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Absence of thermalization for systems with long-range interactions coupled to a thermal bath
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We investigate the dynamics of a small long-range interacting system, in contact with a large long-range
thermal bath. Our analysis reveals the existence of striking anomalies in the energy flux between the bath and
the system. In particular, we find that the evolution of the system is not influenced by the kinetic temperature
of the bath, as opposed to what happens for short-range collisional systems. As a consequence, the system may
get hotter also when its initial temperature is larger than the bath temperature. This observation is explained
quantitatively in the framework of the collisionless Vlasov description of toy models with long-range interactions
and shown to be valid whenever the Vlasov picture applies, from cosmology to plasma physics..
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I. INTRODUCTION

In the recent past, several theoretical and experimental
studies have been devoted to exploring dynamical and thermo-
dynamic properties of long-range interacting systems (LRISs)
[1]. In such systems, energy is not additive. This fact, together
with a possible break of ergodicity, is at the origin of a large
gallery of peculiar thermodynamic behaviors: The specific heat
of LRISs can be negative in the microcanonical ensemble [2],
and temperature jumps may appear at microcanonical first-
order phase transitions. These systems also display remarkable
nonequilibrium dynamical features. For example, it is well
known that under particular conditions isolated LRISs may
get trapped in long-lasting quasistationary states (QSSs),
whose lifetime diverges with system size [3,4]. Importantly,
when performing the limit N → ∞ (N being the number
of particles), the system remains permanently confined in
QSSs [5,6]. As a consequence, for large long-range interacting
systems, QSSs are directly accessible through experiment
[7–9].

Until today, the large majority of studies aimed at elucidat-
ing the fundamental properties of LRISs have been carried out
on isolated systems, i.e., under the assumption that the system
properties are not influenced by the external environment.
However, recognizing whether a nonequilibrium QSS is stable
to an external perturbation is of great importance [10], from
both a theoretical and an experimental point of view. A
related fundamental problem concerns the mechanism through
which a LRIS exchanges energy with the surroundings. These
questions epitomize the main motivation of the present work.

The nonequilibrium dynamical properties of the LRISs in
contact with a thermal bath have been studied for the first time
only recently [11–13]. As a possible realization of thermal
bath, these authors considered a large Hamiltonian system
with nearest-neighbor interactions, coupled to a fraction of the
spins in the system. They concluded that the coupling with

the bath introduces a new time scale in the evolution of the
system: the weaker the coupling strength, the longer the system
remains trapped in a QSS before relaxing to equilibrium.

At variance with the above studies, we investigate here the
dynamics of a LRIS in long-range contact with an additional
large system trapped in a QSS. This interaction scheme can
be regarded as a more clear-sighted realization of a thermal
bath for a LRIS, opening the way to applications in diverse
fields such as cosmology and plasma physics. For example,
one may think of the collisionless mixing between plasmas, or
the operation of magnetic fusion devices for energy production
or the merging of globular clusters to a self-gravitating galaxy.
Furthermore, it is also tempting to speculate that our simple
scheme could be somehow relevant for the self-consistent
interaction between dark (the bath) and baryonic (the system)
matter in the universe (see, e.g., Ref. [14]).

II. THE LONG-RANGE THERMAL BATH
AND THE CANONICAL QSS

As a reference case, we have selected the Hamiltonian
mean field (HMF) model [15], widely regarded as a prototype
LRI system. The HMF model describes the one-dimensional
motion of N rotators coupled through a mean field cosine-like
interaction,

H = 1

2

N∑
j=1

p2
j + 1

2N

N∑
i,j=1

[1 − cos(θj − θi)], (1)

where θj is the orientation of the j th rotator and pj its
conjugated momentum. To monitor the evolution of the
system, it is customary to introduce the magnetization M ,
an order parameter defined as

M =
∣∣∣∣∑

i mi

∣∣∣∣
N

, where mi = (cos θi, sin θi). (2)
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The infinite-range coupling between rotators is responsible
for the emergence of rather intriguing behaviors, including the
existence of QSSs. In a QSS the system displays non-Gaussian
velocity distributions, and it takes values of M different than
those predicted by equilibrium thermodynamics [4,5,16].

Rigorous mathematical results [17] indicate that in the limit
N → ∞ the discrete HMF dynamics reduces to the continuum
Vlasov equation

∂f

∂t
+ p

∂f

∂θ
− V ′(θ )

∂f

∂p
= 0, (3)

where f (θ,p,t) is the microscopic one-particle distribution
function, V (θ )[f ]= −Mx[f ] cos(θ )−My[f ] sin(θ ), Mx[f ] =∫ π

−π

∫ ∞
−∞ f (θ,p,t) cos θ dθ dp, and My[f ] = ∫ π

−π

∫ ∞
−∞

f (θ,p,t) sin θ dθ dp. The specific energy h[f ] =∫∫
(p2/2)f (θ,p,t) dθ dp − (M2

x + M2
y − 1)/2 is a conserved

quantity. The Vlasov equation defines the natural framework
to address the puzzle of QSSs’ emergence [3,5]. Specifically,
QSSs are connected to the stable stationary solutions of
the Vlasov equation. This observation suggests a statistical
mechanics approach, inspired by the seminal work of
Lynden-Bell [18], to characterize analytically the QSS
properties. Lynden-Bell’s approach is based on the definition
of a locally-averaged (“coarse-grained”) distribution,
yielding an entropy functional defined from first-principle
statistical-mechanics prescriptions. By constrained
maximization of such an entropy, one obtains closed
analytical expressions for the single-particle distribution in
the QSS regime [5,6]. As a natural consequence, the QSSs
can be equally interpreted as equilibrium configurations of the
corresponding continuous description [19]. Hence, the QSS
thermal bath that we consider here corresponds to a magnetized
equilibrium solution of the underlying Vlasov equation (3).

Let fB(θ,p) be the normalized single-particle distribu-
tion that characterizes the QSS bath. Such a function is
obtained as the stationary solution of the Vlasov equation (3)
corresponding to a water-bag initial distribution, f0(p,θ ) =
1/[4�θB�pB] for θ ∈ [−�θB,�θB],p ∈ [−�pB,�pB] and
zero elsewhere. Note that the initial magnetization of the
bath (M0)B and its energy density eb can be expressed
in terms of �θB and �pB , as (M0)B = sin �θB/�θB and
eB = �p2

B/6 + 1/2[1 − (M0)2
B]. This in turn implies that the

initial water-bag profile is uniquely determined by (M0)B and
eB , in agreement with the Lynden-Bell theory.1

At this point, t = 0 in our discussion, another HMF system
with water-bag profile is injected and let to evolve consistently
with the bath. This system, S in the following, is described
in terms of its associated single-particle distribution fS(θ,p).
Clearly the bath should be significantly larger than the system
to which it is coupled. This can be accomplished through the
following normalization condition:∫

fS(θ,p,t) dθ dp = 1 −
∫

fB(θ,p,t) dθ dp = ε, (4)

1The Lynden-Bell theory provides a quantitatively correct descrip-
tion of macroscopic observables, such as the average QSS magnetiza-
tion. Alternative approaches accounting explicitly for nonergodicity
yield more accurate predictions [16].
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FIG. 1. (Color online) Time evolution of temperature and magne-
tization. The bath QSS originates from a water bag with energy 0.54
and initial magnetization 0.6. The system is initially homogeneous
in space (i.e., zero magnetization), and its energy is set to 0.65. The
coupling constant ε = 0.024. All quantities are dimensionless.

where ε � 1 sets the relative size of the two mutually inter-
acting S and B HMF systems. We are interested in tracking
the time evolution of the distribution f (θ,p,t) ≡ fB(θ,p,t) +
fS(θ,p,t) under the constraint (4). From the physical point
of view, we are reproducing the microcanonical dynamics
of one isolated HMF system (S + B), composed of two
subsystems supposed as distinguishable: The larger subsystem
(the bath B) has already relaxed to its QSS equilibrium.
The system S is initially confined in an out-of-equilibrium
configuration of the water-bag type. To monitor the evolution
of both subsystems, we follow the kinetic temperatures Tα(t) ≡
�α

∫
p2fα(p,θ,t) dθ dp, with α = B,S and the corresponding

magnetizations Mα . Here �S = 1/ε and �B = 1/(1 − ε). We
emphasize that Tα are average kinetic energies per particle
and not true thermodynamic temperatures. In fact, our results
highlight the crucial fact that the appropriate definition of the
true thermodynamic temperature associated with a QSS is not
known.

A typical time evolution of these observables, obtained by
numerical integration of the Vlasov equation (3), is illustrated
in Fig. 1 [20]. Before injecting the system (i.e., at t < 0),
the bath is first prepared in a water-bag initial condition and
then allowed to evolve towards a QSS. After the bath has
relaxed well into its QSS (t = 0), the interaction is switched
on, meaning that a new HMF combined system is evolved,
comprising bath and system. After a short transient, the system
reaches a quasiequilibrium state where the mean value of
the kinetic temperature is different from the temperature of
the bath. In other words, the bath and the systems do not
thermalize. Similarly, the two magnetizations converge to
different values. Importantly, we note that the specific values
of temperature and magnetization attained by the system
spotlight a nontrivial interaction with the bath. TS and MS are
indeed substantially different from the values that the system
would reach when evolved microcanonically from the same
initial condition. We obtain equivalent results upon simulating
the discrete N -body dynamics (1). In this case, after a transient
that gets progressively longer as the system size N = NS + NB

is increased, �T = TB − TS and �M = MB − MS tend to
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zero. Thus, granularity causes thermalization, which is instead
prevented in the continuum (Vlasov) limit. We term canonical
QSSs the quasiequilibrium configurations that the system
explores when in long-range contact with a QSS thermal bath
in the zero energy-flux regime.

In the continuum limit, when the system is trapped in a
canonical QSS, we find that the average energy flux between
the bath and the system indeed vanishes, making the two
subsystems by all means decoupled and thus preventing
thermalization (see Appendix A for a more detailed analysis).
It is remarkable that a zero-flux steady state is reached for
TB �= TS in the noncollisional continuum limit, at variance
with what is normally found in most collisional systems.

III. THE ENERGY FLUX BETWEEN THE SYSTEM
AND THE BATH

Even more surprising is the behavior of the system during
the “violent relaxation” stage towards the canonical QSS,
which is characterized by a net energy flux from the (cold)
bath to the (hot) system. To better illustrate this observation,
we plot TB and TS versus time in Fig. 2. Note that TS is larger
than TB at t = 0, the time of injection. As time progresses,
the difference �T increases even further, resulting in an
anomalous energy transfer from the bath to the system. In
short, and counterintuitively, the hot system gets hotter when
placed in contact with a large long-range QSS reservoir. This
observation, although fighting intuition, does not violate any
laws of physics, as the second law of thermodynamics is only
expected to hold at thermal equilibrium.

Once the system has settled down in its canonical QSS
at zero average energy flux, �T and �M are found to be
different from zero. In order to pinpoint the relation between
�T and �M , we performed a series of simulations for the
same bath conditions as specified in the caption of Fig. 1, and
varying the initial energy of the system S. Different energies
lead to distinct canonical QSSs, as happens to isolated systems
trapped in microcanonical QSSs. At first glance, it is tempting
to speculate that canonical QSSs might originate from a net
balance of two opposing thermodynamic forces, presumably
related to �T and �M . However, we find that the dynamical
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FIG. 2. (Color online) Bath and system temperatures versus time.
The system is initially space homogeneous (zero magnetization) and
has energy 0.75. Inset: Same plot with logarithmic time scale. Other
parameters are as in Fig. 1. All quantities are dimensionless.
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FIG. 3. (Color online) Difference between final and initial tem-
perature of the system versus width of its initial water bag, in
reduced units. Data refer to different choices of the bath parameters
and to different initial energies of the (initially homogeneous)
system. Symbols: Direct integration of Eqs. (5) for MB ∈ [0.1,0.55],
TB ∈ [0.3,0.4]. Solid line: Numerical solution of Eq. (8). Inset:
TS,f vs MS,f for the same choice of parameters for the bath as in
Fig. 1. Circles: N -body simulations (average over 100 independent
realizations), NB = 4 × 103, NS = 102. Crosses: Direct integration
of the Vlasov equations. Solid line: Integration of Eq. (8). All
quantities are dimensionless.

evolution of S is not influenced by the temperature of the bath
TB , at least for ε � 1, but only responds to its magnetization
MB . Therefore, provided MB is kept fixed, TB can be set to
an arbitrary value, without significantly altering the system
dynamics. This is illustrated by the data collapse reported in
Fig. 3.

IV. BEYOND THE HMF MODEL: A THEORETICAL
INTERPRETATION BASED ON THE VLASOV

EQUATION

This striking observation is unintuitive as compared to the
case of short-range systems. Even more interestingly, it is by
no means restricted to the HMF. In order to illustrate this
fact, we note that in the Vlasov limit the distribution functions
fα(θ,p,t) (α = B,S) obey

∂fα

∂t
+ p

∂fα

∂θ
− V ′[fB + fS]

∂fα

∂p
= 0, (5)

where V (θ ) is a generic mean-field potential (the prime
defining ordinary differentiation with respect to θ ), defined
as

V [f ] =
∫

f (θ ′,p′,t)v(θ − θ ′) dθ ′dp′, (6)

v(θ − θ ′) being the two-body potential. Since the system/bath
relative size ε � 1, we can treat it as a perturbative parameter,
with fS 	 O(ε) and fB 	 O(1). Expanding Eqs. (5) and
keeping only terms that cause changes 	O(ε) in the physical
observables, we are led to the two following coupled equations:

∂fα

∂t
+ p

∂fα

∂θ
− V ′[fB]

∂fα

∂p
= 0, α = B,S. (7)

The equation for the bath implies that this is frozen in its initial
configuration, a stable equilibrium of the Vlasov equation,
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fB(q,p,t) = fB(q,p,t = 0) at all times.2 The equation for
fS is the Liouville equation for a distribution of uncoupled
particles moving in an external potential, fB being constant.
These conclusions are utterly general and should apply to
any physical system whose density is governed by the Vlasov
equation. For the HMF model, due to its rotational invariance,
one has with no loss of generality

∂fS

∂t
+ p

∂fS

∂θ
− MB sin θ

∂fS

∂p
= 0, (8)

which is simply the Liouville equation for a set of uncoupled
pendula. Hence, the leading-order evolution of fS depends
only on MB and not on TB . As is shown in Appendix B, MB

sets the width of the resonance of the pendulum along p, which
scales as

√
MB . This implies that the temperature should be

proportional to MB , as can be also appreciated by dividing
Eq. (8) in the stationary state by

√
MB .

Consistently with the above scaling arguments, we plot in
Fig. 3 (TS,f − TS,i)/MB as a function of the rescaled width
of the initial water bag �pS/

√
MB , for different values of the

bath magnetization and temperature. The data refer to direct
integration of the (constrained) Vlasov equations (5) and of
Eqs. (8). In all cases, the data collapse nicely on a single
master curve, which confirms the validity of our reasoning.
An analytical calculation of (TS,f − TS,i)/MB for �pS = 0
yields (TS,f − TS,i)/MB ≈ 0.751, in excellent agreement with
the result of direct integration of Eq. (8) (see Appendix B and
Ref. [21]). The inset further shows that N -body simulations
agree with all results obtained in the continuum limit.

V. CONCLUSIONS

Summarizing, we have proposed an implementation of
long-range QSS bath. We showed that a small system in
true long-range contact with a large, long-range reservoir
reaches a zero-flux steady state, which we term canonical
quasistationary state. These are stationary states of the system-
bath coupled Vlasov equations, but quasistationary solutions of
the associated N -body problem. Remarkably, in the explored
range of parameters, we find that hotter-than-bath systems
become hotter in canonical QSSs. In the context of the HMF
model, based on simple scaling arguments, we have unveiled
how the system anomalously increases its kinetic temperature
as the fraction of its particles trapped in the resonance set
by the bath magnetization gain energy. The kinetic energy
gain is proportional to the value of MB and independent of
the bath temperature at the leading order in ε. We stress
here, that this observation does not violate any fundamental
laws of physics. Indeed, the average kinetic energy of the
system does not coincide with its thermodynamic temperature.
In this respect, our work raises the following central, yet
unanswered, question: What is the correct thermodynamic
measure of temperature for a system frozen in a QSS? Notice
that in the present work, the energy of the thermal bath was
chosen to lie in the part of the (microcanonical) phase diagram
corresponding to a magnetized QSS. In regard to the system,

2A similar scenario is expected for baths at thermal equilibrium,
which is also a stable state of the Vlasov equation.

we considered initial energies leading to both magnetized and
nonmagnetized (microcanonical) QSSs.

In conclusion, and based on the theoretical analysis that
we have carried out, we argue that the results illustrated in
this paper are general and extend beyond the HMF case study,
whenever the collisionless Vlasov picture is a good description
of the dynamics.
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APENDIX A: THE ENERGY FLUX

The energy flux from the bath B to the system S is defined
as 	B→S = −dEB/dt , where EB is the total energy of B. In
order to derive an explicit expression for 	B→S , we start by
calculating φj (t), the rate of energy loss of the j th particle.
Denoting by hj its energy, we have

ϕj (t) ≡ −dhj (t)

dt
= −1

2
pj M · m⊥

j + 1

2

dM
dt

· mj , (A1)

where mj ≡ (cos θj , sin θj ) and m⊥
j ≡ (− sin θj , cos θj ), M

being the global magnetization

M = (Mx,My) = 1

N

N∑
j=1

mj . (A2)

Here N is the total number of particles, i.e., the sum of
those belonging to the bath, NB , and those in the system, NS .
Summing over all particles belonging to the bath in Eq. (A1),
one eventually obtains

	B→S =
∑
j∈B

φj = −1

2

∑
j∈B

pj M · m⊥
j + NB

2

dM
dt

· MB,

(A3)

where MB = ∑
j∈B mj/NB is the magnetization of the bath

and the time derivative of M reads

dM
dt

= 1

N

N∑
j=1

pj m⊥
j . (A4)

In the continuum limit the sums are replaced by integrals

	B→S = −1

2

∫
p M · m⊥(θ )fB(p,θ ) dθ dp + 1

2

dM
dt

· MB,

(A5)

where

MB =
∫

fBm(θ ) dθ dp M =
∫

(fB + fS) m(θ ) dθ dp

(A6)

with m(θ ) = (cos θ, sin θ ), m⊥(θ ) = (− sin θ, cos θ ).
According to the adopted sign convention, 	B→S(t) is

positive if the bath B cedes energy to the system. In Fig. 4 the
instantaneous energy flux (upper panel) is plotted versus time
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FIG. 4. (Color online) Time evolution of the instantaneous (top)
and cumulated (bottom) bath-to-system energy flux. The system is
initially space homogeneous and has energy 0.75. Other parameters
are as in Fig. 1. All quantities are dimensionless.

for a typical realization of the Vlasov dynamics. After an initial
transient, ϕB→S(t) oscillates around zero, implying that the
bath B and the system S have established a zero-average-flux
dynamical equilibrium. This condition corresponds to the
emergence of the canonical QSS. Furthermore, the net energy
flux is positive, a fact that can be appreciated by looking at the
evolution of the cumulated flux (see lower panel of Fig. 4). This
implies a net transfer of energy from the bath to the system.

We stress that the system gets hotter as its total energy
increases after putting it in contact with the bath. The total
energy of the system increases when it is put in contact
with the bath, as is clearly proved by looking at the energy
flux (the time derivative of the total energy) versus time in
Fig. 4. The cumulated flux is positive, which, according to our
conventions, attests to a flow of total energy from the bath to
the system. In order to make this point even more clear, we
show in Fig. 5 the total energy of the system versus time from
the moment of the injection. The total energy of system and
bath stays constant, while there is a clear flux of total energy
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FIG. 5. (Color online) Total energy of the system in contact with a
large reservoir in a QSS for two different initial energies, normalized
by the t = 0 energy e(0). The time t = 0 marks the moment where
the system and the bath are put in contact. Following the injection,
the combined (system + bath) ensemble is isolated, and hence its
energy Et stays constant. Other parameters are M0 = 0.6 (initial
magnetization of the bath), Et = 0.547 [e(0) = 0.65], Et = 0.55
[e(0) = 0.75]. All quantities are dimensionless.

from the bath to the tiny system, which is left permanently
hotter as a result.

APPENDIX B: ON THE ANALYTIC ESTIMATE OF THE
ASYMPTOTIC TEMPERATURE TS, f

The phase space of the pendulum is foliated in trajectories
with constant energy

e = p2

2
− MB cos θ ; (B1)

hence, p(θ ) = √
2 [e + MB cos θ ]1/2. We want to discuss an

analytic estimate of the quantity (TS,f − TS,i)/MB for �pS =
0 and for an initial homogeneous system, MS(t = 0) = 0. This
calculation has the merit of enabling one to gain insight into
the nature of the canonical QSS and further clarify the scaling
adopted in Fig. 4. This analysis can be extended to cover the
case �pS �= 0, and also MS(t = 0) �= 0, a generalization to
which we shall return in a separate contribution.

We note that TS,i = 0 for �pS = 0. To evaluate TS,f , we
first consider the average kinetic temperature of the particles,
which are assigned a given energy e. Here

〈p2〉e = 1

T (e)

∫ T (e)

0
θ̇2 dt, (B2)

where 〈·〉e indicates a time average over one period,

T (e) = 4√
MB

K

(
e + MB

2MB

)
, (B3)

K(·) being the complete elliptic integral of the first kind.
Expression (B2) takes the equivalent form

〈p2〉e = 2

T (e)

∫ θ̄(e)

−θ̄ (e)
p(θ ) dθ, (B4)

where θ̄ (e) = cos−1(−e/MB) is the angle of inversion of the
selected (closed) trajectory. By performing the integral one
eventually gets

〈p2〉e
MB

= 2
√

2(MB + e)√
MBK

(
e+MB

2MB

)E

(
θ̄ (e)

2
,

2MB

e + MB

)
, (B5)

where E(·,·) is the incomplete elliptic integral of the second
kind. The final temperature of the system can now be evaluated
as

TS,f ≡ 〈p2〉 =
∫ MB

−MB

〈p2〉eρ(e) de, (B6)

where ρ(e) is the density of states of the system, which
is univocally fixed by the initial condition. The integral
in Eq. (B6) extends from −MB to MB , i.e., the energies
that identify the separatrix of the pendulum. In fact, the
system is trapped inside the separatrix |e| = MB , given the
specific condition selected here (�pS = 0, hence no particle
lies outside the resonance at t = 0). Recalling Eq. (B1),
the distribution ρ(e) can be calculated easily, as

ρ(e) = 1

π

∣∣∣∣ de

dθ

∣∣∣∣
−1

= 1

π

1√
M2

B − e2
. (B7)
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Plugging Eq. (B7) into Eq. (B6) and recalling Eq. (B5), one
eventually obtains

TS,f

MB

= √
π

∫ 1

−1

E
(

cos−1(−y)/2, 2
1+y

)
K

( 1+y

2

) dy√
1 − y2

. (B8)

Numerical integration gives TS,f /MB ≈ 0.751, in excellent
agreement with the data reported in Fig. 3. In the general
case (�pS �= 0), e ∝ �p2

S . The scaling suggested by Eq. (B8)
implies �p/

√
MB , which in turn explains the origin of the

reduced variables used in Fig. 3.
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