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Abstract

We consider the non-equilibrium dynamics of a chain of classical rotators coupled at its edges to an external reservoir at zero
temperature. We find that the energy is released in a strongly discontinuous fashion, with sudden jumps alternated with long
stretches during which dissipation is extremely weak. The jumps mark the disappearance of strongly localized structures, akin
to the rotobreather solutions of the Hamiltonian model, which act as insulating boundaries of a hot central core. As a result of
this complex kinetics, the ensemble-averaged energy follows a stretched exponential law until a residual pseudo-stationary state
is attained, where the hot core has reduced to a single localized object.

We give a statistical description of the relaxation pathway and connect it to the properties of return periods of rare events in
correlated time series. This approach sheds some light into the microscopic mechanism underlying the slow dynamics of the
s
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Finally, we show that the stretched exponential law remains unaltered in the presence of isotopic disorder.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Many physical systems display unusual relaxation
roperties, such as slow kinetics in glasses[1] or dy-
amics of biomolecules[2], which are usually associ-
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ated with the presence of a complex energy landsc
Long-living transient states also arise in non-linear
tems, where the relaxation properties may be affe
by the emergence of localized vibrations like solit
or kinks (see e.g.[3]). Of special interest is the role
a recently discovered class of spatially localized, ti
periodic excitations, termed discrete breathers[4]. At
variance with their counterparts in the continuum, t
exist under very general conditions and their sta
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ity properties have been thoroughly investigated[4]. In
particular, these objects may easily self-excite under
very different physical conditions, as exemplified by
several numerical and experimental studies[4–10].

A typical situation where breathers form sponta-
neously can be obtained by cooling the lattice bound-
aries, thus driving energy out of the system. In such con-
ditions one is faced with a genuine nonlinear effect: the
system prevents the complete dissipation of the energy
by storing part of it in a residual long-living breather
or multi-breather state. Such a phenomenon was first
observed in a model of coupled harmonic oscillators
pinned by an on-site nonlinear force[11,12]and later
recovered in models of nonlinearly coupled oscillators
without on-site interaction[13–15]. Nonetheless, the
process of energy dissipation was found to exhibit quite
different behaviors in these two classes of models. The
main mechanism yielding a power-law decay of the
energy to the residual state has been described in pre-
vious papers by the authors[13,14]. The stretched ex-
ponential behaviour, primarily observed in models with
on-site interaction, was then conjectured to represent a
typical feature for this class of models. Nonetheless, a
satisfactory understanding of this peculiar decay pro-
cess was still lacking.

The present paper deals with the nonequilibrium
transient dynamics of a model of coupled classical
rotators on a one-dimensional lattice. Two different
cases will be considered, the one with pure nearest-
neighbours coupling and the one with an additional
o ell-
k ver-
s aux
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s . As
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s phe-
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conserved. For lattice models, this amounts to requir-
ing that at least one acoustic phonon branch is present
in the harmonic limit. Remarkably, the only known ex-
ception is actually the pure nearest-neighbor model,
which displays normal transport[19]. Since the tran-
sient dynamics is connected to the system’s response,
it is interesting to investigate the energy relaxation and
to compare the peculiarities of each class of models.
As we shall see, there are indeed some qualitative dif-
ferences whose genuine nonlinear origin (excitation of
long-lived localized structures) points at significantly
different transport mechanism than those based on the
customary phonon theory.

The plan of the paper is as follows. The details of the
system of coupled classical rotators cooled at its bound-
aries are presented in Section2: we consider both the
cases with and without on-site interaction. The simu-
lations reported in Section3 indicate that the energy
relaxation dynamics displays in both cases a stretched-
exponential behavior. The statistical interpretation pre-
sented in Section4relates such a stretched-exponential
behavior with rare-event statistics. To our knowledge,
this correspondence has never been pointed out before
in the literature. In Section5 we show that the main
features and the interpretation do not change when iso-
topic disorder is introduced.

Two relevant results of our analysis merit to be
stressed from the very beginning. The first one concerns
the robustness of the phenomenon with respect to dif-
ferent variants of the model. The second one amounts
t tive:
t eems
t ever
t than
b ac-
t

2
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n-site force which is a generalized version of the w
nown discrete sine-Gordon chain. The quantum
ion of the latter model has been introduced by Fill
nd collaborators[16] to describe inelastic-neutro
cattering experiments on methyl-pyridine crystals
his system displays evidence of extremely slow
etics[17], it is particularly interesting to investiga
ow cooling and nonlinear effects may affect th
alization. Although limited to the classical case,

tudy may provide some insight on the observed
omenology.

The second motivation comes from the problem
tationary heat transport in this class of models. It
een recently recognized that low-dimensional latt
how anomalous properties, namely that transpor
fficients (e.g. the thermal conductivity) diverge[18].
he analysis of several models clarified that this s

ng feature occurs generically whenever momentu
o put such a phenomenon in a different perspec
he stretched-exponential energy decay process s
o be common to one-dimensional systems when
he typical solutions are static breathers, rather
eing a peculiarity of models with on-site inter

ion.

. The model

We study the relaxation toward equilibrium o
hain of classical rotators coupled on a lattice w
amping acting at its edges. The equations of mo
re

iφ̈i = −G sinφi + K[sin(φi+1 − φi)

+ sin(φi−1 − φi)] − γφ̇i[δi,1 + δi,N ] (1)
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where φi in the angle variable of theith rotator
(with i = 1,2, . . . N). The Hamiltonian version of
(1) is sometimes referred to as the sine-lattice equa-
tions[20,21]. We impose free-end boundary conditions
(φ1 = φ0, φN = φN+1) since we know from previous
studies that this choice favors spontaneous localiza-
tion [13]. In the following we will also consider the
special caseG = 0, where only interactions between
nearest neighbors are present and refer to it as the NN
model. Furthermore, we will setIi = 1 for all i and

K = 1.4911, a value that in our units corresponds to
experimental data on 4-methyl-pyridine[16].

The general layout of a simulation has been detailed
previously[13,14]. First, an equilibrium microstate is
generated by letting the Hamiltonian (microcanonical,
i.e. γ = 0) system evolve for a sufficiently long tran-
sient (typically 500 time units). We used the 5th-order
symplectic Runge–Kutta–Nyström algorithm[22]. The
initial condition for the transient is assigned by setting
all anglesφi to zero and by drawing velocities at ran-

F
d
r
(

ig. 1. Relaxation in a chain withN = 200, γ = 0.1,K = 1.4911, E(0)/N
ensity plots of the symmetrized site energies. The regions with high
eported on the horizontal axis (2≤ i ≤ N − 1), the vertical axis describe
b), (d) Decay of the normalized lattice energies. The time is expresse
= 5. Upper panelsG = 0, lower panelsG = 1. (a), (c) Space–time
er energies are labeled with darker shades of grey. The chain sitesi are

s the time evolution in units of sampling times (250 natural time units).
d in units of the sampling time of the lattice site energies.



M. Eleftheriou et al. / Physica D 204 (2005) 230–239 233

dom from a Gaussian distribution with standard devia-
tion equal to the square root of twice the energy density
E(0)/N. The resulting set ofφi andφ̇i is then used as
initial condition to integrate Eq.(1) with γ > 0 with a
standard 4th-order Runge–Kutta algorithm. The subse-
quent dissipative dynamics is described in the follow-
ing section.

3. The relaxation dynamics

A typical simulation is illustrated inFig. 1. In the
left panels we show the space–time contour plots of the
symmetrized site energiesei, defined as

ei = 1
2φ̇

2
i + 1

2K[2 − cos(φi+1 − φi)

− cos(φi − φi−1)] + G[1 − cosφi]. (2)

In the right panels we report the time series of the total
normalized energyE(t)/E(0) for the same simulation
runs.

The energy density contour plot shows that the pro-
cess is associated with the spontaneous creation of
long-lived localized objects, characterized by a fast
librating motion of a single rotator almost decou-
pled from its neighbors. These localized excitations
(rotobreathers) have already been shown to exist in
the Hamiltonian lattice[20]. The appearance of such
strongly localized objects is due to the choice of the
c erm
(

The two outermost rotobreathers systematically act
as barriers between a central “hot” region of the chain
and its boundaries, thus blocking the energy flow to-
ward the environment. At some stage, such dynamical
barriers are spontaneously destabilized, thus allowing
a portion of the trapped energy to rapidly flow away.
This process goes on progressively reducing the size
of the central hot patch until a single rotobreather sur-
vives in the bulk. We checked that its motion is periodic
by computing the spatiotemporal spectrumS(k, ω) of
theφis for several wave-numbersk. IndeedS(k, ω) dis-
plays sharp peaks at the fundamental frequencies plus
small-amplitude harmonics.

The right panels ofFig. 1 illustrate how the en-
ergy flows toward the reservoirs. In accordance with
the above described phenomenology, the energy decay
proceeds in a characteristic step-wise fashion, through
a series of sudden jumps separated by long, approxi-
mately constant plateaus. The jumps correspond to the
disappearance of one of the rotobreathers at the bound-
aries of the hot region. Between two consecutive jumps,
the energy remains approximately constant with very
small fluctuations.

Our simulations show that this kind of scenario per-
sists also in the caseG = 0, thus confirming previous
qualitative results[23]. This finding is also illustrated in
Fig. 2, where we compare the energy decay of four dif-
ferent initial conditions for the two kinds of potentials.
In order to emphasize the slow character of the process,
we rescale the time byτ0 = N/2γ, which has been
s hich
e

F initial c el.
T 911.
oupling which is of the same order as the on-site t
see the analysis in ref.[20]).

ig. 2. Decay of the normalized total energy for four different
he lattice size isN = 200. Other parameters areγ = 0.1,K = 1.4
hown to be the characteristic time scale over w
dge dissipation occurs[13].

onditions withE(0)/N = 5. (a) NN model. (b) Full sine-lattice mod
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It is interesting to observe that different initial condi-
tions may give rise to substantially different sequences
of jumps and plateaus, that may be regarded as differ-
ent realizations of a stochastic process. For comparison,
we remark that such sensitivity to the choice of the ini-
tial condition has not been observed in the relaxation
of other non-linear systems, where different stories ap-
proximately resemble each other and display a much
smoother decay[13,14].

In order to give a more quantitative description of
the relaxation process, it is very interesting to study
the average behavior of the energy decay.Fig. 3shows
that the latter is characterized by three different scal-
ing regimes. These are best visualized by plotting the
quantity− ln〈E(t)/E(0)〉 in log–log scale, where a law
of the form exp(−tσ) shows up as a straight line with
slopeσ. We find that both the systems withG = 0
andG = 1 exhibit the same properties. At short times
(t � τ0), the energy decays exponentially asE(t) =
E(0) exp(−t/τ0). This is what one observes for a har-
monic lattice of the same size, thus signaling that the
non-linear effects are negligible on such a time scale.
Actually, the same holds for the Fermi–Pasta–Ulam
chain [13]. At intermediate times (t 	 10−2τ0), the
curves undergo a change of slope and slow down to
stretched exponential laws. The knee associated with
such crossover may be due to power-law corrections,
which are known to be present at this stage in other
systems[13]. Eventually (t > 10τ0), the residual quasi-
stationary state is reached. In this last stage, a finite
f ro-
t f the
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s
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t
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t first
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Fig. 3. Decay of the normalized total energy averaged over a set
of 99 initial conditions. We plot− ln〈E(t)/E(0)〉 in log–log scale
withE(0)/N = 5 and for two different lengths of the chain. The thin
lines correspond to exp[−t/τ0] (leftmost curve), and to a stretched
exponential fit exp[−(t/τ)σ ] of the data between the two arrows. (a)
NN model,σ = 0.59. (b) Full sine-lattice modelσ = 0.80. Other
parameters areγ = 0.1,K = 1.4911.

rotobreathers that appear in the system. There are some
results in the literature that support this inference for
the sine-lattice systems (with and without local cou-
pling). In fact, it has been found that the lifetime of an
excitation of energyE in a nonlinear system should be
proportional to exp

√
E [24].

Table 1
Dependence of the exponentσ on the initial energy density forN =
100 andγ = 0.1

E(0)/N G = 0 G = 1

3 0.88 0.93
5 0.59 0.80
7 0.41 0.63
8 0.40 0.49
raction of the initial energy is stored in a single
obreather and remains constant over the rest o
imulation.

In Fig. 3 we also consider the effects of the latt
ize for the same value of the damping constantγ. In
rder to make the comparison, we rescale the time
y the size-dependent constantτ0 = N/2γ. We see tha

he data forN = 100,200 collapse fairly well fort <
0 and follow approximately the same trend at la
imes. More marked differences are observed in the
rossover region. In particular, the range of stretc
xponential decay seems to be larger for the lo
hains.

To complete this analysis, we checked the de
ence of the exponentσ on the initial energy. The da
eported inTable 1show thatσ decreases by increasi
(0)/N. Accordingly, this suggests that the higher

nitial energy density, the longer is the “lifetime” of t
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Finally, we wish to mention that a similar step-
wise decay process yielding an average stretched-
exponential law has been found also in two-dimen-
sional easy-plane ferromagnets[25]. In such case, anni-
hilation of vortex–antivortex pairs is the basic physical
mechanism.

4. Statistical analysis

In this section we attempt to understand better the
origin of the slow kinetics. In particular, we shall focus
on the statistics of plateaus and energy jumps during
energy relaxation. As we already noticed above, the to-
tal energy of the lattice decreases in a stepwise fashion.
Between subsequent jumps no appreciable energy ex-
change with the external world occurs and a plateau is
observed (see againFig. 2), whose duration may vary
over different time scales. For a single realization of a
given initial condition, we can thus approximate the
curveE(t) as a piece-wise function through the se-
quences�En (energy jump at thenth step) and�tn
(duration of thenth plateau):

E(t)

E(0)
= 1 −

Np∑
n=1

�EnΘ

(
t −

n−1∑
m=0

�tm

)
, (3)

whereΘ(x) is the Heaviside step function. In the spirit
of a statistical description we thus regard each sequence
(�En,�tn) for n = 1, . . . Np as a realization of a ran-
d

wn,
w the
s .
T ach
p se to
s am-
p rgy
d e-
a
t ated
o

m-
p
o
w we
s s
t Ac-

cording to this prescription, our procedure identified
approximately the same number of relaxation stages at
each realization. The average value of the number of
plateaus was found to depend primarily on the type of
potential energy of the lattice, while displaying little
sensitivity on the initial energy density. For example,
with N = 160 the average value of the relaxation steps
before reaching the quasi-stationary state in the NN
lattices is〈Np〉 ≈ 11± 1, while almost twice as much
relaxation stages are needed in the presence of on-site
term, 〈Np〉 ≈ 26± 1. We infer that the latter system
could be characterized by a much rougher energy land-
scape.

Since we do not know whether the process at hand
is a stationary one, we first checked how the averages
depend on time, i.e. on the indexn. In Fig. 4 we see
that the averages〈�tn〉 are almost independent of the
order of the relaxationn for bothG = 0 andG �= 0.
At least to a first approximation, it is thus legitimate
to assume that the process is a stationary one. It is
important to stress that the above observation rules
out the conjecture that the slow decay kinetics of the
system may be the result of a progressive increase of
the residence times in metastable states visited during
relaxation.

The next step is to investigate the probability dis-
tributions of the lifetimesP(�t) and energy jumps
P(�E). In Fig. 5 (a) we show the histograms of the
energy jumps for the two casesG = 0 andG �= 0. We
found that the data can be fitted by the empirical nor-

e:
om process.
Since all the features of this process are unkno

e devised a numerical procedure to extract from
imulations both the�tn and�En for each realization
he first task is to locate the beginning and end of e
lateau to a reasonable level of accuracy. We cho
ample the whole time-series (with an adjustable s
ling intervalts) and look for the times where the ene
ifferencesJ(t) = E(t + ts) − E(t) exceed some pr
ssigned threshold value|J(t)| > q. Physically,J(t) is

he energy flux toward the external reservoirs integr
ver a timets.

In order to fix the value of the threshold, we co
uted the average number of plateaus〈Np〉 as a function
f q. We found that there is always a range ofq values
here〈Np〉 displays a broad maximum. Therefore,
ystematically chose the value ofq in such a way a
o minimize the variation of the number of steps.
malized function

Fig. 4. Plot of the average duration of the plateaus〈�tn〉 vs. or-
der of the relaxation stagen for G = 0 andG = 1. Parameters ar
E(0)/N = 8, N = 160, γ = 0.1.
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Fig. 5. Statistics of the relaxation process. (a) Normalized his-
tograms of energy jumps�E for G = 0 (triangles) andG = 1 (cir-
cles) and two-parameter fit with the expression(4). (b) Cumulative
distribution of the plateau durations forG = 0 andG = 1 (symbols).
The dashed lines are pure exponential fits of the portion�t < �t∗.
The solid lines are stretched exponential fits in the region�t > �t∗
(slightly shifted for the sake of clarity). The best –fit values of the
exponentβ are:β = 0.43(G = 0) andβ = 0.52(G = 1). The series
{�t}, {�E} have been collected on a total of 99 initial conditions.
Parameters are:E(0)/N = 8, N = 160, thresholdq = 0.001.

P(�E) = α

�E

(
�E0

�E

)α
e−(�E0/�E)α . (4)

Hence, the distribution ofP(�E) is exponentially
small for small values of�E and decays following
a power law of the kind 1/�Eα+1 for large values
of the energy jumps. In the case shown inFig. 5,
we foundα ≈ 1.6,�E0 ≈ 0.0081(G = 0), andα ≈
1.8,�E0 ≈ 0.0074(G = 1).

We turn now to the distribution of plateausP(�t).
In practice, it is a difficult task to construct the his-
tograms from the measured time series, since the latter

span a wide range (three decades) yielding exceedingly
large fluctuations. A way around this problem is to con-
struct the cumulative (integrated) distributionsC(�t),
that can be obtained from the numerical series by in-
verting the axes in a simple rank–size plot of the data.
Remarkably, we found that the statistics of the time in-
tervals follows an inherently slow stretched exponen-
tial distribution law. This finding is illustrated inFig.
5(b) for both theG = 0 andG �= 0 cases, where we
plot the quantity− log[C(�t)]. More precisely, we see
that the first part of the distribution is a pure exponen-
tial (straight lines with slope one inFig. 5(b)), while
the tails follow a stretched exponential law. This means
that the probability distributionP(�t) (the derivative
of C(�t)) is

P(�t) ∝




exp
[
−�t

τ1

]
�t � �t∗

exp

[
−
(
�t
τ2

)β]
�t � �t∗

(5)

up to power-law corrections. The stretched exponen-
tial portion of the curves sets in at times longer than
�t∗ ≈ 103, which is systematically below the aver-
age, approximately constant duration of each relaxation
stage. This observation suggests that the statistics of
the plateau duration is dominated by the stretched ex-
ponential tail. Such intrinsically fat-tailed distribution
of a series of relaxation events is thus directly related
to the slow energy decay.

In general, the origin of a stretched exponential
r any
d ven
w ar
h s of
f rved
s os-
s er-
s a re-
c of
e ched
e als
b rigi-
n ore
p
w
w ed
b d
t dis-
elaxation is traced back to a superposition of m
ifferent time scales, distributed according to gi
eights[12,26]. In our context, however, it is not cle
ow to identify such a hierarchical set of degree

reedom, that would be responsible for the obse
low kinetics. It is thus legitimate to explore the p
ibility of alternative explanations. An interesting p
pective has been presented by Bunde et al. in
ent paper[27], in connection with the statistics
xtreme events. According to the authors, a stret
xponential law may rule the distribution of interv
etween consecutive rare events provided the o
al time series displays power-law correlation. M
recisely, they consider a stochastic time seriesx(t),
hose autocorrelation decays by construction ast−γ

ith 0 < γ < 1. In this context, rare events are defin
y the conditionx(t) > q, whereq is a pre-assigne

hreshold. Their numerical analysis shows that the
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tribution of the time intervals�t separating extreme
events decays as exp[−�tγ

′
], with γ ′ ≈ γ.

It appears natural to extend this kind of description
to the process of energy release in our system: each en-
ergy step�E, marking the collapse of a rotobreather,
can be regarded as a “rare event ” (sharp peak) in the se-
ries of energy fluxJ(t) (seeFig. 2). In order to validate
this analogy, we checked that long-range correlations
do exist in the seriesJ(t) (Fig. 6). Within the statistical
fluctuations, the autocorrelation function ofJ(t) de-
creases approximately as an inverse power law, whose
exponent is smaller than one (≈ 0.7). This value is of
the same order of the exponents reported inFig. 5(b).
As a matter of fact, the statistical fluctuations prevent
us from obtaining a better estimate. Furthermore, the
distribution of plateau durations are only asymptoti-
cally stretched-exponential, thus introducing a further
source of error. Therefore, to make our analogy more
quantitative further numerical work should be carried
out.

We note that a similar analysis of the correlations in
the series of the energy flux in the Fermi–Pasta–Ulam
chain does not yield a power-law decay. In fact, the au-
tocorrelation function ofJ(t) vanishes exponentially.
This is consistent with the absence of stretched expo-
nential relaxation in this model[13], thus suggesting
that the microscopic mechanisms operating in the chain
of coupled rotators are substantially different.

In order to provide further support to our interpre-
tation, we have set up a Monte Carlo procedure which

d
s

l
n

P(�E) andP(�t). We have then computed the aver-
age over such a set of realizations according to Eq.(3),
whereNp can be fixed close to its empirical average
value. We found that, by using a distribution of the
form (4) and a stretched exponential law for theP(�t),
we could recover a stretched exponential decay of the
average energy by just tuning at most two of the free
fitting parameters�E0, α, τ2, β. For example, by fix-
ing Np = 15,�E0 = 0.0081 andα = 1.7 in the case
G = 0, E(0)/N = 8, the best-fit value of the exponent
σ from the Monte Carlo simulation (σ = 0.42) is found
to be in very good agreement with the one directly fitted
on the simulation data (seeTable 1).

5. The effect of isotopic disorder

In this section we investigate the role of disorder
on the relaxation dynamics of the sine-lattice system.
More specifically, we consider model(1) with ran-
domly distributed momenta of inertia, that is either
Ii = R (with probabilityρ) or Ii = 1 (with probability
1 − ρ). This choice corresponds to a 4-methyl-pyridine
quasi-1D chain with random insertions of deuterated
methyl groups, that has been studied experimentally by
Fillaux and co-workers[16,28]. Hence, we fixR = 2,
that corresponds to the ratio of momenta of inertia re-
ported in ref.[16].

The motivation of this analysis is twofold. First, the
joint effect of non-linearity and disorder on the non-
e om
b -
o rpret
d
M ts of
i ear
u has
b ition
t fects
o . By
t n dy-
n sen-
s

. In
F cted
b er-
l po-
n tate.
quilibrium properties of discrete lattices are far fr
eing satisfactorily understood[29]. Second, the dis
rdered sine-lattice model has been used to inte
ata from inelastic neutron scattering experiments[16].
ore specifically, it has been shown that the effec

sotopic disorder on the dynamics rapidly disapp
pon increasing the temperature. This observation
een explained quantum-mechanically as a trans

o the classical regime, thus suggesting that the ef
f disorder should be negligible in the latter case

he same token, one may expect that the relaxatio
amics in the classical system should display weak
itivity on the concentration of impurities.

Our simulations confirm the above hypothesis
ig. 7we show that the energy decay is hardly affe
y the value ofρ. Remarkably, the curves almost ov

ap and display both a wide region of stretched ex
ential behavior and the saturation to a residual s
generates stochastic series ofNp energy jumps an
plateaus as in Eq.(3) according to given distribution

Fig. 6. Autocorrelation of the time seriesJ(t) averaged over 99 initia
conditions forN = 160, γ = 0.1, E(0)/N = 8. The dashed line is a
inverse power law with exponent 0.7.
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Fig. 7. Decay of the normalized total energy in a chain with isotopic
disorder. We plot− ln〈E(t)/E(0)〉 in log–log scale withE(0)/N =
4.6 and for three different values of the concentrationρ. The data
have been averaged over a set of 30 initial conditions. Parameters are
N = 100,G = 1, γ = 0.1.

Accordingly, the estimated exponents are fairly insen-
sitive to the concentration of impurities. Moreover, we
checked that the energy which is left in the residual state
is approximately independent ofρ, with deviations of
at most 10% from the average.

6. Conclusions

The study of the energy relaxation in models of
classical rotators has allowed us to identify a possi-
ble mechanism yielding the stretched exponential be-
havior, observed also in other one-dimensional mod-
els [11,12,29]. The static nature of localized breather
states, which are spontaneously formed upon cooling
the lattice from its boundaries, is one of the basic in-
gredients. Indeed, static localized solutions can form
“dynamical barriers” that are almost decoupled from
their neighbours and thus segregate an internal hot lat-
tice region from the cooled boundaries. The energy ini-
tially fed into the system remains trapped there, until
the rotobreathers are abruptly destroyed. It may be ar-
gued that this sudden death must originate from a suf-
ficiently large resonant fluctuation emerging from the
hot core. In our approach, we have employed a sta-
tistical description, which does not make any explicit
reference to specific dynamical mechanisms.

Accordingly, we showed that the destruction of
boundary rotobreathers may be regarded as a “rare
e ain

factors: the energy of the rotobreathers and the proba-
bility that in a given time interval the hot region may
produce an excitation capable of annihilating them.
In our numerical analysis we can just observe the ef-
fects of this complicated interaction, which results in a
stretched-exponential law for the energy decay.

It may be argued that the mechanism of energy trap-
ping must be rather peculiar to the 1D nature of the
model. Indeed, we expect that in higher-dimensional
lattices this phenomenon may not occur at all, and that
the characteristic stepwise decay of energy could be re-
placed by a smoother decrease. Some preliminary sim-
ulations of a 2D arrays of rotators confirm this idea.
In particular, we observe that the residual state resem-
bles the one of the 2D Fermi–Pasta–Ulam model—a
collection of static breathers randomly arranged on the
lattice[14].

Altogether, we have seen that the possibility of eas-
ily exciting long-lived rotobreathers is responsible for
the slow kinetics. It should be recalled that these very
same objects have been invoked to explain the nor-
mal conduction in the NN model[19]. In this sense,
our results complement those observations and con-
firm the essential role of nonlinear excitations in the
out-of-equilibrium properties of many-body systems.
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