solution to the system of inequalities (29) and (31) reads
λ ≤ λ∗(N) ≡ (

√
4N + 1− 1)/(2N) < 1 for fixed N

N ≤ N∗(λ) ≡ (1− λ)/λ2 for fixed λ
(32)

IV. SCREENING BY REFLECTING OBSTACLES: THE CONFIGURATION ENTERS HIGHER POWERS

OF ε = σ/d

Our perturbative procedure has shown that, in case of N reflecting boundaries, the rate constant is linear in

N and depends only on the distance between the obstacles and the sink, d (eq. (9) in the main text). The

configuration does not appear explicitly. However, this is only the case at large enough separations, as the

specific 3D arrangement of obstacles indeed enters the perturbative expansion at the 7-th order in ε = σ/d. In

order to prove this statement, let us consider two distinct planar configurations of the reflecting spheres, lying

at the vertices of an equilateral triangle (configuration C3) and of a square (configuration C4). The seventh-order
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Figure 2: Perturbative rate constants are to an excellent extent proportional to the exact values. Perturbative

(eq. (23)) vs exact rates to a sink of radius σ screened by N = 50 sinks of radius σ1 = σ/10 arranged randomly at

a fixed distance d from it. Each set comprises 100 independent configurations. The values of the rate are normalized to

the Smoluchowski rate for the central sink, kS = 4πDσ.

correction for a collection of spheres lying in the z = 0 plane, θ = π/2, reads

Q0,7
00 = − 1

16

N∑
β=1

N∑
β=1,β 6=γ

1

Γ(β, γ)3

[(
ei(φ0β−φ0γ) + e−i(φ0β−φ0γ)

)

+3

(
ei(φ0β+φ0γ−2φγβ) + e−i(φ0β+φ0γ−2φγβ)

)]
(33)

= −1

8

N∑
β=1

N∑
β=1,β 6=γ

1

Γ(β, γ)3

[
cos(φ0β − φ0γ) + 3 cos(φ0β + φ0γ − 2φγβ)

]
One immediately recognizes from eq. (33) that the configuration enters the picture through the parameter

Γ(β, γ) and through the azimuthal angles φαβ . Evaluating the corrections for the two regular polygons,

Q0,7
00 (C3) and Q0,7

00 (C4), we find

Q0,7
00 (C3)

N
=

7

24
√

3
6= Q0,7

00 (C4)

N
=

3

2
√

2
+

1

4

This proves that for orders higher than six in ε, the perturbative expansion of the rate constant to the sink is no

longer independent of the specific arrangement of reflecting obstacles.

V. COMPARING PERTURBATIVE EXPANSIONS OF THE RATE CONSTANT WITH THE EXACT

VALUES

In Fig. 2 we plot the rate constant for a sink surrounded by competitive perfectly absorbing spheres, computed

through eq. (23) (eq. (10) in the main text), as a function of the exact results, obtained by solving the linear

system (6) in the main text. The purpose of these graphs is to show that the perturbative formula, even if it

generally overestimates the exact results unless Nε ∝ N/d � 1, nonetheless yields a result which is to an

excellent extent proportional to it. Thus, eq. (23) provides an effective figure of merit to compare the effect of
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different conformations, e.g. with the aim of designing configurations influencing the rate in some prescribed

manner.

VI. SOFTWARE IMPLEMENTATION

The present calculations have been implemented in a computer code written in Fortran 77. The authors are

planning to prepare a free version of the code to be distributed freely. The interested reader is invited to write to

the corresponding author (Francesco.Piazza@gmail.com) for more information or to visit his group’s

homepage at http://dirac.cnrs-orleans.fr/PB/.

[1] Morse, P. M. & Feshbach, H. Methods of theoretical physics, vol. 2 (McGraw-Hill Science/Engineering/Math, 1953).

[2] Traytak, S. D. The diffusive interaction in diffusion-limited reactions: the steady-state case. Chemical Physics Letters

197, 247–254 (1992).


	Contents
	Derivation of the system of equations (6).
	Outline of the procedure leading to the perturbative expansions (9) and (10)
	Evaluating the order of the expansion coefficients

	The monopole approximation
	Screening by reflecting obstacles: the configuration enters higher powers of =/d
	Comparing perturbative expansions of the rate constant with the exact values
	Software implementation
	References

