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Wavelet imaging of transient energy localization in nonlinear systems at thermal equilibrium:
The case study of NaI crystals at high temperature
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In this paper we introduce a method to resolve transient excitations in time-frequency space from molecular
dynamics simulations. Our technique is based on continuous wavelet transform of velocity time series coupled to
a threshold-dependent filtering procedure to isolate excitation events from background noise in a given spectral
region. By following in time the center of mass of the reference frequency interval, the data can be easily
exploited to investigate the statistics of the burst excitation dynamics, by computing, for instance, the distribution
of the burst lifetimes, excitation times, amplitudes and energies. As an illustration of our method, we investigate
transient excitations in the gap of NaI crystals at thermal equilibrium at different temperatures. Our results
reveal complex ensembles of transient nonlinear bursts in the gap, whose lifetime and excitation rate increase
with temperature. The method described in this paper is a powerful tool to investigate transient excitations in
many-body systems at thermal equilibrium. Our procedure gives access to both the equilibrium and the kinetics
of transient excitation processes, allowing one in principle to reconstruct the full picture of the dynamical process
under examination.
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I. INTRODUCTION

Hamiltonian many-body systems with nonlinear interac-
tions admit quite generally a special class of periodic orbits,
whose amplitude-dependent frequency does not resonate by
construction with any of the linear (normal) modes (NM) and
whose oscillation pattern is typically exponentially localized
in space. These modes, termed discrete breathers (DB) [1–3]
or intrinsic localized modes (ILM) [4], have been shown
theoretically to exist at zero temperature in a wide range of
systems, including model lattices of beads and springs, such
as the celebrated Fermi-Pasta-Ulam (FPU) chain [5], real 2D
and 3D crystals [6], both in the gap [7] and above the phonon
spectrum [8], including cuprate high-Tc superconductors [9],
boron nitride [10], graphene [11–13] and diamond [14],
disordered media [15–17], and biomolecules [18] including
proteins [19,20]. Nonlinear modes of this kind are surmised
to play a subtle role in many condensed-matter systems. For
example, DBs have been found to be connected to negative-
temperature states (i.e., states for which the derivative of
entropy versus energy is negative) in the discrete nonlinear
Schrödinger equation [21], which is relevant to the physics
of Bose-Einstein condensates in optical lattices and arrays
of optical waveguides. ILMs have also been surmised to
accelerate the kinetics of defect annealing in solids [22] and
more generally to speed up heterogeneous catalysis processes
[23,24].

If zero-temperature nonlinear excitations are well-
established and fairly understood physical objects, when
it comes to systems at thermal equilibrium the scenario
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proves far more complex and thorny [25]. Numerical
techniques based on spectral analyses coupled to surface
cooling techniques have been proposed as means to detect
spontaneous DB excitation in model nonlinear lattices
[26]. More recently, other studies have also addressed this
problem via equilibrium MD simulations, both in model
nonlinear chains [27] and in crystals with realistic potentials
ranging from graphane [28,29] to crystals with the NaCl
structure [30].

Experimental evidence for nonlinear localized excitations
is no less a spinous matter. Nonlinear localized modes have
been found experimentally at finite temperature in Josephson
ladders [31] and arrays [32]. However, the oldest experi-
mental evidence explained in terms of excitation of ILMs at
finite temperature in a crystal are the elusive tracks arising
from nuclear scattering events in muscovite mica [33]. Such
dark lines, known since a long time [34], have led to the
suggestion that ILMs might act as energy carriers in crystals
along specific directions with minimal lateral spreading and
over long distances [35]. Recently, experimental evidence has
been collected in support of this inference, as infinite charge
mobility has been measured at room temperature in muscovite
mica crystals irradiated with high-energy alpha particles [36].

Indirect evidence for the nonequilibrium excitation of
ILMs at finite temperature has been also gathered through
inelastic x-ray and neutron scattering measurements on α-
uranium single crystals [37,38]. In particular, the authors of
these studies speculate that the excitation of mobile modes,
whose properties are consistent with those of ILMs, could
explain the measured anisotropy of thermal expansion and the
deviation of heat capacity from the theoretical prediction at
high temperatures [39]. More recently, the same authors have
published experimental evidence of the excitation of intrinsic
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localized modes in the high-temperature vibrational spectrum
of NaI crystals [40], where ILMs have been predicted to exist
at T = 0 and characterized by many authors [7,30,41–43].
In 2011, the same authors published time-of-flight inelastic
neutron scattering measurements performed on NaI single
crystals [44]. Their results seemed to point at the spontaneous
thermal excitation of ILMs, moving back and forth between
the [111] and [011] orientations at intermediate temperatures
and eventually locking in along the [011] orientation above
T = 636 K. Further inelastic neutron scattering measure-
ments on NaI crystals published in 2014 found no evidence
for thermally activated localized modes [45]. Even though
these measurements confirmed a very small peak within the
gap, its intensity is so small—the authors argue—that it is
nearly impossible to discern whether it is part of the inelastic
background or whether it is indeed a true signature of a co-
herent scattering event. However, in a subsequent paper [46],
Manley and coworkers made it clear that the interpretation
of the coherent scattering from NaI requires a correction of
the incoherent background from the incoherent cross section
of Na, which was not included in Ref. [45]. As the partial
phonon DOS of Na displays a stretch of reduced intensity at
high temperatures in the spectral region corresponding to the
T = 0 gap, when this correction is made (as in Ref. [46]), the
ILM feature becomes a little more pronounced. Combining
neutron scattering, laser flash calorimetry and accurate x-ray
diffraction data, the authors then argued that ILM localization
in NaI occurs in randomly stacked planes perpendicular to
the (110) direction(s) with a complex temperature dependence
[46]. As a result, they suggested that spontaneous localiza-
tion of ILMs should be regarded as some sort of collective
phenomenon rather than the random excitation of pointlike
modes.

To this complex scenario, one should add that the expected
relative fraction of light ions harboring a thermally excited
ILM in NaI is relatively low. As an example, the prediction
made in Ref. [41] for ILMs polarized along the [111] orien-
tation at T = 636 K is about 8.3 × 10−4, which would make
their direct observation a very hard matter.

Taken together, the facts exposed above reveal a lively
albeit rather intricate debate concerning the very existence of
thermal ILMs in crystals and the means to possibly spotlight
their presence and characterize them. In order to address
these questions, in this paper we develop a robust numerical
technique based on continuous wavelet analysis, designed
as a tool to pinpoint and characterize transient vibrational
excitations, in general, in many-body system, and illustrate it
in the case of NaI crystals. The paper is organized as follows.
In Sec. II, we describe the MD simulation protocol and present
our wavelet-based technique designed to pinpoint and charac-
terize transient energy bursts in the time-frequency plane. In
Sec. III, we apply our technique to characterize transient exci-
tation of energy in the gap of NaI crystals. In Sec. IV, based on
the assumption that the population of transient energy bursts
detected in the gap may contain spontaneous excitation events
of ILMs, we address the problem of how to sieve them out
of the burst population. In Sec. V, we summarize our main
findings and discuss possible improvements and extensions of
our method to detect and characterize spontaneous excitation
of ILMs at thermal equilibrium.

II. SIMULATIONS AND WAVELET ANALYSIS

In order to illustrate our approach, we have used the
molecular simulation (MD) engine LAMMPS [47] to simulate
the equilibrium dynamics of a NaI crystal as a function of
temperature. The simulation box comprises N3

c cubic unit
cells with periodic boundary conditions (PBC) along the three
Cartesian directions, each cell containing 4 Na+ and 4 I− ions.
For all simulations reported here, we have taken Nc = 10,
so that the total number of ions is 8000.1 The choice of
interatomic potentials is crucial. In order to determine the
best available choice, we have scrutinized a large body of
specialized literature [48–57], which led us to reconstruct a
total potential energy of the form

U ({r, R}) =
∑
i>j

V++(|Ri − Rj |) +
∑
i>j

V−−(|ri − rj |)

+
∑
i,j

V+−(|Ri − rj |), (1)

where Ri and ri denote the position vectors of Na+ and I−
ions, respectively. Each pairwise contribution comprises three
terms,

V±±(r ) = Q±Q±
4πε0r

+ WLR
±± (r ) + P SR

±±(r ). (2)

The Coulomb energy has been computed via the Ewald
method [58]. Instead of specifying a cutoff wave vector for the
Ewald sums, we have set the relative error in the calculation
of electrostatic forces to be less than 10−5 at any given time.
We have verified that our results did not change by requiring a
more accurate estimation. The potential energy WLR accounts
for a long-range potential of the (6,8) kind, namely,

WLR
±± (r ) = −C±

r6
− D±

r8
(3)

corresponding to induced dipole-induced dipole interactions
(C±) and induced dipole-induced quadrupole interactions
(D±) computed via the Kirkwood-Muller methods, i.e., using
experimental measurements of the ionic polarizability and
molar susceptibility [59,60]. The short-range term is well
described by a Buckingham-type potential [61] of the form

P SR
±±(r ) = A±± exp(−r/ρ±±) (4)

restricted to the nearest-neighbor shell (5 Å cutoff). The
values of the parameters in Eqs. (3) and (4) are listed in
Table I.

Since the lattice constant of NaI crystals is known exper-
imentally and has been used, alongside other experimentally
determined constants, to parametrize the potential energy (1)
[48–57], we have used these measurements to set the dimen-
sion of the unit cell at different temperatures and performed
fixed-volume simulations. A typical simulation consisted of
a first thermalization NVT stage of duration �tth, where

1We observe that PBCs with Nc = 10 appears a safe choice to
inspect energy localization on length scales of the order of half/one
unit cell.
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TABLE I. Parameters of the pair-wise short-range and long-
range potential energies used in this study to simulate the dynamics
a NaI crystal. For more information, see Refs. [48–57].

Short range Long range

Pair kind A±,± (eV) ρ±± (Å) C±,± (eV Å6) D±,± (eV Å8)

++ 8500.74 0.29333 4.93337 3.55827
−− 384.924 0.50867 810.714 805.769
+− 736.498 0.40100 54.9164 47.0954

the system was brought to thermal equilibrium through a
Nosé-Hoover thermostat [62,63] starting from zero initial
atomic displacements and random velocities drawn from a
Maxwell distribution. We have verified that �tth = 5 ps was
sufficient to correctly thermalize our system for tempera-
tures larger than 400 K. Once the system is thermalized, we
run constant energy trajectories (NVE) of duration �tp for
data production. It is interesting to remark that distortions
driven by the localization of nonlinear vibrational modes are
expected to conserve volume, as it was found for the internal
distortions associated with ILM localization in the faultlike
planar structures reported in Ref. [46].2 The results pre-
sented in the following refer to �tp = 100 ps, which afforded
a reasonable compromise between computational costs and
solid statistics. The time step used in the MD simulations was
0.001 ps.

Figure 1 illustrates the comparison of the low-temperature
phonon density of states computed by Fourier transforming
the velocity-velocity autocorrelation functions computed from
our LAMMPS NVT trajectories with the results from lattice
dynamics calculations performed with the GULP package [64].
The excellent agreement validates our MD simulation pro-
tocol and in particular the values of the phonon frequencies
that define the gap at zero temperature, i.e., ω1 = 16.104 ps−1

(upper edge of the acoustic band) and ω2 = 20.343 ps−1

(lower edge of the optical band).

A. Wavelet imaging of transient energy bursts in the gap

Wavelet analysis is the ideal tool to analyze nonstationary
signals in the time-frequency domain in order to characterize
transient frequency components appearing at specific times
and perduring for finite lapses of time. As a matter of fact,
Forinash and co-workers have shown 20 years ago that this

2The use of an NVT dynamics for production runs does not appear
to make sense in this study. In fact, thermostats are, in principle, noth-
ing but smart sampling techniques, designed to produce time series
sampled from the canonical measure. However, there is absolutely
no guarantee that the actual trajectories (i.e., the actual dynamics)
make any physical sense. In particular, all vibrational coherences
are either (artificially) damped or completely destroyed, depending
on the value of the relaxation time scale chosen for the specific
thermostat. In practice, it is preferable to switch off the thermostat
once the system has reached thermal equilibrium, so that no artificial
noise is left to fiddle with the vibrational coherences that might
emerge in specific frequency regions.
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FIG. 1. Phonon DOS of NaI computed from NVE MD simula-
tions (T = 38 K, LAMMPS, red staircases) and from lattice dynamics
calculations (T = 77 K, GULP, blue lines). The energy E = hν is
measured in units of the frequency ν.

kind of tools can provide precious information on the dy-
namics of discrete breathers at zero temperature in nonlinear
chains [65]. Thus, it appears natural to extend this line of
reasoning to explore transient nonlinear localization in real
crystals at thermal equilibrium. In this work, we have com-
puted the Gabor transform [66] of the time series of atomic
velocities, namely,

Giα (ω, t ) =
∫ +∞

−∞
e−(t−τ−�tp/2)2/ae−iωτ viα (τ ) dτ, (5)

where viα is the velocity of the ith ion along the Cartesian
direction α. We have set the resolution parameter a = 20 ps2,
optimized so as to maximize the resolution in both the time
and frequency domains.

As an illustration of our analysis, Fig. 2 shows typical
density maps of |Giα (ω, t )|2 computed from the velocity time
series of two random Na ions at T = 600 and 900 K. It can
be appreciated that, as the temperature increases, transient
energy bursts pop up increasingly deep in the gap and persist
with lifetimes of the order of up to 10 ps, during which their
frequency appears to drift to a various degree. In order to
separate energy bursts from the background and perform a full
temperature-dependent statistical analysis of the excitation
dynamics, it appears natural to impose a threshold PG on the
Gabor power so as to eliminate transient background noise. To
this end, we define the filtered normalized two-dimensional
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FIG. 2. Time-frequency density maps of the function |Giα (ω, t )|2 in the gap region for two different Na ions at T = 600 and 900 K along
the three Cartesian directions (x, y, z from top to bottom). Spectral power is color-coded from blue (low energy) to red (high energy). The two
horizontal white lines mark the edges ω1, ω2 of the gap region.

excitation density ρiα (ω, t ) as

ρiα (ω, t ) = |G̃iα (ω, t )|2∫ ω1

ω2
|G̃iα (ω′, t )|2 dω′ , (6)

where

G̃iα (ω, t ) =
{

Giα (ω, t ) for |Giα (ω, t )|2 � PG

0 otherwise
. (7)

This definition allows us to compute the time-dependent mo-
ments of ρiα (ω, t ), which provide important information on
the dynamics of transient energy excitation in the gap. In the
present work, we concentrate on the first moment, namely,

〈ωiα (t )〉 =
∫ ω2

ω1

ωρiα (ω, t ) dω. (8)

As it can be seen from the top panel in Fig. 3, the choice
of the threshold PG sets the resolution limit of individual
burst events. After careful examination of many such events,

we have fixed PG = 128 Å
2
, which ensures that consecutive

bursts should be optimally resolved. Although the results
reported in the following refer to this (rather conservative)
choice, we have repeated our analyses with the two lower val-
ues of PG shown Fig. 3. While the actual figures may change
slightly, we have verified that the relevant statistical and physi-
cal properties of the burst excitation dynamics are unchanged.

After the filtering and integration procedure for a given ion
i, the time series 〈ωiα (t )〉 are piecewise composed of stretches
of consecutive zeros (absence of a burst) and consecutive
nonzero values, each representing a burst and extending over
its corresponding lifetime. Such values describe the drift of
the center-of-mass frequency of the burst since the moment of
its excitation until it collapses. From the support of these time
series, it is then straightforward to obtain other restricted time
series per burst, most importantly the sequences of kinetic

energies and vibration amplitudes for each burst during its
lifetime.

III. RESULTS I: TRANSIENT ENERGY BURSTS IN THE
GAP WITH INCREASING LIFETIMES

Nonlinear localized vibrations in the gap of diatomic lat-
tices detach from the bottom of the optical band [67], which
means that their energy is almost entirely confined to light
ions. For a given Na ion, two key kinetics parameters describe
the burst excitation dynamics, notably the lifetimes tn and the
excitation times τn+1, n = 0, 1, 2, . . . These two measures are
illustrated in the middle panel in Fig. 3 for a random typical
excitation sequence. The excitation times are defined as the
intervals between consecutive excitation events. Together with
the lifetimes, they provide a rich wealth of information on the
kinetics of burst excitation at a given temperature. However,
irrespective of the kinetics, the temperature dependence of the
site-occupancy probability (SOP) P (T ) describes the equilib-
rium properties of this process. This can be simply computed
as the fraction of Na ions harboring at least one burst in the
gap along one of the Cartesian directions.3 The data, reported
in Fig. 4 (top left), can be fitted by a simple equilibrium model
of the kind

P (T ) = 1

1 + eβ�f
, (9)

where β = 1/kBT and �f = �ε − T �s is the free energy of
burst excitation per ion. The excellent fit of the MD simulation
data gives �ε = 0.54 ± 0.01 eV and �s = 9 ± 0.2 kB . The
data reported in Fig. 4 are obtained by averaging the site-

3In this work, we implicitly refer to the gap spectral region when
we mention the excitation of a burst.
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FIG. 3. (Top) Illustration of the filtering procedure to isolate energy bursts with three different thresholds (units of Å
2
). (Middle) Scheme

of the algorithm to identify lifetimes tn and excitation times τn during the production run �tp for a given ion from the time series of 〈ωiα (t )〉
defined in Eq. (8). (Bottom left) Kinetic model based on a two-well landscape fails to reproduce the kinetics and equilibrium properties of
burst excitation. (Bottom right) At least one intermediate state is required to rationalize the kinetics and equilibrium of the thermally activated
process of burst generation. This profile reproduces to scale a possible three-well landscape that is in agreement with our simulation data. The
energy scale that controls the burst lifetimes in this picture is δε := (�ε1 − �ε−

1 ) − �ε−
2 (see extended discussion in the text).

occupancy probabilities referring to bursts along individual
Cartesian directions. However, we observe that the three
individual SOPs are indistinguishable from one another (data
not shown), which appears natural in view of the symmetry of
the crystal.

It is interesting to note that the simple law (9) was found to
describe the excitation of ILMs along [111] in Ref. [41], with
�ε = 0.608 eV and �s = 4 kB , corresponding to the four
symmetry-equivalent L points at the boundary of the Brillouin
zone (BZ) from which an ILM can in principle detach with a
[111] polarization. In our case, we only expect a small fraction

of the bursts to possibly be transient excitations of ILMs. It is
nonetheless interesting to observe that the excitation energy
that we find is close to a very good guess for an ILM in 3D
NaI. Furthermore, the value �s = 9 kB is close to the overall
symmetry degeneracy of the L, K , and X points in the BZ
taken together, i.e., 10, corresponding to the extra degeneracy
associated with the theoretical conversion points to ILMs
along [110] (K) and along [100] (X). Of course, if this
interpretation has some truth to it, it seems that the three kinds
of ILMs might be excited at the same time and possibly move
as units back-and-forth among them, as already speculated
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FIG. 4. Analysis of the burst excitation equilibrium, kinetics, and dynamics. (Top left) Equilibrium burst site-occupancy probability at
Na ions vs temperature from the simulations (filled circles) and fit with the chemical equilibrium model (9). Best-fit parameters are �ε =
0.54 ± 0.01 eV, �s = 9 ± 0.2 kB . (Middle left) Average excitation times (see again Fig. 3) identified from the support of the filtered integrated
time series (8). Open squares represent the average values computed over all the pairs of consecutive excitation events, further averaged over
x, y, and z. The crosses represent the values computed by fitting the exponential tails of the distributions and rescaled so as to match the
high-temperature averages. This set of data is likely to better approximate the true values at low temperatures. The two lines are plot best-fit
Arrhenius laws of the kind (12). Best fit parameters are �ε1 = 0.12 ± 0.1 eV, k∞

1 = 0.18 ± 0.03 ps−1 (solid line) and �ε1 = 0.04 ± 0.02 eV,
k∞

1 = 0.06 ± 0.005 ps−1 (dashed line). The true value of �ε1 (i.e., the average computed over a simulation long enough to sample very long
excitation times) is expected to be in the interval [0.04, 0.12] eV. (Bottom left) Average lifetimes (see again Fig. 3) identified from the support
of the filtered integrated time series (8) (symbols) and fits with the three-states model expression (18). The solid line is a three-parameter
fit, where the floating parameters are t∞, δε := (�ε1 − �ε−

1 ) − �ε−
2 , μ = k∞

−1/k∞
1 and �ε−

2 is kept fixed at 0.04 eV. The dashed line is a
two-parameter fit, where �ε−

2 is kept fixed at 0.1 eV, while this time the energy scale that physically controls the increasing trend, δε, is kept
fixed at the previous best-fit value, i.e., δε = 0.07 eV (see text for the full discussion). (Top right) Average burst frequencies vs temperature.
(Middle right) Average burst amplitude vs temperature (filled diamonds) and average amplitude of the fluctuations of all Na ions in the system
(dashed straight line). The solid line is a fit with a function of the kind 〈A2(T )〉 = αT + βT 4, intended as a guide to the eye. (Bottom right)
Average burst kinetic energy vs temperature (filled pentagons), i.e., ensemble average of the individual burst energies. The dashed line marks
the equilibrium value 〈εkin〉 = 3kBT /2. At each temperature, the reported average frequencies, amplitudes, and kinetic energies represent the
ensemble averages of the individual average values per burst. The latter are computed by averaging over the individual drift of each single
burst, as identified from the support of the corresponding filtered time series (8). We remind the reader that each burst is associated with a
single Na ion and Cartesian direction.

by Manley and co-workers for the interplay of [110] and
[111] ILMs below 636 K [44]. We observe, however, that this
kind of complex dynamics would appear exceedingly difficult
to disentangle, even in the framework of a computational
study like this, as confirmed by the indistinguishability of the
SOPs describing burst excitation along individual Cartesian
directions.

From the point of view of chemical kinetics, the expression
(9) describes the equilibrium between two species/states with
an arbitrary number of intermediates. It is tempting to follow
this lead to get some insight into the burst excitation pro-
cess. In the simplest possible scenario, we would be dealing
with two states, F and B, describing random energy fluctu-
ations (F ) and energy fluctuations within a burst (B). In the
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framework of this simple mean-field description, the time
evolution of the site-occupancy probability would be given to
a first approximation by

∂P (T , t )

∂t
= k1[1 − P (T , t )] − k−1P (T , t ), (10)

where k1 and k−1 stand for the burst birth and death rates,
respectively. In this picture, one immediately sees that the
equilibrium site-occupancy probability is simply given by

P (T ) = 1

1 + k−1/k1
, (11)

where k−1/k1 is the effective dissociation constant of the
F − B equilibrium. In a simple picture described by an energy
landscape with two minima (Fig. 3, bottom left), the excitation
energy �ε would just be the difference between the two
excitation barriers �ε1 (F → B) and �ε−

1 (B → F ), defined
by Arrhenius-like laws of the kind

k1 = k∞
1 e−β�ε1 , (12)

k−1 = k∞
−1e

−β�ε−
1 . (13)

In this model, �ε = �ε1 − �ε−
1 < �ε1 and �s =

ln(k∞
−1/k∞

1 ). However, a quantitative analysis of our data
reveals that the best estimate of the excitation energy is
�ε1 = 0.12 ± 0.1 eV, which is lower than �ε (middle left
panel in Fig. 4). It should be stressed that the numerical
determination of average excitation times is a delicate matter,
for long excitation times are clearly under-represented in
the population of recorded events (i.e., pairs of consecutive
excitations). In fact, the population observed in a simulation
is obviously cut off at τ = �tp. This means that the observed
averages 〈τ (T )〉 are underestimated at the lower temperatures,
where excitation times are longer. In order to gauge this effect,
it is expedient to fit the exponential tail of the numerical
distributions before the cutoff. The temperature trend of
such decay times, lower in value than the corresponding
averages, should nonetheless be a good representation of the
true trend (i.e that of averages computed from infinitely long
simulations). The middle panel in Fig. 4 shows that this seems,
indeed, to be the case, placing the value of the excitation
energy �ε1 somewhere in the interval [0.04, 0.12] eV.

The fact that �ε1 < �ε rules out a simple two-minima
picture. To complicate the picture further, it can be seen from
Fig. 4 (bottom left panel) that the average burst lifetimes
are found to increase with temperature, in agreement with
previous results of MD simulations in crystals with the NaCl
structure at thermal equilibrium [68]. As a matter of fact, we
found that the distribution of burst lifetimes extends to longer
and longer times (up to lifetimes of the order of 20–30 ps) as
the temperature increases (see Fig. 5 ).These somewhat coun-
terintuitive results are also incompatible with a two-well free
energy landscape, which would predict 〈t (T )〉 ∝ 1/k−1 and
therefore lifetimes decreasing with temperature, as escaping
from the B state becomes more and more favored at higher
temperatures as prescribed by Eq. (13).

Of course, one might invoke general nonlinear effects to
explain the observed increase in self-stabilization of bursts
at increasing temperatures. However, it is not clear how this
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FIG. 5. Distributions of burst lifetimes at five representative tem-
peratures (symbols). The solid lines are plots of exponential fits to the
distribution tails.

can be quantified in simple terms. In this paper, we explore
another route that provides an effective description of the
burst excitation dynamics and has the advantage of sketching
a general interpretative paradigm to combine equilibrium and
kinetics observables.

ILM/DB excitation is expected to be a thermally activated
phenomenon, in view of the general existence of excitation
thresholds in nonlinear lattices [69,70]. This has been con-
firmed explicitly for spontaneous excitation of DBs in the
framework of surface-cooling numerical experiments in 2D
FPU lattices [71]. If one sticks to the physics of a thermally
activated process occurring along some reaction coordinate,
in order to rationalize the observed burst excitation process,
it is necessary to introduce at least an intermediate state, F ∗,
according to the kinetic model

F
k1−−⇀↽−
k−1

F ∗ k2−−⇀↽−
k−2

B. (14)

The state F ∗ could be interpreted as a precursor fluctuation
that can be either stabilized—this is where nonlinear effects
come into play in this picture—to yield a persistent burst, or
it can decay back into the background. As we shall see in the
following, the obvious coming into play of nonlinear effects
as temperature increases is confirmed by the observed trend of
the burst average amplitudes. The scheme (14) corresponds to
a three-minima landscape as illustrated in Fig. 3 (bottom right
panel). The relative equilibrium population of the B state, i.e.,
the burst site-occupancy probability P in our analogy, can be
simply computed by imposing the detailed-balance conditions
k1Fe = k−1F

∗
e and k2F

∗
e = k−2Be. This yields immediately

P ≡ Be

Fe + F ∗
e + Be

= 1

1 + k−2(k1 + k−1)

k1k2

. (15)

In this model, the burst lifetime is set by the rate k−2.
With reference to the landscape depicted in the bottom
right panel in Fig. 3, let us take 〈t (T )〉 ∝ 1/k−2 and let
us assume that k2 and k−2 are described by Arrhenius ex-
pressions such as (12) and (13) [i.e., k2 = k∞

2 exp(−β�ε2),
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k−2 = k∞
−2 exp(−β�ε−

2 )]. Then, comparing Eqs. (15) and (9),
we are led immediately to the following expression:

〈t (T )〉 = t∞

(
1 + μeβ��ε1

1 + μ

)
e−β(��ε1−�ε−

2 ), (16)

where ��ε1 := �ε1 − �ε−
1 , μ = k∞

−1/k∞
1 , and t∞ is the

asymptotic, infinite-temperature lifetime (∝ 1/k∞
−2) deter-

mined uniquely by the kinetic (entropic) constants (see again
the three-well landscape pictured in Fig. 3).

The function (16) is a monotonically decreasing function
of temperature or features a minimum at low temperatures and
an increasing trend for higher temperatures depending on the
relative value of the relevant kinetic and energy scales. More
precisely, an increasing portion at high temperature will be
observed provided (��1 − �ε−

2 )/�ε−
2 > μ, that is,

�ε1 − �ε−
1

�ε−
2

> 1 + k∞
−1

k∞
1

. (17)

It should be observed that no bursts in the gap are observed in
our simulations below 500 K (see again the top left panel in
Fig. 4). This is consistent with a barrier �ε1 in the 0.1 eV
ballpark (at 500 K the average kinetic energy per particle
would yield a rate k1 ≈ 0.1k∞

1 ). Thus the three-wells free
energy landscape sketched in Fig. 3 should be considered as
describing the stabilization of fluctuations for temperatures
�500 K. The two barriers should be imagined as being vanish-
ingly small at lower temperatures, where, at most, fluctuations
might be described by a simple two-state F − F ∗ equilibrium.
This is the regime where bursts become short-lived and make
only rare appearances in the gap, most likely, close to the
bottom of the optical band (see again the left panel in Fig. 2).

We see from the condition (17) that, physically, increasing
burst lifetimes at high temperatures arise as a combination
of (i) slow decay kinetics of the intermediate state F ∗,
(ii) large values of the energy describing the F − F ∗ equi-
librium, �ε1 − �ε−

1 , and small values of the energy barrier
for the decay of the B state, �ε−

2 . In particular, if the velocity
constant of the F ∗ → F de-excitation is much slower than the
velocity of the first excitation, F → F ∗ (i.e., a large positive
entropy difference in favor of the F ∗ state), then the term
proportional to μ can be neglected and the burst lifetime
will be an increasing function of temperature over the whole
physically meaningful temperature range, as controlled solely
by the positive energy difference (�ε1 − �ε−

1 ) − �ε−
2 .

From a practical standpoint, due to the short temperature
stretch available to fit the numerical data and the functional
form (16), it is not possible to fit meaningfully all the unknown
parameters in Eq. (16). However, the energy scale controlling
the increasing trend is δε := (�ε1 − �ε−

1 ) − �ε−
2 . Hence the

agreement of this simple kinetic mean-field theory with the
simulations can be assessed by fixing the unknown barrier
�ε−

2 and fitting a functional form of the kind

〈t (T )〉 = t∞

(
e−βδε + μeβ�ε−

2

1 + μ

)
(18)

with t∞, μ, and δε free to float. For example, with �ε−
2 =

0.04 eV, we get μ = 0.06 ± 0.03, δε = 0.07 ± 0.03 eV, and
t∞ = 10 ± 2 ps. To obtain a more meaningful assessment,

we repeated the fit by fixing the barrier to a different value,
�ε−

2 = 0.1 eV, and kept δε = 0.07 eV from the first fit. It is
clear from Fig. 4 that the theory still describes the simulation
data in the observed temperature range. In this case, we get
consistent values of the two floating parameters left, namely
μ = 0.013 ± 0.03 and t∞ = 11.5 ± 0.2 ps.

The top right panel in Fig. 4 shows the average frequency
of bursts as a function of temperature. Of course, the lower
edge of the phonon optical band is expected to soften, hence it
is difficult to disentangle nonlinear phonon frequencies from
possible ILM events from these average data as the gap gets
progressively colonized by soft nonlinear phonons. In the
following, we will discuss this point further and point to a
possible strategy to get more insight as to ILM signatures.

At variance with the average frequencies, an analysis of
the average vibrational amplitudes of bursts in the gap reveal
a telltale sign of nonlinear effects. In the middle right panel
in Fig. 4, we compare the mean square displacement (MSD)
computed over all Na ions in the crystal with the average
MSD of Na ions hosting a burst (i.e., the mean over the
burst population of the average MSD of each burst, the latter
being computed over its corresponding lifetime). It is clear
that, starting from temperatures of the order 500 K, bursts
clearly vibrate with increasing amplitudes, detaching from
the harmonic ∝ T law. This seems to indicate that bursts of
energy in the gap are intrinsically nonlinear excitations.

Another rather puzzling piece of information comes from
the analysis of the average burst kinetic energies (lower right
panel in Fig. 4). These turn out to follow a linear trend, as the
equipartition theorem would prescribe for each and every Na
ion in the system, however, the average energies seem to be
proportional to an effective temperature that is about 100 K
higher than the true one (see the dashed line in the lower
right panel of Fig. 4). In other words, during the lifetime of a
burst, the corresponding Na ion has on average systematically
a higher energy than the average Na ion in the system. This is
in agreement with the behavior of the MSD. If one surmises
that the fraction of bursts that display characteristics typical of
ILMs is non-negligible, a possible explanation of these effects
might reside in the known tell-tale ability of ILMs to harvest
energy from the background by absorbing lower-energy radi-
ation [2,71]. Pushing this line of reasoning further, the origin
of the observed higher-than-average energies of bursts in the
gap might reveal a sheer nonlinear self-stabilization process
akin to the well-known ILM behavior during surface cooling
[71] or akin to the properties of the so-called chaotic breathers
[72,73].

IV. RESULTS II: SIEVING THROUGH THE POPULATION
OF BURSTS FOR ILMS

The wavelet-based procedure described in this work allows
one to build and characterize ensembles of nonlinear exci-
tations that increasingly populate the gap as the temperature
is raised. Even though these soft excitations display distinct
ILM-like features, such as the apparent ability to gather
some energy from the background and self-stabilize during
their lifetime beyond the equipartition law, it is hard to state
whether such bursts are indeed instances of ILM excitation. In
fact, according to the general arguments developed by Sievers
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FIG. 6. Illustration of the procedure employed for sifting possi-
ble ILM-like excitations through the whole ensembles of bursts in the
gap. At each temperature, [100], [110], and [111] subensembles are
created (transparent circles) by keeping only the bursts closer than
1% to the corresponding theoretical ILMs [43] (solid lines) in the
frequency-amplitude plane.

and co-workers in Ref. [41], the site-occupancy probability of
a thermal ILM is expected to be very low—about 0.02 for a
[111] excitation in 3D NaI at T = 900 K. While numerical
analogues of exquisitely nonlinear experimental techniques
such as discussed in Ref. [74] would be powerful tools to
address this question, it also makes sense to turn to theoret-
ical predictions for T = 0 excitations as possible templates,
against which the raw ensembles of gap bursts can be sifted.

The theoretical ILM frequency-amplitude relations re-
ported in Ref. [43] are shown as solid lines in Fig. 6 for
the three ILM polarizations, [100], [110], and [111]. At each
temperature, we sifted through the whole collection of bursts
and assembled three subpopulations by keeping only those
excitations whose distance from the theoretical curves was
less than 1%. Practically, for each burst, we recovered the
three theoretical frequencies corresponding to its measured
average amplitude. The burst was then kept under the ap-
propriate polarization label if the relative difference between
its average frequency and the theoretical frequency was less
than 1%. We observe that this is a rather crude scheme, as
each burst is associated with a single Cartesian direction.
Therefore, while this procedure makes perfect sense for the
[100] polarization, it might be objected that by doing this we
are not enforcing the additional correlations among different
Cartesian directions required by the assumed polarizations.
Of course, a burst found along x that would correspond to a
genuine ILM polarized along the [110] direction would most
likely match to some extent a burst on the same ion along
the y direction. However, this is a tricky matter, as the phase
relation between the two directions might be such that the two
bursts would not necessarily appear correlated, depending on

TABLE II. Best-fit values of the energy and entropy differences
describing the equilibrium between energy fluctuations and stabi-
lized bursts according to the law (9), with �f = �ε − T �s. The
excitations labeled according to different polarizations correspond to
the subpopulations sieved out at each temperature from the whole
ensemble of bursts by keeping only the excitations that match the
corresponding theoretical frequency-amplitude relations taken from
Ref. [43] (see again Fig. 6).

Excitation kind �ε (eV) �s (kB )

All 0.54 ± 0.01 9 ± 0.2
[100] 1.16 ± 0.06 11.4 ± 0.8
[110] 0.32 ± 0.01 2.5 ± 0.2
[111] 1.06 ± 0.04 11.9 ± 0.5

the spectral resolution and on the burst lifetime itself. While
conceiving the appropriate tool to enforce such constraints
as rigorously as possible, we are nonetheless reporting here
some interesting results obtained with the simplest sieving
procedure outlined above.

Direct inspection of Fig. 6 shows that the number of pu-
tative ILM excitations increases with temperature. Moreover,
it seems that the excitations that fall on the [110] theoretical
curves are much more abundant than the [100] and [111]
excitations, despite that the theory developed in Ref. [43] pre-
dicted the [111] modes to be the most stable ones. However,
it should be remarked that the lifetime ≈3 × 10−9 s, predicted
in Ref. [43] for the [111] modes based on the interaction with
a (Bose-Einstein) thermal distribution of phonons, exceeds by
two orders of magnitude the longest lifetimes assigned to a
burst in the gap in this study (about 30 ps).

The top left panel in Fig. 7 compares the site-occupancy
probabilities relative to the ILM subpopulations to the global
site-occupancy probability of the whole burst database. The
data are well fitted by general chemical equilibria between two
free-energy minima (possibly separated by a number of in-
termediates), embodied by expression (9). The corresponding
free-energy differences are reported in Table II. It can be ap-
preciated that putative ILM excitations along [100] and [111]
appear to be rather in the minority with respect to generic
burst excitations. Putative [110] modes seem to be more
numerous at low and intermediate temperature. Nonetheless,
the population of these kind of excitations seem to increase
with temperature as that of the generic bursts, while [100] and
[111] modes appear to be about three orders of magnitude
less than generic bursts at intermediate temperatures, while
surging in number with temperature much more rapidly than
[110] modes. This is reflected by the best-fit value of the
enthalpy and entropy differences (see Table II). Putative [100]
and [111] ILM-like bursts seem far easier to excite from the
point of view of entropy than [110] excitations, explaining the
marked temperature dependence of their SOP. It is interesting
to observe that the predictions made in Ref. [41] for [111]
modes seem to underestimate the excitation entropy differ-
ence (4 kB versus 12 kB), which results in a reduced tem-
perature dependence of their excitation equilibrium (dashed
line in the top left panel of Fig. 7). This might indicate that in
general at thermal equilibrium there might be more excitation
channels than merely specified by the symmetry-equivalent
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FIG. 7. Burst analysis for the putative ILM subpopulations compared to the data for the whole burst ensemble. (Top left) Site-occupancy
probabilities and fits with the expression (9). The corresponding best-fit parameters are reported in Table II. The green dashed line is the
SOP computed in Ref. [41] for [111] ILM excitations. (Top right) Average lifetime. (Bottom left) Mean-square displacement. The dashed line
represents the average computed over the whole set of Na ions in the crystal. (Bottom right) Average kinetic energy. The dashed line marks
the equipartition result. As expected, this describes the average kinetic energy of Na ions when computed over the whole set of Na ions in the
crystal.

points at the boundary of the Brillouin zone (L points in
the case of [111] modes). These might reflect interconversion
events or mixed-character modes, as already suggested in
Ref. [44].

An analysis of the lifetimes measured for putative ILM-
like excitations also confirms some of the predictions made
in Ref. [43] (top right panel in Fig. 7). Excitations along
[100] and [110] display lower-than-average lifetimes, while
the lifetimes of [111] excitations increase rapidly with tem-
perature, to last beyond average bursts at high temperatures.
Interestingly, the lifetimes of [100] and [111] bursts seem to
display a marked dependence on temperature, matched by
their rapidly increasing SOP, while [110] excitations show
nearly temperature-independent lifetimes, rhyming with a
much more slowly increasing SOP (top left panel). This seems
to point to a less marked nonlinear character for bursts sieved
out along [110].

Amplitudes and energies of bursts seem to trace a consis-
tent picture (bottom panels in Fig. 7). While along [110], and
to a lesser extent along [100], the data relative to the putative
theoretical subpopulations display trends that are consistent
with the average behavior of the whole burst database, the
[111] subensemble demonstrates a substantially contrasting
trend. More specifically, excitations selected to lie along the
theoretical [111] dispersion law display systematically higher-
than-average energies and larger-than-average amplitudes.
This is consistent with a more marked nonlinear character
of these excitations, which in turn upholds the predictions
reported in Ref. [43] concerning the markedly higher lifetime
of [111] ILMs.

V. CONCLUSIONS AND DISCUSSION

In this paper, we have introduced a method to resolve
transient localization of energy in time-frequency space. Our
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technique is based on continuous wavelet transform of ve-
locity time series coupled to a threshold-dependent filtering
procedure to isolate excitation events from background noise
in a specific spectral region. A frequency integration in the
reference spectral region allows us to track the time evolution
of the center-of-mass frequency of that region. These reduced
data, in turn, can be easily exploited to investigate the statistics
of the burst excitation dynamics. For example, this procedure
can be employed to characterize the distribution of the burst
lifetimes and investigate the roots of the excitation process by
looking at the distribution of excitation times (time intervals
separating consecutive excitation events).

As an illustration of our method, we have employed the
wavelet-based energy burst imaging technique to investigate
spontaneous localization of nonlinear modes in the gap of
NaI crystals at high temperature. Our method allows one
to build a database of excitation events, and to measure
their site-occupancy probability, average lifetime, energy, fre-
quency, amplitude, and excitation times. It is highly likely
that such database contains subpopulations corresponding to
spontaneous excitation of ILMs, provided a sufficient number
of events is recorded, i.e., provided large enough systems
are considered and long-enough trajectories are simulated.
Overall, the burst database shows rather clearly that the events
recorded are thermally excited. One way to rationalize the
overall excitation equilibrium and kinetics is in terms of a
reaction kinetic scheme involving chemical species equiva-
lents, representing fluctuations (F), bursts (B) along with a
variable number of intermediates. The numerically measured
lifetimes and excitation times suggest that such kind of reac-
tion scheme is associated with an energy landscape with as
many minima as different virtual species. It is possible that
this analogy could be pushed even farther than this, through
the identification of the appropriate collective coordinates (the
support of the energy landscape), which could allow one
to reconstruct the landscape from the simulations through
standard free-energy calculation algorithms.

The problem than one faces in the second logical stage
of our method is how to single out events corresponding to
genuine ILM excitation, as opposed to generic soft nonlinear
phonon excitations. We observe that this is a rather formidable
task, as the fraction of such events is expected to be low,
while their polarization and localization length can only be
guessed from zero-temperature calculations. In this paper, we
have followed a very simple and minimalistic strategy, based
explicitly on the zero-temperature predictions, to sift through
the whole burst database at each temperature in the quest
for ILM events. This procedure seems to succeed, at least
partially, in the task of isolating events that display a marked
nonlinear character. In particular, events selected from the
burst database by matching the theoretical T = 0 frequency-
amplitude relation for the [111] polarization seem to detach
the most from the average behavior of the entire databases,
suggesting that at least some of these events might be genuine
ILMs along [111]. The corresponding site-occupancy prob-
ability for these events is described by the same theoretical
expression as suggested in Ref. [41], although we find that
there might be more excitation pathways for these modes than
merely specified by the symmetry-equivalent points at the

boundary of the Brillouin zone (L points). This might reflect
interconversion events or mixed-character modes, as hinted at
in Ref. [44].

From a general point of view, it is hard to state whether
thermal populations of ILMs in crystals allow them to be
detected and characterized directly from equilibrium MD sim-
ulations. It is possible that this would require, in general, some
sort of an intrinsically nonlinear pump-probe technique to
enhance selectively thermal populations of nonlinear excita-
tions. A clever example of amplification and counting of ILM
excitations is reported in Ref. [75] for quasi-one-dimensional
antiferromagnetic lattices, where an original pump-probe
technique based on a four-wave mixing amplification of the
weak signal from the few large-amplitude ILMs is used to
count ILM emission events. In principle, an ILM generation
and steady-state locking techniques such as further discussed
in Ref. [74] could be implemented numerically to produce
energy localization in a controlled fashion in atomic lattices
at high temperature.

In general, ILM localization is expected to be accompanied
by a strain field (sometimes referred to as the dc component)
as a result of odd-order anharmonic terms. Moreover, as sug-
gested in Ref. [46], the strain field associated with thermal ex-
citation of ILMs is expected to take the form of planar faultlike
structures with an occurrence frequency f of approximately
one in every ten cells (f = 1/10). However, our method is
based on the analysis of velocity time series. Therefore it is
insensitive in principle to static distortions associated with
the ILM displacement fields. Nonetheless, we observe that a
spatial version of our method could be designed in principle
to detect the features of the strain fields associated with ILMs,
by Gabor transforming spatial-Fourier transformed time series
corresponding to specific wave vectors. To make contact with
the results reported in Ref. [46], one should also consider
larger systems including at least twice as many cells in each
directions than the present study.

Although we demonstrated here the power of wavelet-
based imaging to investigate the dynamics of nonlinear ex-
citations in the gap of NaI crystals, methods of the like can
be useful in many contexts where one wishes to characterize
transient energy excitation or energy transfer processes. The
latter kind of phenomena, which is not investigated here, ap-
pears to be a promising domain of application of our method,
both at the classical and quantum level. For example, it would
be interesting to adopt a tool inspired to our method to char-
acterize the dynamics of energy transfer and exciton-phonon
interactions in light-harvesting complexes [76–78]. Wavelet-
based methods could be used to characterize the dynamics of
vibrational energy transfer [79,80] in many complex system,
including biomolecules. For example, coupled to pump-probe
molecular dynamics approaches [81] to investigate in a time-
resolved manner long-range coupling [82] in frequency space.
These analysis could provide important information as to the
structural and dynamical determinants of allosteric commu-
nication in proteins [83]. More generally, our method could
make it possible to reconstruct the topology of the network
of nonlinear interactions in a normal-mode space that is dual
to the geography of energy redistribution in 3D space in
many-body systems [84].
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