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Abstract
In this paper we develop a technique for determining interatomic potentials in
materials in the quantum regime from single-shell extended x-ray absorption
spectroscopy (EXAFS) spectra. We introduce a pair distribution function,based
on ordinary quantum time-independent perturbation theory. In the proposed
scheme, the model potential parameters enter the distribution through a fourth-
order Taylor expansion of the potential, and are directly refined in the fit of the
model signal to the experimental spectrum. We discuss in general the validity
of our theoretical framework, namely the quantum regime and perturbative
treatment, and work out a simple tool for monitoring the sensitivity of our
theory in determining lattice anharmonicities based on the statistical F-test.
As an example, we apply our formalism to an EXAFS spectrum at the Ag K
edge of AgI at T = 77 K. We determine the Ag–I potential parameters and find
good agreement with previous studies.

1. Introduction

It is well known that extended x-ray absorption spectroscopy (EXAFS) is a very sensitive
and accurate technique for probing the structural and dynamical properties of materials in the
neighbourhood of the photoabsorber atom [1]. In particular, the damping of the EXAFS signal
induced by thermal broadening in the distribution of absorber–neighbour distances carries
quantitative information on the corresponding interatomic potentials [2].

The effects of thermal disorder are usually accounted for by introducing a temperature-
dependent pair distribution function (PDF) g(r, T ), such that gs(r, T ) dr is the normalized
probability that the distance of an atom in the the sth shell from the absorber lies in the interval
[ r , r +dr ] at the temperature T . The corresponding single-shell EXAFS χs(k) is then obtained
as

χs(k) =
∫ ∞

0
gs(r, T )χs(k, r) dr. (1)
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It is clear that the absorber–neighbour effective potential determines the shape of the PDF. The
simplest structural model one can introduce is represented by a Gaussian distribution, i.e. a
harmonic interatomic potential. In this case, integration of equation (1) is straightforward
and the result is the well known Debye–Waller multiplicative damping factor e−2σ 2k2

, where
σ 2 = 〈[r − 〈r〉]2〉 = ∫ ∞

0 g(r, T )[r − 〈r〉]2 dr .
The higher-order terms in the potential expansion are usually accounted for via the

cumulant method [3]. The cumulants Cn are defined as the coefficients that enter the
MacLaurin expansion of the function ln[F(2k)], where F(2k) is the Fourier transform of
the effective distribution function G(r, λ) = g(r)e−2r/λ/r2, λ being the photoelectron mean
free path. The utility of this method is that the cumulants are related to the moments of the
effective distribution. In particular, the first cumulant C1 is the mean value of the interatomic
distance, while C2 is the variance of the effective distribution. The higher-order cumulants
C3 and C4 are related to the skewness (asymmetry) and kurtosis (deviation from the Gaussian
shape) of the distribution, respectively. The cumulant-expansion technique has been applied
successfully in the case of moderate anharmonicities both to bulk materials [4] and to the study
of surfaces [5, 6].

In such a framework, the following step towards a detailed understanding of disordered
systems is to establish the direct relationship between the interatomic potential and cumulants.
In the case of harmonic crystals, the second-order cumulants have been calculated quantum
mechanically for Debye crystals [7] and simple molecules [8]. Other attempts in this direction
exist in the literature which include third-order anharmonicities for simple systems [9, 10].

A more straightforward alternative approach is to directly integrate the EXAFS by
calculating explicitly the whole PDF corresponding to a certain model potential. The simplest
way a pair potential V (r) may directly enter the distribution function is through the classical
configurational integral scheme

g(r, T ) = e−V (r)/kB T∫ ∞
0 e−V (r)/kB T dr

(2)

where kB is the Boltzmann constant. Expression (2) has been applied to the study of metals
and ionic systems with different model potentials, from Lennard-Jones [11] and Morse [12] to
generic three-parameter Taylor expansions [13]. However, equation (2) is based on a classical
treatment of the atomic vibrations. In general, depending both on the temperature and potential
stiffness, the classical approximation may break down. In this case the full quantum treatment
of lattice dynamics is in order, and one can proceed as follows.

First the Schrödinger equation of the absorber–neighbour pair has to be solved, and
the eigenvectors ψn and eigenvalues En computed. The quantum mechanical analogue of
expression (2) can then be written as

g(r, T ) =
∑

n |ψn(r)|2e−En/kB T∑
n e−En/kB T

, (3)

where r = |x1 − x2| is the spatial coordinate describing the relative motion of the pair.
Equation (3) was first introduced and used in [14] to study the interatomic potential of the Cu–
O(4) pair in the YBCO superconductor. The procedure is the following: one first introduces
a model potential which is characterized by a set of parameters {λ}. Then a numerical routine
is set up, which solves the radial Schrödinger equation for a particular choice of the set {λ},
builds the radial distribution function (3) and calculates the EXAFS signal χ(k, {λ}). This
routine is then incorporated in the fitting program that refines the free parameters {λ} on a set
of experimental data through ordinary χ2 minimization.

This procedure has the advantage that it allows an arbitrary analytical potential function to
be used. This is the case of [14], where a double-well potential is found. However, it is rather
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cumbersome and of little practical utility for routine fittings. In particular, a more concise and
handy way of calculating expression (3) in a closed form would be of great advantage.

In this paper we compute an analytical expression for the function (3), based on a simple
Taylor expansion of the potential function, and cast it in a simple form, suitable for inclusion
in a simple routine attached to the fitting machinery. We organize our paper as follows. In
section 2 we develop our quantum pair distribution function (QPDF). In section 3 we discuss on
general grounds the validity of our theoretical framework. Furthermore, we develop a statistical
tool to assess the sensitivity of the QPDF to the parameters describing the anharmonicities in
the potential. Finally, in section 4 we test the QPDF by fitting an EXAFS spectrum of AgI
at T = 77 K. We end the paper by summarizing our results and drawing our conclusions in
section 5.

2. The quantum pair distribution function

Let us consider the pair formed by the photoabsorber and one of its neighbours from a given
coordination shell. Let xi and mi (i = 1, 2) denote the position vectors and atomic masses
of the two atoms, respectively. Let V (r) be the corresponding interatomic potential. We can
write its Taylor expansion in the following fashion:

V (r) = 1
2 k2(r − r0)

2 + V1(r) + O(|r − r0|5), (4)

where

V1(r) = 1
3 k3(r − r0)

3 + 1
4 k4(r − r0)

4 and km = 1

(m − 1)!

[
dm V (r)

drm

]
r=r0

, (5)

r0 being the equilibrium interparticle distance, given by the condition [dV (r)/dr ]r=r0 = 0.
We can follow the ordinary procedure to first separate the two-body Schrödinger equation
by introducing the relative and centre-of-mass coordinates, and then decouple the angular
and radial degrees of freedom in the Schrödinger equation for the radial motion. The pair
wavefunction then reads

�(x1,x2) = ψG(X)

[
u(r)

r

]
Y m

l (θ, φ), (6)

where X = (m1x1 +m2x2)/(m1 +m2), r = |x1 −x2| and Y m
l (θ, φ) are the spherical harmonic

functions [15]. We require the wavefunction of the pair to have spherical symmetry, since we
do not want the PDF to depend on the orientation of the absorber–neighbour bond in the
crystal1. We therefore set l = 0. The radial equation then reduces to the one-dimensional
problem

− h̄2

2µ

d2u

dr2
+

[
1

2
k2(r − r0)

2 + V1(r)

]
u = Eu, (7)

where µ is the reduced mass of the pair and we require u(r)|r=0 = 0. In the spirit of
ordinary time-independent perturbation theory, we consider the harmonic Hamiltonian as the
unperturbed problem and the potential V1 as the perturbation.

It is convenient to adopt the formalism of second quantization. The unperturbed problem
is defined by the eigenvectors |n〉 and the corresponding eigenvalues E (0)

n = h̄ω[n + 1/2](n =
0, 1, 2, . . .), where ω = √

k2/µ. Recalling the well known commutation relations between
creation and annihilation operators â† and â, respectively, it is straightforward to write down

1 This also means that our formalism in its present form only applies to the study of K edges.
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the expression of the perturbation potential (5) in the n-representation. We get

V = h̄ω	3[â†3 + â3 + 3nâ† + 3(n + 1)â] (8)

+ h̄ω	4[â†4 + â4 + 2(2n − 1)â†2 + 2(2n + 3)â2 + 3(n + 1)2 + 3n2],

where

	m = 1

2m/2m

(
km xm

0

h̄ω

)
(m = 3, 4) and x0 = √

h̄/µω. (9)

Recalling the definition of creation and annihilation operators we can easily evaluate the matrix
elements 〈k|V |n〉. Let us define the four-dimensional quantity β as

β(σ) = 	3[δσ,1 + δσ,3] +	4[δσ,2 + δσ,4] (σ = 1, 2, 3, 4), (10)

where δi, j is the Kronecker integer delta function. We get

〈k|V |n〉 = 〈n|V |k〉 =
4∑

σ=1

β(σ)[γ +
n (σ )δk,n+σ + γ−

n (σ )δk,n−σ ], (11)

where we have explicitly used the hermiticity of V , and defined

γ +
n (σ ) =

√
(n + σ)!

n!
α+(n, σ ) γ−

n (σ ) =




√
n!

(n − σ)!
α−(n, σ ) n � σ

0 otherwise.

(12)

The coefficients α±(n, σ ) are reported in table 1. We note that the coefficients γn and α±(n, σ )
satisfy the following relations:

γ +
n−σ (σ ) = γ−

n α+(n − σ, σ ) = α−(n, σ )
γ−

n+σ (σ ) = γ +
n α−(n + σ, σ ) = α+(n, σ ).

(13)

Using equations (11)–(13), we can work out the second-order corrections to the energy levels
�En and the normalized perturbed wavefunctions |n〉 + |n′〉 in the usual way (see e.g. [16]).
After a somewhat lengthy calculation, we get

�En/h̄ω = 3	4(2n2 + 2n + 1) +
4∑

σ=1

β(σ)2

σ
[(γ−

n (σ ))
2 − (γ +

n (σ ))
2] (14)

|n′〉 =
4∑

σ=1

β(σ)

σ
[γ−

n (σ )|n − σ 〉 − γ +
n (σ )|n + σ 〉]

+
4∑

σ,σ ′=1

β(σ)β(σ ′)
σ (σ + σ ′)

[γ +
n (σ )γ

+
n+σ (σ

′)|n + (σ + σ ′)〉

+ γ−
n (σ )γ

−
n−σ (σ

′)|n − (σ + σ ′)〉]

−
4∑

σ �=σ ′=1

β(σ)β(σ ′)
σ (σ ′ − σ)

[γ +
n (σ )γ

−
n+σ (σ

′)|n − (σ ′ − σ)〉

+ γ−
n (σ )γ

+
n−σ (σ

′)|n + (σ ′ − σ)〉]

− �E (1)
n

h̄ω

4∑
σ=1

β(σ)

σ 2
[γ +

n (σ )|n + σ 〉 + γ−
n (σ )|n − σ 〉]

− 1

2
|n〉

4∑
σ=1

β2(σ )

σ 2
[(γ +

n (σ ))
2 + (γ−

n (σ ))
2], (15)
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Table 1. Values of the coefficients α±(n, σ ).

σ α+(n, σ ) α−(n, σ )

1 3(n + 1) 3n
2 2(2n + 3) 2(2n − 1)
3 1 1
4 1 1

where �E (1)
n = 3h̄ω	4(2n2 + 2n + 1) are the first-order corrections to the energy levels.

We are now able to write down explicitly the expression for the QPDF from equation (3).
We have

g(r, T ) =
∑nM

n=0[un(r) + u′
n(r)]

2e−[E (0)
n +�En]/kB T∑nM

n=0 e−[E (0)
n +�En]/kB T

, (16)

where un(r) = 〈r |n〉 are the unperturbed eigenfunctions, i.e. the eigenvectors of the one-
dimensional harmonic oscillator, and u′

n(r) = 〈r |n′〉 are the corrections (15). We have
explicitly indicated the truncation of the summations as the integer nM . In the computations
one has to fix nM by requiring that the corresponding normalized Boltzmann factor znM/Z (Z
being the partition function) is negligible up to some specified tolerance tol = 10−M , i.e.

znM = e−[E (0)
n M +�En M ]/kB T � tol. (17)

This condition fixes the number of levels which are included in the perturbative series (16). Of
course, one also has to check that the energy of the highest level included is small compared
to some estimate of the potential well depth Vo. If we express energies in eV and temperature
in Kelvin, from equation (17) we get the condition

[M log 10]T × 10−4 < Vo. (18)

It follows that, for potential well depths of the order of 1 eV, the condition (18) is fulfilled for
M = 4–5 for temperatures up to ≈100 K.

3. Validity and sensitivity of the QPDF

The above described procedure to build the QPDF relies on two basic hypotheses:

(i) the classical approximation of lattice vibrations must be inadequate so that the quantum
treatment of the two-body problem holds, and

(ii) the deviations of the absorber–neighbour potential from the harmonic approximations
must be satisfactorily described by a perturbative treatment.

As to the validity of condition (i), the ratio RQ = h̄ω/kB T (ω = √
k2/µ) provides a good

qualitative indicator: ifRQ is of the order of unity, the quantum energy scale is comparable with
the thermal one, and the system requires the full quantum description. Regarding condition (ii),
we introduce the following parameter:

RE
de f= 2V1(

√〈(r − r0)2〉T )

k2〈(r − r0)2〉T
= 1

k2

[
2

3
k3

√
〈(r − r0)2〉T +

1

2
k4〈(r − r0)

2〉T

]
, (19)

where 〈. . .〉T is the configurational average performed with the QPDF. The indicator RE gives
a measure of the relative strength of the perturbed and unperturbed energies, and can always
be computed a posteriori in order to assess the validity of the perturbative approximation. On
the other hand, we also have to be concerned with the sensitivity of the QPDF to the parameters
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of the model potential. i.e. the minimum detectable anharmonicity within the present model
at fixed temperature and potential stiffness (k2). We shall here introduce a simple procedure
for assessing the QPDF sensitivity, based on the statistical F-test.

Let us suppose that we are fitting N experimental data points (ki , χ
exp
i ), i = 1, . . . , N , to

a model that has p adjustable parameters λ j , j = 1, . . . , p. The model predicts a functional
relationship between the measured independent and dependent variables

χ(k) = χ the(k; λ1, . . . , λp).

In the spirit of the maximum-likelihood method, we want to minimize a fit index (or residual
function) of the kind

F =
N∑

i=1

[χ exp
i − χ the(ki; λ1, . . . , λp)]

2wi (20)

where the wi are some weight functions. In general, if the standard deviations σi of the
experimental data are known independently, the correct choice would bewi ∝ 1/σ 2

i . However,
depending on the particular algorithm used to perform the fit, some other weighting functions
may be preferred.

As a consequence of introducing the third- and fourth-order nonlinearities in the model
potential, two more floating parameters are available to fit the EXAFS spectrum, namely k3

and k4. In general, this will cause per se a reduction of the best-fit index minimum with
respect to the harmonic model. Such a situation typically arises in EXAFS data analysis
when it is to be decided whether a spectrum needs the introduction of an additional shell
to be fitted (some physical information still present in the data) or, more generally, whether
the improvement achievable by incrementing the number of free parameters is statistically
meaningless [17, 18]. In our case, we are interested in assessing the sensitivity of the QPDF in
capturing real physical information regarding the higher-order terms in the Taylor expansion
of the potential.

A general theorem in statistics states that the minimum of the residual function Fmin is
distributed as a χ2 distribution with ν1 = N − (p + 1) degrees of freedom [19]2. Let us
assume we want to compare an harmonic model potential (fit with p parameters) to a potential
obtained by adding some anharmonicity (fit with p + p′ parameters, p′ = 1, 2). We want to
assess whether the latter model significantly improves the fit (given the automatic improvement
following the introduction of any additional free parameter). Let us consider the ratio of the
normalized minima of the two corresponding fit indices

F = Fmin(p)/ν1

Fmin(p + p′)/ν2
, (21)

where ν2 = [N − (p + p′ + 1)]. It can be shown that, as a consequence of the above theorem,
the ratio (21) follows an Fν1,ν2 distribution [19], whose density function is

Dν1,ν2(F) dF = �[(ν1 + ν2)/2][(ν1/ν2)F]ν1/2−1

�(ν1/2)�(ν2/2)[(ν1/ν2)F + 1](ν1+ν2)/2
dF. (22)

In particular, if both the harmonic and anharmonic models were appropriate to explaining all
of the signal, one would expect the function

f = ν2

p′

( Fmin(p)

Fmin(p + p′)
− 1

)
(23)

2 This result strictly holds when (i) the measurement errors are normally distributed, and either (ii) the model is linear
in its parameters or (iii) the sample size is large enough that the uncertainties in the fitted parameters do not extend
outside a region in which the model could be replaced by a suitable linearized model. Fits in EXAFS are usually at the
limit of validity of condition (iii). However, all the statistical analysis that stems from this basic theorem is routinely
applied in EXAFS data analysis (see e.g. [20]).
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to follow an Fp′,ν2 distribution. The F-test is then conducted as follows.

(1) Based on some estimate of the experimental standard deviation, one generates an artificial
experimental data set from the anharmonic model, e.g. by adding some Gaussian noise.

(2) The two residuals Fmin(p) and Fmin(p + p′) are calculated and the value of f obtained.
(3) One can now fix the preferred confidence level c and compare f with Fc

p′,ν2
, given by the

following relation:

c = 1 −
∫ Fc

p′,ν2

0
Dp′,ν2(F) dF. (24)

Here c is the percentage probability of obtaining a reduction Fmin(p)−Fmin(p + p′) as large
as actually observed, when the added anharmonicity is not physically meaningful. We shall
call such a confidence level the rejection probability, which expresses the probability that the
harmonic and anharmonic model are equivalent—that is, if c = 1 the two models are by all
means statistically indistinguishable, while if c = 0 the probability that the harmonic model
could explain the data instead of the anharmonic one vanishes identically.

4. The Ag–I potential in silver iodide

Silver iodide (AgI) is known for being a highly anharmonic material [21–23]. Hence, it
appears a good candidate for providing a bench-mark to test the above described data analysis
framework. As an example, we analyse here an Ag K-edge EXAFS spectrum collected at
T = 77 K. The details of the experiment and of the extraction of the EXAFS signal χ exp(k)
from the raw absorption data are reported elsewhere [25].

The classical expression (2) of the PDF has been recently used in an EXAFS study of
AgI at the I K edge to measure the first three coefficients of the Taylor expansion of the Ag–I
potential at T = 300 and 600 K [24]. Following [24], we get RQ(T = 77) ≈ 0.5. We
conclude that at T = 77 K the classical expression of the PDF is no longer valid and one has
to work in the quantum regime. In order to calculate the model EXAFS signal we re-write
equation (1) by using the standard formula of single-shell single-scattering EXAFS in the
following fashion:

χ(k, r) = S2
o NI

∫ +∞

−∞
g(u, T )

e−2[r0+u]/λ(k)

k[r0 + u]2
Im{ fI(π, k)e2iδAg e2ik[r0 +u]} du, (25)

where g(u, T ) is the QPDF as calculated from equation (16) and we have made the substitution
u = r − r0. Here NI is the coordination number of the I ions, which we fixed at
the crystallographic value NI = 4, δAg is the central atom phase shift and fI(π, k) =
| fI(π, k)| exp(iφI) is the complex backscattering amplitude of the I ions. The constant S2

o
is the usual reduction factor which accounts for the inelastic losses, which we fixed at the
value S2

o = 0.73 [25]. The photoelectron mean free path is here assumed to depend on the
wavevector k as λ = k/η [2], where η is a constant. The backscattering amplitude fI(π, k)
and total phase shift�ϕ = 2δAg + φI have been taken from the tables in [2] (reproduced from
calculations based on the Herman–Skillman wavefunctions [26]).

Following the arguments developed in section 3, we carry out two separate non-
linear least-squares fittings, by comparing the experimental EXAFS χ exp(k) with the model
signal calculated by equation (25) from the two separate sets of floating parameters {λ} =
{r0,�E0, η, k2} and {λ′} = {r0,�E0, η, k2, k3, k4}. The floating parameter �E0 must be
included in the fit as usual in order to compensate for the uncertainty associated with the true
value of the threshold energy, i.e. the minimum energy required to free the photoelectron.
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Figure 1. (a) Upper frame: Ag K-edge EXAFS signal at T = 77 K (symbols) and fit obtained with
equation (25) and parameter set {λ′}. Lower frame: squared residuals (symbols) and fit with the
law σ 2(k) = σ 2

0 [k0/k]3 (solid curve). Units for the y-axis are Å2. (b) Effective Ag–I potential.
Also shown are the harmonic levels used to calculate the QPDF, and the corresponding normalized
Boltzmann factors zn/Z .

Table 2. Best-fit values of the fit index (20) and parameters describing the Ag–I potential. The
weight functions used are here wi = 1/

√
50∀i .

Model Fmin k2 (eV Å−2) k3 (eV Å−3) k4 (eV Å−4) η (Å−2) r0 (Å) �E0 (eV)

{λ} 41.0 2.11(3) — — 0.84(5) 2.86(1) −48(1)
{λ′} 31.5 1.86(3) −7.6(4) 49(6) 0.82(5) 2.87(1) −43(1)

Table 3. Ag–I potential parameters as measured in [24].

T (K) k2 (eV Å−2) k3 (eV Å−3) k4 (eV Å−4)

300 2.4(1) −5.0(1) 0.2(0.7)
600 2.7(1) −5.3(1) 0.08(0.4)

The best-fit values of the free parameters are reported in table 2 for both the harmonic and
anharmonic models, alongside with the corresponding fit index minimum Fmin . The quality
of the fit with the anharmonic model is shown in figure 1(a), while the corresponding effective
Ag–I potential is drawn in figure 1(b). In table 3 we report for comparison the values of
the potential parameters as measured in [24]. We see that the overall agreement is good,
although the value of k4 reported in [24] does not seem to be reliable. Moreover, if we use
equation (19) to estimate the strength of the perturbation energy corresponding to the best-fit
values of k3 and k4, we get RE ≈ 0.12. We conclude that our results of the analysis with the
QPDF are consistent with the perturbative hypothesis. It is instructive to observe that the same
analysis performed using the classical expression of the PDF equation (2) with the parameter
set {λ′} always yields a vanishing k2 at the minimum Fmin . Correspondingly, the fourth-order
constant k4 is raised to unphysically high values, independently of the initial guess of the
set {λ′}. This scenario clearly confirms the inadequacy of the classical treatment of the pair
dynamics in the present case.
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Figure 2. Contour levels of the function �F = F(k2, k4)−Fmin for the minimum corresponding
to the harmonic model. The contours correspond, from left to right, to�F = −[χ2]0.01

ν=2, −[χ2]0.1
ν=2,

−[χ2]0.3
ν=2, [χ2]0.5

ν=2, [χ2]0.3
ν=2, [χ2]0.1

ν=2 and [χ2]0.01
ν=2.

We turn now to assessing the validity of our treatment on statistical grounds. The value
of f corresponding to the reduction of F following the introduction of k3 and k4 can be
calculated by equation (23). Substituting N = 150 and p′ = 2, we get f ≈ 16.6. By
substituting in turn Fc

p′,ν2
= f in equation (24) we get the corresponding rejection probability

c ≈ 3 × 10−7. We are then allowed to conclude that the anharmonic model is here capturing a
real physical feature of the Ag–I pair dynamics. It is instructive to demonstrate this conclusion
in a more pictorial fashion. It is a simple corollary to the first theorem mentioned in section 3
that, if only ν parameters are varied while keeping the other p–ν fixed at their best-fit value,
the function �F = F(λ1, λ2, . . . , λν) − Fmin follows a χ2 distribution with ν degrees of
freedom. When ν = 2 this result provides the errors on selected parameter pairs (λ1, λ2)

in the form of confidence ellipses through the simple condition �F(λ1, λ2) = [χ2]c
ν=2.

Here [χ2]c
ν=2 is the value of the χ2 variable corresponding to the required confidence level

(i.e. rejection probability) c for ν = 2. In figure 2 we show the contour levels of the function
�F = F(k2, k4)−Fmin computed for the minimum obtained within the harmonic model. The
presence of a significant region (corresponding to the 99% confidence level [χ2]0.01

ν=2 = 9.21)
of negative values away from the computed minimum explains the dramatic improvement of
the fit upon introducing the nonlinearities in the potential. The same confidence analysis for
the anharmonic model performed in four different parameter subspaces {λ1, λ2} is reported in
figure 3, showing the quality of the best-fit minimum.

We end this section by showing how one can conduct the F-test described in section 3 to
examine the QPDF sensitivity in the present case. Let us fix the temperature and the harmonic
constant k2 at its best-fit value. We can then use equations (20), (23) and (25) with p′ = 1 to
calculate the value of f for any choice of k3 and k4, where in place of the experimental spectrum
we use an artificial data set constructed as described in section 3. In particular, we just add
to the model signal a Gaussian noise with standard deviation σ(k, T ) = σ0 [k0/k]3/2√T/T0,
with σ 2

0 = 0.0016, k0 = 12.7 Å−1 and T0 = 77 K (see figure 1(a)). Finally, we calculate the
corresponding rejection probability by means of equation (24) with Fc

p′,ν2
= f . For example,

this procedure can be used to construct the functions c(k3, k4 = 0, T ) and c(k3 = 0, k4, T )
(one-parameter sensitivity curves). Alternatively, the same procedure with p′ = 2 can be used
to look at the contour sections of the function c(k3, k4, T ) (two-parameter sensitivity curves). In
figure 4 we show an example of one-parameter sensitivity curves calculated at three different
temperatures for both the k3 and k4 parameters. We clearly see that the lowest detectable
anharmonicity is well below the measured one in both cases. In particular, the rejection
probability decays exponentially with increasing magnitude of the anharmonic constant.
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Figure 3. Contour levels of the function �F = F(λ1, λ2)−Fmin for the minimum corresponding
to the anharmonic model. Four combinations of floating parameter pairs {λ1, λ2} are shown.
Contours correspond to confidence levels 50%, 70%, 90%, (95%) and 99%.

Figure 4. Rejection probability as a function of the potential anharmonicity calculated by
equation (24) at different temperatures for fixed harmonic constant. Parameters are N = 150,
µ = 9.74 × 10−26 kg and k2 = 1.86 eV Å−2. (a) Cubic nonlinearity; (b) quartic nonlinearity.

5. Conclusions

In this paper we have introduced a PDF valid in the quantum regime based on a Taylor expansion
of the absorber–neighbour potential, suitable for the analysis of single-scattering EXAFS. In
particular, we used ordinary time-independent non-degenerate quantum perturbation theory
to cast the QPDF in a simple analytical form, which can be easily calculated in a subroutine
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incorporated in the fitting program. Moreover, we have shown how the limits of validity
(sensibility of the quantum treatment and perturbative hypothesis) can be monitored and
described how to implement a simple statistical test to estimate the sensitivity of the QPDF to
the third- and fourth-order terms in the potential. The latter procedure can be used a posteriori
to check whether the best-fit values of the anharmonic parameters are above the sensitivity
level (minimum detectable anharmonicity). Alternatively, the same procedure may be applied
a priori in order to assess whether the QPDF is suitable for the analysis of the problem at hand.
We applied our formalism to the case of AgI, showing how the potential anharmonicity can be
measured in a temperature range where the classical expression of the PDF could not be used.
In particular, we demonstrated how a simple harmonic model is not adequate to describing
the dynamics of the Ag–I pair, in agreement with previous studies performed in the classical
regime.

As a final remark, it should be noted that the example we chose to test the QPDF concerns
a very symmetric lattice structure. It is well known that an additional broadening of the
distributions of absorber–neighbour distances may be produced by static disorder. The latter
may be associated for example with the presence of a coordination shell made of N identical
atoms at slightly different distances from the photoabsorber, that cannot be resolved in different
subshells (e.g. N1 at distance r1 and N2 at distance r2, with N1 + N2 = N). For small static
disorder (|r1 − r2| 
 r1, r2), one can prove that such shell is equivalent to a shell with
coordination N and mean distance r0 = (N1r1 + N2r2)/N , provided one introduces in the
Debye–Waller factor the additional variance σ 2

stat = N1 N2|r1 − r2|2/N2 [2]. In the framework
of our model, this is expected to correspondingly rescale the harmonic constant k2. However,
it should not alter in general the information carried by the EXAFS signal regarding the
anharmonic terms of the absorber–neighbour effective potential. Hence, we expect that our
model of lattice anharmonicities may be sensibly used in its present form also in the presence
of small static disorder.

Concluding, we have developed an easy technique to study interatomic potentials from
single-scattering EXAFS in the quantum regime of atomic vibrations. A full-featured
FORTRAN package containing the relevant programs is made available by the author to
interested scientists upon request.
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