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Abstract

We consider the non-equilibrium dynamics of a chain of classical rotators coupled at its edges to an external reservoir at zero
temperature. We find that the energy is released in a strongly discontinuous fashion, with sudden jumps alternated with long
stretches during which dissipation is extremely weak. The jumps mark the disappearance of strongly localized structures, akin
to the rotobreather solutions of the Hamiltonian model, which act as insulating boundaries of a hot central core. As a result of
this complex kinetics, the ensemble-averaged energy follows a stretched exponential law until a residual pseudo-stationary stat
is attained, where the hot core has reduced to a single localized object.

We give a statistical description of the relaxation pathway and connect it to the properties of return periods of rare events in
correlated time series. This approach sheds some light into the microscopic mechanism underlying the slow dynamics of the
system.

Finally, we show that the stretched exponential law remains unaltered in the presence of isotopic disorder.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction ated with the presence of a complex energy landscape.
Long-living transient states also arise in non-linear sys-
Many physical systems display unusual relaxation tems, where the relaxation properties may be affected
properties, such as slow kinetics in glasgHsor dy- by the emergence of localized vibrations like solitons
namics of biomoleculeR], which are usually associ-  or kinks (see e.q3]). Of special interest is the role of
arecently discovered class of spatially localized, time-
"~ Corresponding author. Tel.: +41 216930513; per_iodic ex_citatio_ns, termed dism_:rete brea’Fr[é]sAt
fax: +41 216930523, variance with their counterparts in the continuum, they
E-mail addressfrancesco.piazza@epfl.ch (F. Piazza). exist under very general conditions and their stabil-
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ity properties have been thoroughly investigdtdin conserved. For lattice models, this amounts to requir-
particular, these objects may easily self-excite under ing that at least one acoustic phonon branch is present
very different physical conditions, as exemplified by inthe harmonic limit. Remarkably, the only known ex-
several numerical and experimental studieslO]. ception is actually the pure nearest-neighbor model,
A typical situation where breathers form sponta- which displays normal transpdfi9]. Since the tran-
neously can be obtained by cooling the lattice bound- sient dynamics is connected to the system’s response,
aries, thus driving energy out of the system. In such con- it is interesting to investigate the energy relaxation and
ditions one is faced with a genuine nonlinear effect: the to compare the peculiarities of each class of models.
system prevents the complete dissipation of the energy As we shall see, there are indeed some qualitative dif-
by storing part of it in a residual long-living breather ferences whose genuine nonlinear origin (excitation of
or multi-breather state. Such a phenomenon was first long-lived localized structures) points at significantly
observed in a model of coupled harmonic oscillators different transport mechanism than those based on the
pinned by an on-site nonlinear forgel,12]and later customary phonon theory.
recovered in models of nonlinearly coupled oscillators ~ The plan of the paper is as follows. The details of the
without on-site interactioil3—15] Nonetheless, the system of coupled classical rotators cooled atits bound-
process of energy dissipation was found to exhibit quite aries are presented in Sectidrwe consider both the
different behaviors in these two classes of models. The cases with and without on-site interaction. The simu-
main mechanism vyielding a power-law decay of the lations reported in Sectio8 indicate that the energy
energy to the residual state has been described in pre+relaxation dynamics displays in both cases a stretched-
vious papers by the authdrs3,14] The stretched ex-  exponential behavior. The statistical interpretation pre-
ponential behaviour, primarily observed in models with sented in SectioArelates such a stretched-exponential
on-site interaction, was then conjectured to represent abehavior with rare-event statistics. To our knowledge,
typical feature for this class of models. Nonetheless, a this correspondence has never been pointed out before
satisfactory understanding of this peculiar decay pro- in the literature. In Sectiod we show that the main
cess was still lacking. features and the interpretation do not change when iso-
The present paper deals with the nonequilibrium topic disorder is introduced.
transient dynamics of a model of coupled classical  Two relevant results of our analysis merit to be
rotators on a one-dimensional lattice. Two different stressed fromthe very beginning. Thefirstone concerns
cases will be considered, the one with pure nearest- the robustness of the phenomenon with respect to dif-
neighbours coupling and the one with an additional ferent variants of the model. The second one amounts
on-site force which is a generalized version of the well- to put such a phenomenon in a different perspective:
known discrete sine-Gordon chain. The quantum ver- the stretched-exponential energy decay process seems
sion of the latter model has been introduced by Fillaux to be common to one-dimensional systems whenever
and collaboratorgl6] to describe inelastic-neutron-  the typical solutions are static breathers, rather than
scattering experiments on methyl-pyridine crystals. As being a peculiarity of models with on-site interac-
this system displays evidence of extremely slow ki- tion.
netics[17], it is particularly interesting to investigate
how cooling and nonlinear effects may affect ther-
malization. Althpugh Iimitgd Fo the classical case, our 5 The model
study may provide some insight on the observed phe-

nomenology. o We study the relaxation toward equilibrium of a
The second motivation comes from the problem of ¢nain of classical rotators coupled on a lattice with

stationary heat transport in this class of models. It has damping acting at its edges. The equations of motion
been recently recognized that low-dimensional lattices ¢

show anomalous properties, namely that transport co-

efficients (e.g. the thermal conductivity) diverje3]. o oL . '

The analysis of several models clarified that this strik- /% = ~¢ SIn®i + K[S'n(¢l+_1 —9)

ing feature occurs generically whenever momentum is + sin@i—1 — ¢i)] — ydilSi1 + 8in] Q)



232 M. Eleftheriou et al. / Physica D 204 (2005) 230-239

where ¢; in the angle variable of theth rotator K = 1.4911, a value that in our units corresponds to
(with i =1,2,...N). The Hamiltonian version of  experimental data on 4-methyl-pyridif5].

(1) is sometimes referred to as the sine-lattice equa-  The general layout of a simulation has been detailed
tions[20,21] We impose free-end boundary conditions previously[13,14] First, an equilibrium microstate is
(91 = P0, dn = dn+1) Since we know from previous  generated by letting the Hamiltonian (microcanonical,
studies that this choice favors spontaneous localiza- i.e. y = 0) system evolve for a sufficiently long tran-
tion [13]. In the following we will also consider the  sient (typically 500 time units). We used the 5th-order
special cas& = 0, where only interactions between symplectic Runge—Kutta—Ny$im algorithm{22]. The
nearest neighbors are present and refer to it as the NNinitial condition for the transient is assigned by setting
model. Furthermore, we will set = 1 for all i and all anglesy; to zero and by drawing velocities at ran-

200
150
1
0.8
100
S 06
=
T 04
50
0.2
4 n 1 1 1 n 1 n
0 ) % 50 100 150 200
(a) t
200
150
1
08
100
5 06
=
g 04
50
0.2
” L 1 1 1 L 1 1
ol LS T A, 0 50 100 150 200
0 e P ER L R W ]
(d) ¢
(c) 150 200

Fig. 1. Relaxation in a chain with = 200, y = 0.1, K = 1.4911, E(0)/N = 5. Upper panel& = 0, lower panels; = 1. (a), (c) Space—time
density plots of the symmetrized site energies. The regions with higher energies are labeled with darker shades of grey. Theiduan sites
reported on the horizontal axis i < N — 1), the vertical axis describes the time evolution in units of sampling times (250 natural time units).
(b), (d) Decay of the normalized lattice energies. The time is expressed in units of the sampling time of the lattice site energies.
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dom from a Gaussian distribution with standard devia-  The two outermost rotobreathers systematically act
tion equal to the square root of twice the energy density as barriers between a central “hot” region of the chain
E(0)/N. The resulting set a; andé¢; is then used as  and its boundaries, thus blocking the energy flow to-
initial condition to integrate Eq.1) with y > 0 with a ward the environment. At some stage, such dynamical
standard 4th-order Runge—Kutta algorithm. The subse- barriers are spontaneously destabilized, thus allowing
quent dissipative dynamics is described in the follow- a portion of the trapped energy to rapidly flow away.
ing section. This process goes on progressively reducing the size
of the central hot patch until a single rotobreather sur-
vives in the bulk. We checked that its motion is periodic
3. The relaxation dynamics by computing the spatiotemporal spectri§ift, ») of
theg;s for several wave-numbeksindeedS (k, ) dis-
A typical simulation is illustrated ifFig. 1 In the plays sharp peaks at the fundamental frequencies plus
left panels we show the space—time contour plots of the Small-amplitude harmonics.

symmetrized site energies defined as The right panels ofig. 1 iII_ustrate how the en-
ergy flows toward the reservoirs. In accordance with
_ 132 1 the above described phenomenology, the energy decay
i = 597 + 5K[2 — cos@i+1 — i : - . .
¢ = 207 + 3Kl Giv1 =) proceeds in a characteristic step-wise fashion, through
— cosg; — ¢i—1)] + G[1 — cosg;]. 2 a series of sudden jumps separated by long, approxi-

mately constant plateaus. The jumps correspond to the
In the right panels we report the time series of the total disappearance of one of the rotobreathers at the bound-
normalized energ¥(¢)/ E(0) for the same simulation  aries of the hotregion. Between two consecutive jumps,
runs. the energy remains approximately constant with very

The energy density contour plot shows that the pro- small fluctuations.

cess is associated with the spontaneous creation of Our simulations show that this kind of scenario per-
long-lived localized objects, characterized by a fast sists also in the casé = 0, thus confirming previous
librating motion of a single rotator almost decou- qualitative resultf23]. Thisfinding is alsoillustrated in
pled from its neighbors. These localized excitations Fig. 2, where we compare the energy decay of four dif-
(rotobreathers) have already been shown to exist in ferent initial conditions for the two kinds of potentials.
the Hamiltonian latticd20]. The appearance of such Inorderto emphasize the slow character of the process,
strongly localized objects is due to the choice of the we rescale the time byp = N/2y, which has been
coupling which is of the same order as the on-site term shown to be the characteristic time scale over which

(see the analysis in rgR0]). edge dissipation occuf&3].
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Fig. 2. Decay of the normalized total energy for four different initial conditions \&i(@)/ N = 5. (a) NN model. (b) Full sine-lattice model.
The lattice size iV = 200. Other parameters ape= 0.1, K = 1.4911.
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Itisinteresting to observe that different initial condi-
tions may give rise to substantially different sequences
of jumps and plateaus, that may be regarded as differ-
entrealizations of a stochastic process. For comparison,
we remark that such sensitivity to the choice of the ini-
tial condition has not been observed in the relaxation
of other non-linear systems, where different stories ap-
proximately resemble each other and display a much
smoother decajl 3,14].

In order to give a more quantitative description of
the relaxation process, it is very interesting to study
the average behavior of the energy deédg. 3shows @
that the latter is characterized by three different scal-
ing regimes. These are best visualized by plotting the
quantity— In(E(¢)/ E(0)) in log—log scale, where a law
of the form exp{+“) shows up as a straight line with
slopeo. We find that both the systems witi = 0
andG = 1 exhibit the same properties. At short times
(t < 10), the energy decays exponentially B§) =
E(0) exp(t/1p). This is what one observes for a har-
monic lattice of the same size, thus signaling that the
non-linear effects are negligible on such a time scale. ; ]
Actually, the same holds for the Fermi—Pasta—Ulam 107 sl sl sl el sl fual Sl
chain [13]. At intermediate timest(~ 10-21p), the (b) 1,
curves undergo a change of slope and slow down to
stretched exponential laws. The knee associated with Fig. 3. Decay of the normalized total energy averaged over a set
such crossover may be due to power-law corrections, of 99 initial conditions. We plot- In(E(r)/ E(0)) in log—log scale

hich K tob t at this st . th with £(0)/N = 5 and for two different lengths of the chain. The thin
which areé known 10 be present a IS Stage In other lines correspond to expft/to] (leftmost curve), and to a stretched

system¢13]. Eventually { > 10ro), the residual quasi-  exponential fit expf-(t/7)°] of the data between the two arrows. (a)
stationary state is reached. In this last stage, a finite NN model,s = 0.59. (b) Full sine-lattice moder = 0.80. Other

fraction of the initial energy is stored in a single ro- parametersarg = 0.1, K = 1.4911.
tobreather and remains constant over the rest of the
simulation.

In Fig. 3we also consider the effects of the lattice
size for the same value of the damping constarh
order to make the comparison, we rescale the time axis
by the size-dependent constagit= N/2y. We see that
the data forN = 100, 200 collapse fairly well for <
7o and follow approximately the same trend at later
times. More marked differences are observed in the first
crossover region. In particular, the range of stretched Taple 1
exponential decay seems to be larger for the longer Dependence of the exponenbn the initial energy density fav =

—In{E(1)/E(0))

—In(E(r)/E(0))

rotobreathers that appear in the system. There are some
results in the literature that support this inference for
the sine-lattice systems (with and without local cou-
pling). In fact, it has been found that the lifetime of an
excitation of energ¥ in a nonlinear system should be
proportional to exp/E [24].

chains. 100 andy = 0.1

To complete this analysis, we checked the depen- E(0)/N G=0 G=1
dence of the exponenton the initial energy. The data 3 0.88 0.93
reported irTable 1show thatr decreases by increasing 5 0.59 0.80
E(0)/N. Accordingly, this suggests that the higher the 7 0.41 0.63

0.40 0.49

initial energy density, the longer is the “lifetime” of the



M. Eleftheriou et al. / Physica D 204 (2005) 230-239 235

Finally, we wish to mention that a similar step- cording to this prescription, our procedure identified
wise decay process yielding an average stretched-approximately the same number of relaxation stages at
exponential law has been found also in two-dimen- each realization. The average value of the number of

sional easy-plane ferromagn{28]. In such case, anni-
hilation of vortex—antivortex pairs is the basic physical
mechanism.

4. Statistical analysis

In this section we attempt to understand better the
origin of the slow kinetics. In particular, we shall focus
on the statistics of plateaus and energy jumps during
energy relaxation. As we already noticed above, the to-

tal energy of the lattice decreases in a stepwise fashion.

plateaus was found to depend primarily on the type of
potential energy of the lattice, while displaying little
sensitivity on the initial energy density. For example,
with N = 160 the average value of the relaxation steps
before reaching the quasi-stationary state in the NN
lattices is(Np) ~ 11+ 1, while almost twice as much
relaxation stages are needed in the presence of on-site
term, (Np) = 26+ 1. We infer that the latter system
could be characterized by a much rougher energy land-
scape.

Since we do not know whether the process at hand
is a stationary one, we first checked how the averages

Between subsequent jumps no appreciable energy ex-depend on time, i.e. on the index In Fig. 4 we see

change with the external world occurs and a plateau is
observed (see agalfig. 2), whose duration may vary
over different time scales. For a single realization of a
given initial condition, we can thus approximate the
curve E(¢) as a piece-wise function through the se-
quencesAE, (energy jump at theth step) andAz,
(duration of thenth plateau):

Np n—1
1-> AE,® (r— > Atm) ,
n=1 m=0

where®(x) is the Heaviside step function. In the spirit

E(?)

£0) ©)

that the averageg\t,) are almost independent of the
order of the relaxatiom for both G = 0 andG # 0.
At least to a first approximation, it is thus legitimate
to assume that the process is a stationary one. It is
important to stress that the above observation rules
out the conjecture that the slow decay kinetics of the
system may be the result of a progressive increase of
the residence times in metastable states visited during
relaxation.

The next step is to investigate the probability dis-
tributions of the lifetimesP(Ar) and energy jumps
P(AE). In Fig. 5 (a) we show the histograms of the

of a statistical description we thus regard each sequenceenergy jumps for the two casés= 0 andG # 0. We

(AEy, Aty) forn =1, ... Np as arealization of a ran-
dom process.

Since all the features of this process are unknown,
we devised a numerical procedure to extract from the
simulations both ther, andA E,, for each realization.
The first task is to locate the beginning and end of each

plateau to a reasonable level of accuracy. We chose to
sample the whole time-series (with an adjustable sam-

pling intervalrs) and look for the times where the energy
differences/(t) = E(r + ts) — E(t) exceed some pre-
assigned threshold valuyé(r)| > ¢. Physically,J(z) is
the energy flux toward the external reservoirs integrated
over a timers.

In order to fix the value of the threshold, we com-
puted the average number of plateéis) as a function
of g. We found that there is always a rangegofalues
where(Np) displays a broad maximum. Therefore, we
systematically chose the value @fin such a way as
to minimize the variation of the number of steps. Ac-

found that the data can be fitted by the empirical nor-
malized function

2.5x10"
2.0x10"

1.5x10° -4 4

(Ar(n))

1.0x10" 4

5.0x10°

0.0

20
Relaxation stage n

Fig. 4. Plot of the average duration of the plateans,) vs. or-
der of the relaxation stagefor G = 0 andG = 1. Parameters are:
E(0)/N =8, N =160 y =0.1.



236 M.

T T T T T T T T T T ]

—log[C(Ar)]

Fig. 5. Statistics of the relaxation process. (a) Normalized his-

tograms of energy jumpa E for G = O (triangles) and; = 1 (cir-
cles) and two-parameter fit with the express{dh (b) Cumulative
distribution of the plateau durations f6r= 0 andG = 1 (symbols).
The dashed lines are pure exponential fits of the porior: Ar*.
The solid lines are stretched exponential fits in the regios- Ar*
(slightly shifted for the sake of clarity). The best —fit values of the
exponeng are: 8 = 0.43(G = 0) andB = 0.52(G = 1). The series
{At}, {AE} have been collected on a total of 99 initial conditions.
Parameters areZ(0)/N = 8, N = 160, threshold = 0.001.

(4)

o AEO ¢ _ @
P(AE) = E (ﬁ) e (AEo/AE) .

Hence, the distribution ofP(AE) is exponentially
small for small values oAE and decays following
a power law of the kind AAE**1 for large values
of the energy jumps. In the case shownFhig. 5,
we founda ~ 1.6, AEg ~ 0.0081(G = 0), anda ~
1.8, AEg ~ 0.0074G = 1).

We turn now to the distribution of platea@®A¢).
In practice, it is a difficult task to construct the his-

Eleftheriou et al. / Physica D 204 (2005) 230-239

span awide range (three decades) yielding exceedingly
large fluctuations. A way around this problemis to con-
struct the cumulative (integrated) distributiof@\¢),
that can be obtained from the numerical series by in-
verting the axes in a simple rank-size plot of the data.
Remarkably, we found that the statistics of the time in-
tervals follows an inherently slow stretched exponen-
tial distribution law. This finding is illustrated iRig.
5(b) for both theG = 0 andG # O cases, where we
plot the quantity— log[C(At)]. More precisely, we see
that the first part of the distribution is a pure exponen-
tial (straight lines with slope one iRig. 5(b), while

the tails follow a stretched exponential law. This means
that the probability distributiorP(A¢) (the derivative

of C(Ar)) is

exp[—f—f] At K Ar*

exp[— (%)ﬂ} Af > Ar*

up to power-law corrections. The stretched exponen-
tial portion of the curves sets in at times longer than
Ar* ~ 10°, which is systematically below the aver-
age, approximately constant duration of each relaxation
stage. This observation suggests that the statistics of
the plateau duration is dominated by the stretched ex-
ponential tail. Such intrinsically fat-tailed distribution

of a series of relaxation events is thus directly related
to the slow energy decay.

In general, the origin of a stretched exponential
relaxation is traced back to a superposition of many
different time scales, distributed according to given
weights[12,26] In our context, however, it is not clear
how to identify such a hierarchical set of degrees of
freedom, that would be responsible for the observed
slow kinetics. It is thus legitimate to explore the pos-
sibility of alternative explanations. An interesting per-
spective has been presented by Bunde et al. in a re-
cent papef27], in connection with the statistics of
extreme events. According to the authors, a stretched
exponential law may rule the distribution of intervals
between consecutive rare events provided the origi-
nal time series displays power-law correlation. More
precisely, they consider a stochastic time sexigs
whose autocorrelation decays by constructionds
with 0 < y < 1. In this context, rare events are defined
by the conditionx(r) > ¢, whereq is a pre-assigned

P(AL) o (5)

tograms from the measured time series, since the latterthreshold. Their numerical analysis shows that the dis-
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tribution of the time intervalsAr separating extreme  P(AE) andP(Ar). We have then computed the aver-
events decays as exppr?'], with y ~ y. age over such a set of realizations according to(By.

It appears natural to extend this kind of description where Ny can be fixed close to its empirical average
to the process of energy release in our system: each envalue. We found that, by using a distribution of the
ergy stepA E, marking the collapse of a rotobreather, form (4) and a stretched exponential law for tA@Ar),
can beregarded as a “rare event” (sharp peak) in the se-we could recover a stretched exponential decay of the
ries of energy flux/(¢) (seeFig. 2). In order to validate  average energy by just tuning at most two of the free
this analogy, we checked that long-range correlations fitting parameters\ Eo, «, t2, 8. For example, by fix-
do exist in the serieg(r) (Fig. 6). Within the statistical ing Np = 15, AEg = 0.0081 andx = 1.7 in the case
fluctuations, the autocorrelation function &fr) de- G =0, E(0)/N = 8, the best-fit value of the exponent
creases approximately as an inverse power law, whoseo from the Monte Carlo simulatiors(= 0.42) is found
exponent is smaller than one (0.7). This value is of to bein very good agreement with the one directly fitted
the same order of the exponents reportefim 5(b) on the simulation data (sdable 1.

As a matter of fact, the statistical fluctuations prevent

us from obtaining a better estimate. Furthermore, the

distribution of plateau durations are only asymptoti- 5. The effect of isotopic disorder

cally stretched-exponential, thus introducing a further

source of error. Therefore, to make our analogy more  In this section we investigate the role of disorder
quantitative further numerical work should be carried on the relaxation dynamics of the sine-lattice system.
out. More specifically, we consider modél) with ran-

We note that a similar analysis of the correlations in domly distributed momenta of inertia, that is either
the series of the energy flux in the Fermi—Pasta—Ulam I; = R (with probability p) or I; = 1 (with probability
chain does not yield a power-law decay. In fact, the au- 1 — p). This choice corresponds to a 4-methyl-pyridine
tocorrelation function of/(r) vanishes exponentially.  quasi-1D chain with random insertions of deuterated
This is consistent with the absence of stretched expo- methyl groups, that has been studied experimentally by
nential relaxation in this modg¢L3], thus suggesting  Fillaux and co-worker$16,28]. Hence, we fixR = 2,
thatthe microscopic mechanisms operating in the chain that corresponds to the ratio of momenta of inertia re-
of coupled rotators are substantially different. ported in ref[16].

In order to provide further support to our interpre- The motivation of this analysis is twofold. First, the
tation, we have set up a Monte Carlo procedure which joint effect of non-linearity and disorder on the non-
generates stochastic series M energy jumps and  equilibrium properties of discrete lattices are far from
plateaus as in Eq3) according to given distributions  being satisfactorily understod@9]. Second, the dis-
ordered sine-lattice model has been used to interpret
data frominelastic neutron scattering experimgh@s.
More specifically, it has been shown that the effects of
isotopic disorder on the dynamics rapidly disappear
upon increasing the temperature. This observation has
been explained quantum-mechanically as a transition
to the classical regime, thus suggesting that the effects
of disorder should be negligible in the latter case. By
the same token, one may expect that the relaxation dy-
namics in the classical system should display weak sen-
sitivity on the concentration of impurities.

Our simulations confirm the above hypothesis. In
Fig. 7we show that the energy decay is hardly affected
Fig. 6. Autocorrelation of the time serigé) averaged over 99 initial by the valge op. Remarkf_ibly’ th_e curves almost over-
conditions forV = 160, y = 0.1, E(0)/N = 8. Thedashedlineisan  lap and display both a wide region of stretched expo-
inverse power law with exponent 0.7. nential behavior and the saturation to a residual state.

Autocorrelation

time lag
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T T T factors: the energy of the rotobreathers and the proba-
bility that in a given time interval the hot region may
produce an excitation capable of annihilating them.
In our numerical analysis we can just observe the ef-
fects of this complicated interaction, which results in a
stretched-exponential law for the energy decay.

It may be argued that the mechanism of energy trap-
ping must be rather peculiar to the 1D nature of the
model. Indeed, we expect that in higher-dimensional
1 ] lattices this phenomenon may not occur at all, and that

10 10 10 10 the characteristic stepwise decay of energy could be re-
placed by a smoother decrease. Some preliminary sim-
Fig. 7. Decay of the normalized total energy in a chain with isotopic  Ulations of a 2D arrays of rotators confirm this idea.
disorder. We plot- In(E(r)/ E(0)) in log—log scale withE(0)/N = In particular, we observe that the residual state resem-
4.6 and for three different values of the concentratioThe data bles the one of the 2D Fermi—Pasta—Ulam model—a
have been averaged over a set of 30 initial conditions. Parameters areqg|lection of static breathers randomly arranged on the
N=106=1y=01 lattice [14].

Altogether, we have seen that the possibility of eas-
Accordingly, the estimated exponents are fairly insen- jly exciting long-lived rotobreathers is responsible for
sitive to the concentration of impurities. Moreover, we  the slow kinetics. It should be recalled that these very
checked thatthe energy whichis leftin the residual state same objects have been invoked to explain the nor-
is approximately independent pf with deviations of ~ mal conduction in the NN modéLL9]. In this sense,
at most 10% from the average. our results complement those observations and con-
firm the essential role of nonlinear excitations in the
out-of-equilibrium properties of many-body systems.

—In(E(£)/E(0))

6. Conclusions
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