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In this paper, we introduce a simple Monte Carlo method for simulating the dynamics of a crowd. Within our
model a collection of hard-disk agents is subjected to a series of two-stage steps, implying �i� the displacement
of one specific agent followed by �ii� a rearrangement of the rest of the group through a Monte Carlo dynamics.
The rules for the combined steps are determined by the specific setting of the granular flow, so that our scheme
should be easily adapted to describe crowd dynamics issues of many sorts, from stampedes in panic scenarios
to organized flow around obstacles or through bottlenecks. We validate our scheme by computing the serving
times statistics of a group of agents crowding to be served around a desk. In the case of a size homogeneous
crowd, we recover intuitive results prompted by physical sense. However, as a further illustration of our
theoretical framework, we show that heterogeneous systems display a less obvious behavior, as smaller agents
feature shorter serving times. Finally, we analyze our results in the light of known properties of nonequilibrium
hard-disk fluids and discuss general implications of our model.
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I. INTRODUCTION

Crowd dynamics is the object of a comprehensive body of
literature, from classic broad treatises covering general topics
�1–4� to more specific applications, ranging from psychody-
namical models �5� and control issues �6,7� to panic sce-
narios �8,9�. Likewise, several in-depth reviews discuss com-
putational models of pedestrian dynamics �10–13�, ranging
from lattice-gas models �10� to molecular-dynamics-based
simulation schemes such as the behavioral �or social� force
model �14,15� and cellular automata methods �16�.

It is the purpose of the present paper to introduce a novel
model of crowd dynamics, based on a simple Monte Carlo
�MC� scheme of hard disks dynamics. Our aim is twofold:
one the one side, we wish to outline the essentials of an
original modeling strategy, that has never been considered so
far. The simple philosophy behind our model can be effort-
lessly extended and adapted to many different scenarios, pro-
viding a viable and fast alternative to many current schemes
for exploring real-life contexts of many sorts in crowd dy-
namics issues. At the same time, we also apply our theoret-
ical framework to a general problem, that of finding the dis-
tribution of serving times of individuals forming a crowd
before a desk. Our model is shown to provide results in line
with the physical intuition in the case of identical agents,
which confirms the soundness of our theoretical approach.
However, we find less obvious results when the case of poly-
disperse crowds are considered, which constitutes a first il-
lustration of the usefulness of our model. It should be noted
that, while queuing strategy issues have been analyzed in
some specific contexts of crowd dynamics, such as parallel
multilane pedestrian traffic �17�, surprisingly it seems that no
simple computational study has yet tackled the problem ex-
amined in this paper.

The paper is organized as follows: First we describe the
model and discuss the main results that validate our scheme
in the case of a homogeneous crowd. Subsequently, we in-
troduce a given degree of polydispersity so as to examine the
statistics of serving times and their dependence on agents’
size. Then, before summarizing and discussing our findings,
we report an instructive structural analysis of the two-
dimensional crowd-queuing systems.

II. MODEL

In our model a crowd is represented by a collection of
hard disks, possibly enclosed in a given perimeter with spe-
cific boundary conditions. Broadly speaking, the evolution of
the crowd configuration is considered as a two-step process.
In the first step �i� one agent is chosen according to a given
rule and is displaced following a certain prescription �possi-
bly to infinity, that is removed from the game�. In the second
step �ii� the rest of the group is let equilibrate through a
Monte Carlo dynamics under a preassigned displacement
rule until a stationary state is reached, as measured through
the convergence of a suitable global order parameter. The
details of the rules applied in steps �i� and �ii� should reflect
the nature of the process that one wants to simulate. Here, we
introduce a simple set of rules, that could be valid in, or else
easily modified for, many circumstances where one is inter-
ested to simulate a flow of people. For example, this could be
the case of escape dynamics through doors at specific loca-
tions, such as in panic stampedes �8,9� or other issues related
to the motion of groups of pedestrians within specified
perimeters or across bottlenecks �15�.

We consider an ensemble of N impenetrable circles in the
plane of radii ri=1+ �2z−1��r, i=1,2 , . . . ,N, where z may
be a constant �homogeneous crowd�, or else be drawn from a
set of real numbers specifying the degree of heterogeneity. In
this paper, we either set z=1 /2 or consider a uniform distri-
bution in the interval z� �0,1�. In the specific case chosen to
validate and illustrate our model, dubbed here crowd queu-
ing, it should be imagined that the disks model individuals
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waiting around a counter located at the origin of a Cartesian
frame of reference and, e.g., selling tickets. The N-agent
crowd is served, one individual at a time, following the
series of serving times tn, n=1,2 , . . . ,N. At each step, the
served agent is removed from the system, so that the group at
the nth step comprises N�n�=N−n individuals. The idea
is to model a semicircular geometry, whereby individuals
disappear as soon as they are served as they are admitted
beneath the counter �say into the theater or cinema hall�, e.g.,
through a door or down a staircase next to the counter itself.
It is clear that, under the reasonable hypothesis that walls
flanking the counter are reflecting �except for the afore-
mentioned exit�, it is easier to study the equivalent case of a
fully circular geometry with agents crowding all around the
teller and being removed from the play as soon as they are
served �25�.

For the sake of simplicity, we will take tn+1− tn=� and
measure time in units of serving steps. It should be noted that

this implies a minor loss of generality, as we are mainly
interested in average quantities, such as the average time
taken to reach the counter from a given distance. More gen-
erally, in fact, if P��� indicates the �finite-mean� probability
density describing the �uncorrelated� intervals between serv-
ing times, the average time corresponding to m serving steps
will still be linear in m, namely ��t�m=m���.

According to our theoretical framework, we approximate
the dynamics of the group as a sequence of serving and re-
arrangement steps. The basic assumption is that the two pro-
cesses occur on well separated time scales, the rearrange-
ment stage being regarded as instantaneous on the time-span
set by �. At each serving step, the individual that is located
closer to the counter disappears, and the rest of the agents are
rearranged. Such process is iterated until all agents have been
eliminated. Typically, we record the serving times of all
agents initially belonging to a certain number of concentric
circular shells. By doing this, we can measure the average
number of serving steps as a function of the initial distance
from the counter, the average being taken over all agents
from the same shells, as well as over K equivalent initial
configurations of the N-agent crowd.

In an ordered, one-dimensional queue, the rearrangement
rule is a trivial one—move all agents simultaneously of one
position in the direction of the counter. In our case, agents
have the freedom of moving in two dimensions, while they
still share a bias toward moving along the radial direction, as
reaching the counter is everybody’s ultimate goal. In accor-
dance to such principle, we construct the rule for the Monte
Carlo rearrangement stages as follows. At each MC step j, a
radial move is attempted of the same magnitude �r�j� for
each agent. To that, a component �u�j� is added with prob-
ability p along a randomly chosen unit vector forming an
angle with the centripetal direction in the interval
�−� /2,� /2�. The latter moving rule is meant to express the
agents’ will to find alternative routes leading faster to the
counter, taking advantage of local density fluctuations. The
magnitudes of the two types of attempted displacements
�r�j� and �u�j� are updated at each step, after the entire set
of moves is performed, so as to keep the acceptance rate ��j�
�that is, the fraction of effectively displaced agents� around
the target value �=0.5. The acceptance rule for each MC
move is realized by enforcing hard-core repulsion.

Following the elimination of the served agent, the MC
rearrangement is halted when the crowd has reached a stable
configuration. Obviously, there is no unique manner to assess
whether the system has attained such a status. In fact, also
in view of the intrinsic non-equilibrium nature of the pro-
cess that we wish to simulate, such condition should be
understood in a dynamical sense. For example, this can be
measured by following the evolution of a suitable global
observable O and fixing the number of rearrangement
moves M such that �OM −OM−1� /OM �TOL, where OM
=�k=1

M O�k�j� /M is the M-step running average computed by
sampling every �j MC moves and TOL is the required ac-
curacy. In the calibration runs, we chose to monitor the con-
vergence of the acceptance rate � and of a global structural
indicator, namely, the overall jamming index �, adapted
from Ref. �18� to the case of size-heterogeneous disks,
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FIG. 1. Upper panel: average number of serving steps as a func-
tion of initial distance from the counter for different values of the
probability of nonradial moves p. The dashed line is a plot of for-
mula �2�. Lower panels: distance from the counter of some indi-
viduals lying initially in a given shell at distance d0 from the origin
as a function of the serving steps: d0=1 �center� and d0=0.61 �bot-
tom�. The arrows indicate the average waiting time from the shells.
Other parameters are: N=843, p=0.2, 	=0.6, �r=0, and K=30.
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where S3�i� is the ensemble comprising the first three neigh-
bors of the ith agent and dij are the center-to-center separa-
tions. As a result of different calibration tests, we found that
the choice �j=50, TOL=10−4 yielded a satisfactory compro-
mise between accuracy in the convergence of both indicators
and simulation speed, with M�n� /N�n��const �n being the
serving step�. For the sake of computation celerity, we only
monitored the observable � for arresting the rearrangement
stages in production runs.

The initial configurations for the serving process are ob-
tained as follows. The disks are first arranged on a square
lattice within a circle of radius R=1+�r �R=1 for z=1 /2�
and their radii rescaled so as to match the required value of
the initial disk area fraction 	=�i=1

N ri
2 /R2. An initial cycle of

Mi Monte Carlo steps is then performed with p=0 �purely
radial moves� and boundary conditions such that displace-
ments are taken modulo 2R. The configurations obtained af-
ter different series of Mi�O�104� MC steps are used as
independent initials conditions for the serving process. Of
course, arbitrary initial geometries can be enforced in the
same manner, by retaining only the agents that lie within the
required perimeter.

It should be noted that, besides the measure of the size
heterogeneity �r, our simulation protocol has only one pa-
rameter, namely the probability p of nonradial displace-
ments.

III. SERVING DYNAMICS

In the case of a one-dimensional queue of N individuals, it
is clear that an agent initially at a distance d�n from the
counter �that is, the nth agent�, will be served after a time n
�in units of serving steps�. In two dimensions, if the same
number of people are crowding around the counter, there will
be competition among the agents lying initially within the
shell at distance d from the origin. In this case, the equivalent
of the one-dimensional queuing process will be realized if,
from the d shell, each agent will have to wait that all the
individuals closer than her to the counter be served before

she is served. In this case, one should expect a number of
serving steps given by

nseq�d� = N� d

R
2

. �2�

A. Homogeneous crowds

The upper plot reported in Fig. 1 shows that, under the
simple rules of our rearrangement dynamics, �n�d��=nseq�d�
for a group of identical individuals. This means that, as sug-
gested by simple intuition, on average there is no difference
between an ordered one-dimensional queuing process and a
chaotic mob formed by an equal number of agents crowding
around the same serving desk. Remarkably, this result ap-
pears rather insensitive to variations in the probability of
nonradial moves. This confirms the soundness and robust-
ness of our approach. In the case p=0 �purely radial moves�,
we have found that the external shells are left virtually mo-
tionless, as a result of which the crowd is served sequentially
from the inner shells to the outer ones, more or less follow-
ing the ordered list of distances from the origin in the initial
configuration. Consequently, the sequential serving law Eq.
�2� is �trivially� recovered in the case p=0 too. Indeed, the
requirement p�0 reflects a realistic characteristic of the dy-
namics of waiting groups, where individuals share an obvi-
ous bias toward radial moves that makes them approach the
counter, but from time to time deviate sideways as local
bubbles of low density appear under way.

The data reported in the upper panel of Fig. 1 represent
averages over many individuals lying initially at the same
distance from the counter. As a matter of fact, in a two-
dimensional arrangement different agents from the same
shell show amply different waiting times, as testified by the
two cases reported in the two other panels of the same figure.
It is apparent that serving times up to about 30% below the
average characterize certain individuals from the same shell,
while at the same time others will have to wait longer to be
served. In order to quantify the effect of such fluctuations, in
Fig. 2, we plot in one representative case the average, maxi-
mum and minimum serving times as functions of the shell
distances from the counter. We see that the lowest serving
times nmin�d� are well approximated by the same sequential

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

n
/

N

d / R

N = 843
N = 475

0

0.5

1

P
q

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2 2.5

n(d )R 2/N d 2

FIG. 2. �Color online� Lower left panel: aver-
age, maximum and minimum number of serving
steps as functions of the initial distance from the
counter �symbols�, nseq�d� �solid line� and
nseq�d� /2 �dashed line�. Upper panel: P�

q=0 �filled
squares�, P�

q=0.25 �empty squares�, P�
q=0 �aster-

isks� and P�
q=0.25 �crosses�. Right panel: probabil-

ity density of n�d� /nseq�d� �stairs� and normal
distribution N�=1, �=0.28� �solid line�. Other
parameters are: N=843, 	=0.6, p=0.2, �r=0,
and K=30.
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law Eq. �2� but corresponding to half the number of agents.
Hence, the luckiest individuals are served as if they were
crowd-queuing with half the number of people. However, the
less fortunate agents wait as if they shared the place with
about twice as much agents, with the obvious constraint that
the maximum serving time cannot exceed N. It is interesting
to remark that the last-of-all condition �nmax�d�=N� persists
for agents initially sitting as close to the counter as d=0.8R.

Additional, more quantitative information can be obtained
by calculating the probability that an agent be served in a
number of steps below �or above� a given fraction of the
sequential-queuing prediction from a given distance. Let Nd
indicate the ensemble of waiting times of all agents from the
d shell over all the independent serving runs. Then, we can
measure the probability that an individual is served in a num-
ber of steps lower �or greater� than a given fraction 1�q
�0�q�1� of the theoretical expectation, Eq. �2�, that is

P�
q �d� = ���� � �1 � q�nseq�d�� n�d����n�d��Nd

, �3�

where ��x� is the Heaviside step function and the operation
�� . . . �� makes the double average over shell members and
independent runs explicit.

The results reported in Fig. 2 show that the chances of
reaching the counter in a number of steps below �or above�
the purely sequential prediction �q=0� are about 50%, and to
a large extent insensitive of the initial distance. Furthermore,
the chances of being served faster than 0.75 �or more slowly
than 1.25� of such expected waiting time are between 15 and
20%. These observations make more quantitative the intui-
tive feeling that competing in a crowd to be served can be
rewarding as well as imply longer waiting times than in or-
dered, one-dimensional queues. Furthermore, the above re-
sults suggest that the reduced serving times from all shells,
n�d� /nseq�d�, are described by the same probability density.
The right panel in Fig. 2 shows that such curve is reasonably
well �26� approximated by a normal density of unitary mean
and standard deviation �=0.28. This provides a handy crite-
rion for quantifying to an arbitrary confidence level the vari-
ability displayed by the serving times. For example, in about
70% of the cases, an agent starting at a distance d will have
to wait between 0.7nseq�d� and 1.3nseq�d�.

It should be remarked that the above results concerning
minimum and maximum waiting times provide ready infor-
mation under the hypothesis of equally spaced serving times
tn+1− tn=�. More generally, the same predictions are ex-
pected to hold true in the case of uncorrelated, normally
distributed serving times �likely a reasonable description of
most common counter dynamics�, provided the serving and
rearrangement time scales are still uncoupled. In situations
where different instances of the distribution P��� are rel-
evant, the relation between serving times and number of
serving steps could be nonlinear. In such cases, the convolu-
tion of the queuing and the serving time statistics should be
accounted for explicitly and our algorithm should be modi-
fied accordingly.

B. Heterogeneous crowds

We have seen that, on average, an individual involved in a
queuing process within an homogeneous crowd gets to the
counter following the sequential rule, that is after all agents
closer than her to the origin are served. Figure 3 proves that
such average behavior persists also in the case of a polydis-
perse group of agents, no matter the spread of the size dis-
tribution. However, each point in Fig. 3 is worked out by
averaging over a population of agents that share the same
initial distance from the counter but are heterogeneous in
size. What happens if all those serving times are sorted as
functions of the agents’ radii?

Figure 4 provides a clear-cut answer in the case of indi-
viduals initially lying within the outermost shell: starting
from the same distance, the smallest agents get to the counter
about 10% faster than the bulkiest ones. This phenomenon
seems to depend to a certain extent on the details of the
rearrangement dynamics, although the overall advantage dis-
played by the tiniest agents over larger ones seems not to be
altered by the actual value of the probability of nonradial
moves p. We remark that, as expected, the average serving
time that characterizes the shell �indicated as �n� in the fig-
ure� also marks the dynamics of individuals of average size,
that is those with r=1.

IV. STRUCTURAL PROPERTIES
OF THE HARD-DISK CROWD

It is interesting to analyze quantitatively the spatial con-
figurations describing our granular crowd systems during
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their temporal evolution. Figure 5 shows four snapshots of
the group at different stages for an initial disk area fraction
	=0.6. Overall, a tendency of the group of agents to deviate
from the circular shape is observed, likely as a result of
nonradial moves performed along the way. A similar scenario
is confirmed by many other analyzed instances �not reported
here�. Likewise, it appears that the serving process also leads
to a tightening of the system. In order to quantify this effect,
we have calculated the variations of the agents’ effective
surface coverage by performing Dirichlet tesselation of the
configurations at the end of each rearrangement stage. Figure
6 reveals that the first phase of the process indeed marks a
rapid increase of 	 between 10 and 20%, depending on the
initial value of the disk area fraction. Subsequently, the serv-
ing process leads to a loosening of the group, which appears
to be more marked the denser the starting configuration. In-

terestingly, toward the end of the process the last-served
agents seem to organize themselves into tighter structures.

Visual inspection of the systems’ patterns suggest that lo-
cal order appears to be enhanced late in the serving process
�see again Fig. 5�. To make this observation more quantita-
tive, we have calculated the radial distribution function g2�r�
�RDF� at different steps in the course of the serving dynam-
ics. The results are summarized in Fig. 7 for one typical case.
The initial configurations, as one should expect, reflect the
known RDF of hard disk fluids �19,20�. However, as the
serving process progresses, short-range translational order
gets manifestly enhanced alongside with the rapid increase
of surface coverage.

It is interesting to observe that the calculated RDFs ap-
pear remarkably similar to the ones characterizing the non-
equilibrium configurations obtained in Ref. �21� through a
modification of Eden’s algorithm targeting a predetermined
degree of orientational order. In fact, it is instructive to in-
vestigate whether the observed enhancement of translational
order is also accompanied by bond-orientational order. To do
this, we employed the computed Dirichlet tesselations to
evaluate the global bond-orientational order parameter

�6 =
1

2Nb
�

i
�
j=1

ni

cos�6�ij� , �4�

where ni is the number of geometrical neighbors of the ith
disk, �ij is the angle formed by the bond between the ith and
jth disks in the dual Delaunay triangulation and some arbi-
trary but fixed direction �in our case the x axis� and Nb is the
total number of such geometrical bonds. By definition, �6
=1 in the most ordered arrangement, that is the triangular
lattice, whereas ��Nb

−1/2 in a disordered, gaslike phase �27�.
Figure 8 shows that queuing processes that start at moderate
surface coverage do not develop appreciable bond ordering,
as ��Nb

−1/2 for the whole duration of the process. When the
initial area fraction is higher, the first configurations indeed
feature non-negligible bond-orientational order. However,
the serving dynamics invariably brings the system back to
gas-phase configurations on a rather short time scale—when
about 20% of the agents have been served, any traces of
bond-orientational order have been already wiped out.

FIG. 5. �Color online� Four snapshots during the crowd-queuing
process at different steps n. From top to bottom and left to right:
initial configuration, n=300, n=500, and n=700. The long- and
short-dashed lines mark two shells at d=0.99 and d=0.6, while the
corresponding agents are represented by dark and light blue circles,
respectively. Parameters are: N=843, 	=0.6, p=0.2, and �r=0.

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1

φ

n / N

φ = 0.60, N = 335
φ = 0.60, N = 475
φ = 0.75, N = 475
φ = 0.60, N = 843

FIG. 6. Effective disk area fraction as a function of the serving
step during the crowd-queuing process. Parameters are p=0.2, �r
=0, and K=30.

1

10

0 1 2 3 4 5 6

g 2
(r

)

r / D

n = 0
n = 200
n = 400

FIG. 7. �Color online� Radial distribution function versus pair-
wise distance in units of the diameter D at different steps of the
serving process Other parameters are: N=843, 	=0.6, p=0.2,
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Overall, the above analysis reveals that the configurations
obtained through our simple method are typical nonequilib-
rium configurations of hard disks, featuring rather high den-
sities and maximum degree of disorder at the same time.
Therefore, our method might as well prove interesting for
nonequilibrium hard-disk packing issues �21�.

V. CONCLUSIONS

In this paper we have introduced a simple agent-based
Monte Carlo model of crowd dynamics, with the aim of put-
ting forward a viable and handy alternative to more detailed
and involved modeling strategies for a variety of crowd dy-
namics issues. Agents are modeled as hard disks and the
evolution of the crowd spatial configuration is reconstructed
through a series of two-step moves: in the first step a single
agent is selected and displaced according to a certain rule,
possibly to infinity, which amounts to removing her from the
game �R1�. In the second step, the rest of the group is let
rearrange through a sequence of Monte Carlo moves obeying
a certain displacement rule �R2� until the convergence of a
suitable global observable has been achieved. The two afore-
mentioned rules R1 and R2 are meant to identify the nature
of the specific crowd dynamics that one wishes to simulate.

We have shown that out theoretical framework provides
results in agreement with physical intuition in the problem of
crowd queuing, namely that of a group of agents who gather
in a disordered manner around a counter �a ticket-desk, a bar,
etc.� waiting to be served one by one and leaving the place
once served. Our model shows that on average the crowd
reproduces one dimensional, sequential queuing for a group
of agents of identical size, in agreement with intuition. This

means that an agent starting from a certain distance d from
the counter will have to wait that all agents initially enclosed
within the circular d shell will have been served. Obviously,
however, a two-dimensional crowd provides a queuing envi-
ronment that can yield slower-than as well as faster-than-
sequential serving times for a given individual. Our results
indicate that the two instances occur with a probability of
about 1/2, independently of the initial agents’ position. Re-
markably, the above results are rather insensitive to changes
in the probability of nonradial moves, which testifies to the
robustness of our approach.

Remarkably, size of agents matters in crowd dynamics
processes. On average the serving times of an heterogeneous
group still follow the intuitive sequential prediction, inde-
pendently of the strength of the agents’ size heterogeneity.
However, starting from identical initial distances, the smaller
the agent the shorter her waiting time. The tiniest individuals
manage to sneak through their fellow queuers more effec-
tively, thus reaching the counter the first. It is intriguing to
draw an analogy between our findings, i.e., larger disks lag-
ging behind smaller ones, and the well-known Brazil-nut ef-
fect, whereby the largest particles migrate toward the surface
when a granular heterogeneous mixture is shaken �22�. In
fact, particle size segregation effects have already been re-
ported in two-dimensional hard-disk packings �23�. In the
case of shaken mixtures, the bias provided by gravity plays
an important role in determining the segregation phenom-
enon. Within the framework of our rearrangement dynamics,
the agents’ mixture is Monte Carlo shaken under the bias of
preferred origin-pointing displacements. In this sense, expla-
nations of the Brazil-nut effect that focus on infiltration of
small particles into voids created underneath larger ones dur-
ing shaking might provide relevant clues to our process.
Conversely, the analogy with crowd dynamics might prove
useful in the rationalization of size effects in polydisperse
mixtures. For example, this could be the case of the emer-
gence of indirect attractive forces favoring flocculation of
larger particles resulting from the interference between topo-
logical perturbations �depletion wakes� induced by the large
particles �24�.

Finally, we have performed a structural analysis of crowd-
ing ensembles. We have shown that the rearrangement dy-
namics results in an overall increase of the agent area frac-
tion, enhancing at the same time short-range translational
order in the system as the serving process progresses. On the
contrary, orientational order is effectively suppressed, even
in the case of high initial packing, leading to rather dense
and at the same gaslike, highly disordered nonequilibrium
configurations, reminiscent of those accessible through cer-
tain seed-based growth protocols �21�.
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FIG. 8. Global bond-orientational order parameter versus frac-
tion of removed geometrical bonds during the crowd-queuing pro-
cess �proceeding left to right� for different choices of N and 	.
Other parameters are p=0.2, �r=0, and K=30.

FRANCESCO PIAZZA PHYSICAL REVIEW E 82, 026111 �2010�

026111-6



�1� G. L. Bon, The Crowd: A Study of the Popular Mind �Ernest
Benn Limited, 1952 English translation of original French ver-
sion in 1896�.

�2� R. Curtis and B. Aguirre, Collective Behavior and Social
Movements �Allyn and Bacon, Boston, 1992�.

�3� D. Locher, Collective Behavior �Prentice Hall, Englewood
Cliffs, NJ, 2001�.

�4� D. Miller, Introduction to Collective Behavior and Collective
Action, 2nd ed. �Waveland Press, Lake Grove, IL, 2000�.

�5� H. Singh, R. Arter, L. Dodd, P. Langston, E. Lester, and J.
Drury, Appl. Math. Model. 33, 4408 �2009�.

�6� K. Spieser and D. E. Davison, Automatica 45, 657 �2009�.
�7� S. Lämmer, R. Donner, and D. Helbing, Eur. Phys. J. B 63,

341 �2008�.
�8� D. Helbing, I. Farkas, and T. Vicsek, Nature �London� 407,

487 �2000�.
�9� S. Gwynne, E. R. Galea, M. Owen, P. J. Lawrence, and L.

Filippidis, Build. Environ. 34, 741 �1999�.
�10� T. Nagatani, Rep. Prog. Phys. 65, 1331 �2002�.
�11� M. Schreckenberg and S. Sharma, Pedestrian and Evacuation

Dynamics �Springer, Berlin, 2001�.
�12� D. Helbing, Rev. Mod. Phys. 73, 1067 �2001�.
�13� C. Castellano, S. Fortunato, and V. Loreto, Rev. Mod. Phys.

81, 591 �2009�.
�14� D. Helbing, Behav. Sci. 36, 298 �1991�.

�15� D. Helbing, P. Molnár, I. J. Farkas, and K. Bolay, Environ.
Plan. B: Plan. Des. 28, 361 �2001�.

�16� Theoretical and Practical Issues on Cellular Automata, edited
by S. Bandini and T. Worsch �Springer, New York, 2000�.

�17� J. Bantang and C. Saloma, Complexity 11, 35 �2006�.
�18� B. D. Lubachevsky and F. H. Stillinger, J. Stat. Phys. 60, 561

�1990�.
�19� X. Guo and U. Riebel, J. Chem. Phys. 125, 144504 �2006�.
�20� S. Torquato, Random Heterogeneous Materials �Springer, New

York, 2002�.
�21� A. R. Kansal, T. M. Truskett, and S. Torquato, J. Chem. Phys.

113, 4844 �2000�.
�22� M. E. Möbius, B. E. Lauderdale, S. R. Nagel, and H. M. Jae-

ger, Nature �London� 414, 270 �2001�.
�23� R. Jullien, P. Meakin, and A. Pavlovitch, EPL 22, 523 �1993�.
�24� J. Duran and R. Jullien, Phys. Rev. Lett. 80, 3547 �1998�.
�25� We are here explicitly neglecting back-flow effects, associated

with the stream of served agents getting away from the counter
through the crowd, that may be relevant in other contexts.

�26� To be more precise, the overall data set features a skewness of
0.67 and a kurtosis excess of 1.14.

�27� There are exceptions, essentially due to the global nature of
the definition Eq. �4�. However, these only concern pathologi-
cal configurations that are extremely unlikely to occur in our
case �21�.

SIMPLE MONTE CARLO MODEL FOR CROWD DYNAMICS PHYSICAL REVIEW E 82, 026111 �2010�

026111-7

http://dx.doi.org/10.1016/j.apm.2009.03.020
http://dx.doi.org/10.1016/j.automatica.2008.09.013
http://dx.doi.org/10.1140/epjb/e2007-00346-5
http://dx.doi.org/10.1140/epjb/e2007-00346-5
http://dx.doi.org/10.1038/35035023
http://dx.doi.org/10.1038/35035023
http://dx.doi.org/10.1016/S0360-1323(98)00057-2
http://dx.doi.org/10.1088/0034-4885/65/9/203
http://dx.doi.org/10.1103/RevModPhys.73.1067
http://dx.doi.org/10.1103/RevModPhys.81.591
http://dx.doi.org/10.1103/RevModPhys.81.591
http://dx.doi.org/10.1002/bs.3830360405
http://dx.doi.org/10.1068/b2697
http://dx.doi.org/10.1068/b2697
http://dx.doi.org/10.1002/cplx.20134
http://dx.doi.org/10.1007/BF01025983
http://dx.doi.org/10.1007/BF01025983
http://dx.doi.org/10.1063/1.2358133
http://dx.doi.org/10.1063/1.1289238
http://dx.doi.org/10.1063/1.1289238
http://dx.doi.org/10.1038/35104697
http://dx.doi.org/10.1209/0295-5075/22/7/008
http://dx.doi.org/10.1103/PhysRevLett.80.3547

