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We introduce a nonlinear operator to model diffusion on a complex undirected network under crowded
conditions.We show that the asymptotic distribution of diffusing agents is a nonlinear function of the nodes’
degree and saturates to a constant value for sufficiently large connectivities, at variance with standard
diffusion in the absence of excluded-volume effects. Building on this observation, we define and solve an
inverse problem, aimed at reconstructing the a priori unknown connectivity distribution. Themethod gathers
all the necessary information by repeating a limited number of independent measurements of the asymptotic
density at a single node, which can be chosen randomly. The technique is successfully tested against both
synthetic and real data and is also shown to estimate with great accuracy the total number of nodes.
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Networks are everywhere. The brain, Internet and cyber
world, foodwebs, social contacts, and commuting fall within
the vast realm of network science [1–3]. Irrespective of the
specific domain of application, individual entities (e.g.,
material units, bits of information) belonging to a certain
population may jump from one site (node) to its adjacent
neighbors, following the intricateweb of distinct links,which
defines the architecture of a complex network [4–9]. The
ability of agents to explore the network to which they are
bound is customarilymodeled as a standard diffusive process
[4,10]. Individuals are therefore independent from each
other, while mutual interference stemming from the com-
petition for the available space is deliberately omitted.
However, in real-world applications, the carrying capacity
of each node is finite, an ineluctable constraint that should be
accommodated for under crowded conditions [11–20]. On
the other hand, the structure of the network is often unknown.
Several methods have been introduced in the literature aimed
at reconstructing the topology of the network from a direct
assessment of the transport dynamics [21–23]. This amounts
to solving an inverse problem, from functions back to
structure, a task that involves formidable challenges [23–25].
Working along these lines, the aim of this Letter is

twofold. On the one side, we will introduce a nonlinear
operator to describe diffusion in a crowded network. The
derivation originates from a microscopic stochastic frame-
work and it is solidly grounded on first principles. As an
important by-product of the analysis, we will discuss the
idea of “functional degree centrality,” as opposed to the
usual structural notion that is routinely invoked in network
studies. Then, we will outline an innovative scheme that
exploits the dynamical entanglement among walkers to
reconstruct the unknown topology of the network. The
method allows one to accurately determine the distribution

of connectivities (degrees) and to quantify, with unprec-
edented efficiency, the size of the examined network, as we
shall here demonstrate for a selection of paradigmatic
examples. Notably, all necessary information is gathered
from just one randomly chosen node of the collection.
Let us consider a generic undirected graph composed of

Ω nodes and characterized by its adjacency matrix A
(Aij ¼ 1, if nodes i and j are connected, zero otherwise).
The degree of each node, namely, the number of connected
neighbors, is ki ¼

P
jAij. Each node is endowed with a

given “carrying capacity,” i.e., is assumed to be partitioned
into a large number N of compartments, which can be
either occupied by an agent (a physical or abstract entity) or
empty. The stochastic dynamics of a collection of particles
randomly hopping on a network and competing for the
available space within nodes is described by the following
master equation

d
dt
Pðn;tÞ¼

X
i;j

Aij½Tðni;njjniþ1;nj−1ÞPðniþ1;nj−1;tÞ

−Tðni−1;njþ1jni;njÞPðni;nj;tÞ�; ð1Þ

where Pðn; tÞ denotes the probability that the system will
be in the state n ¼ ðn1;…; nΩÞ at time t [15]. The scalar
quantity ni identifies the number of particles on node i. On
the right-hand side of Eq. (1) we indicate explicitly only the
species that are involved in the selected transition. In this
stochastic process, one of the walkers sitting on node i is
selected with probability ni=N and then made to jump to
one of the ki neighboring nodes with probability 1=ki.
However, this can only occur if the target node is not fully
occupied, i.e., with probability ðN − njÞ=N. Overall, the
hopping probability Tð·j·Þ from node i to node j reads
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Tðni − 1; nj þ 1jni; njÞ ¼
1

ki

ni
N

ðN − njÞ
N

: ð2Þ

The above nonlinear transition probabilities accommodate
for excluded-volume interactions [12]; i.e., the jump rate is
modulated by the crowding at destination. Multiplying by
ni both sides of Eq. (1) and summing over all ni (see
Supplemental Material [26] and Ref. [27]), one obtains the
rate equations for the evolution of the average density
hnii≡P

nniPðn; tÞ. In the thermodynamic limit ρi ¼
limN→∞hnii=N and a straightforward manipulation yields

∂
∂t ρi ¼

XΩ
j¼1

Δij

�
ρjð1 − ρiÞ −

kj
ki
ρið1 − ρjÞ

�
; ð3Þ

where use has been made of the fact that Aij ¼ Aji and
hninji ¼ hniihnji (a condition that holds exact when
N → ∞ [27]).
In the above equation, Δij ¼ Aij=kj − δij denotes the

elements of the Laplacian Δ, the transport operator that
describes diffusion of noninteracting agents on a hetero-
geneous network [10]. Working under diluted conditions
amounts to neglecting nonlinear terms in Eq. (3), which
therefore reduces to the standard diffusion equation
ð∂=∂tÞρi ¼ PΩ

j¼1 Δijρj [28]. The mass (total number of
individuals) is an invariant of the dynamics, which means
that the quantity β ¼ PΩ

i¼1 ρiðtÞ ∈ ð0;Ω� is conserved.
Owing to the inherent symmetry, which implies detailed

balance, the equilibrium solution ρ∞i of Eq. (3) can be
determined analytically by setting ρ∞j ð1 − ρ∞i Þ − ρ∞i kj=
kið1 − ρ∞j Þ ¼ 0, ∀i; j [30]. Disregarding the trivial solution
ρ∞i ¼ 1, one gets ρ∞j ¼ aikj=ð1þ aikjÞ, where ai ¼
ρ∞i ½kið1 − ρ∞i Þ�−1. By definition, ρ∞j should not depend
on i, which in turn implies ai ¼ a∀i. This gives

ρ∞i ¼ aki
1þ aki

; ð4Þ

where the constant a should be determined from the
normalization condition

PΩ
i¼1ðakiÞ=ð1þakiÞ¼β. Under

diluted conditions, Eq. (4) returns the standard equilibrium
solution for the diffusion operator: the asymptotic distribu-
tion of walkers at node i is proportional to its connectivity ki.
Peaks in the steady-state concentration therefore identify
structural hubs of the network, while peripheral nodes are
associated with modest densities. In many practical appli-
cations, including page ranking schemes, the distribution of
hopping walkers is hence believed to return an immediate
measure of the nodes’ centrality. Further, punctual informa-
tion as delivered by a large, although finite, population of
individual diffusing on a network is usually processed by
assuming a distribution of the incoming signals, which
scales linearly with the connectivity of the nodes [1].
Nonlinear interference among interacting walkers compet-
ing for space alters significantly the aforementioned simple

scenario. For sufficiently large connectivities, the predicted
distribution (4) reaches a constant value. This effect is more
pronounced the larger the value of a or, equivalently, the
larger β. In Fig. 1, we report the equilibriumdensity obtained
from Eq. (4) on a scale-free network under different
crowding conditions. When β grows, hubs become pro-
gressively less distinct. Structural centrality, as revealed by
the distribution of noninteracting agents (and asymptotically
approached in the limit β → 0), differs significantly from
functional centrality, which follows the equilibrium distri-
bution when β ≠ 0 and nodes are assigned a finite carrying
capacity. Elaborating on this dichotomy is particularly
relevant for scale-free networks.
As anticipated, the nonlinear transport operator intro-

duced above opens up the perspective of designing a novel
scheme to access key global features of a network from
direct measurements of the steady-state dynamics. We aim,
in particular, at determining pðkÞ, the distribution of
connectivities k, which conditions implicitly the equilib-
rium density of agents [31]. Importantly, our method also
allows us to estimate the total number of nodes Ω in the
network. In the following, we will outline the mathematical
steps of the procedure and then move forward to discussing
a selected gallery of case studies.
For any fixed β, we monitor the dynamics of the system

at just one node of the collection (hereafter, i). After a
sufficiently long time, one can measure the local asymp-
totic concentration ρ∞i . Assuming the local connectivity ki
to be known, which is a reasonable working hypothesis
given that we are sitting at node i, we can write

aðβÞ ¼ ρ∞i
1 − ρ∞i

1

ki
;

where the dependence of a on β has been emphasized. We
now rewrite the normalization condition so as to bring pðkÞ
into the picture, that is,

β ¼
X
k

pðkÞ aðβÞk
1þ aðβÞk : ð5Þ

Since the network is limited in size, the previous sum
involves a finite number of terms. Performing s

FIG. 1. Asymptotic distribution of walkers diffusing on a scale-
free network under different crowding conditions, as specified by
β. Standard diffusion is recovered in the limit β → 0 and
displayed in the leftmost picture. Nodes are drawn with a size
proportional to the corresponding asymptotic density, ρ∞i .
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independent measurements (or experiments), carried out
for different values of the constant β, yields

β ¼ Fp; ð6Þ
where β ¼ ðβ1;…; βsÞT , p ¼ (pð1Þ;…; pðsÞ)T , and Flr,
the generic element of matrix F, is given by

Flr ¼
raðβlÞ

1þ raðβlÞ
:

Determining the components of the vector p amounts to
inverting matrix F. Notice that s, the number of indepen-
dent measurements performed, should be at least equal to
the maximum degree of the inspected network, which is not
known a priori. As it is shown in the Supplemental
Material [26], one can progressively increase s until the
reconstructed pðkÞ converges to a stable profile.
Monitoring the first moments of the distribution against
s provides a robust stopping criterion (see Supplemental
Material [26]).
The matrix F can be ill-conditioned when the size of the

inspected network is too large. In this case, dedicated
regularization schemes can be employed to carry out the
matrix inversion and recover the degree distribution [32].
To further improve the accuracy of the reconstruction, one
can also impose additional constraints on the inversion
algorithm, such as requiring a positive-defined pðkÞ. A
comment is in order before turning to test the adequacy of
our methodology. Our protocol to reconstruct the unknown
distribution of connectivities works if excluded-volume
effects are accounted for. Under extremely diluted con-
ditions, standard diffusion holds and ρ∞i ¼ bki, with b
constant. In this case, Eq. (5) yields the trivial condition
hki ¼ β=b, where hki ¼ P

jpðkjÞkj. Hence, performing
many experiments for different values of β simply returns
independent estimates of the first moment of the distribu-
tion. It is the nonlinear nature of (4), the macroscopic
blueprint of crowding, that enables the higher order
moments of pðkÞ to be self-consistently computed from
independent experiments [33]. Notice that one can readily
extend the microscopic diffusion model so as to accom-
modate for different carrying capacities on each node. Also,
in this case, it is straightforward to obtain the corresponding
mean-field equation and to compute the associated sta-
tionary solution. Assuming known the capacity of the node
where the measurements are performed, one can immedi-
ately adapt the reconstruction scheme to this general setting
(see Supplemental Material [26]). In the remaining part of
this Letter, we will validate the procedure against a limited
selection of case studies that bear both theoretical and
applied interest.
As a first example, we consider an Erdos-Renyi random

network [34] with Ω ¼ 1000 nodes and a probability for
two random nodes to be linked p ¼ 0.5. According to the
procedure discussed above, we track the evolution of the
walkers and measure the asymptotic density at a generic

node i, whose connectivity ki is assumed to be known.
Here, s ¼ 600 < Ω independent experiments are per-
formed and the information processed to infer the distri-
bution of connectivity pðkÞ. In Fig. 2(a), we compare the
reconstructed profile with the exact distribution. The agree-
ment is good and illustrates well the efficacy of our
procedure. Integrating the mean-field deterministic dynam-
ics, or operating under the original stochastic framework
[35], returns consistent and equally accurate results (see
Supplemental Material [26]). From the reconstructed dis-
tribution, one can readily calculate Ω ¼ P

kpðkÞ, the total
number of nodes of the network. In this case, with s ¼ 600
measurements, one obtains the true value Ω ¼ 1000.0.
The second example is a scale-free network generated

according to the preferential attachment rule [36]. In
Fig. 2(b), we compare the exact distribution of connectivities
(circles) with the approximated solution (squares) inferred
through our algorithm. Also in this case, the agreement is
satisfying: the power-law scaling is correctly reproduced
and the predicted number of nodes are in excellent agree-
ment with the true value (see caption of Fig. 2).
Finally, we turn to study two other examples that build

on real networks: the well-known Karate Club network
[37,38] and the C. elegans metabolic network (which was
artificially made undirected) [38,39]. Diffusion is assumed
to occur subject to finite-volume constraints and the
method exemplified above is applied in order to recover
the degree distribution from single-node measurements of
the steady state. The results reported in Figs. 2(c) and 2(d),
respectively, quantify the predictive power of the proposed
methodology.
Summing up, we have introduced a novel nonlinear

operator to model the process of diffusion on a complex
network under crowded conditions. Agents may randomly
hop from one node to another, provided free space is
available at the target destination. The asymptotic density
distribution in the presence of crowding differs significantly
from that predicted by standard diffusion, i.e., under diluted
conditions. In the latter case, the density scales linearly with
the nodes’ degree, while in crowded conditions, the equi-
librium concentration saturates for large enough values of
the connectivity. Based on this observation,we discussed the
notion of functional hubs, as opposed to that based only on
topology. Further, we developed an efficient scheme that
enables one to infer the unknown distribution of connectiv-
ities from single-node measurements of the asymptotic
diffusion dynamics. The method takes advantage of the
interference that builds up among microscopic agents as a
consequence of the competition for the available space.
Tests are performed using both synthetic and real networks,
which illustrate convincingly the power of our method.
The reconstruction scheme that we have introduced could

prove useful in a number of different applications where
the competition for available spatial resources is to be taken
into account. For instance, crawlers that are customarily
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employed for web indexing protocols are naturally exposed
to mutual interferences due to the finite bandwidth. Thus,
they are often treated as packets of information randomly
hopping on a queueing network [40,41]. The packets’
mobility depends on the degree of congestion of the nodes.
Starting from these premises, it should be possible to use our
method to recover structural information on the local net-
work community by injecting a population of labeled
crawlers of different size (β) and monitoring their on site
distribution. Other examples may include vehicle mobility
and traffic flow [4], assuming that the true displacement
dynamics can be described by a random walk.
More generally, our method allows one, in principle, to

determine the degree distribution of networks that are
a priori undefined and become defined, alongside their
connectivity patterns, once the coarse-grained (CG) units are
identified as the nodes. As such, we have introduced an
effective (functional) coarse-graining procedure, suitable for
large complex systems of interacting components. An
example could be the diffusion of small molecules (e.g.,
enzyme inhibitors or competitive ligands for specific cell
surface receptors) through complex tissues, such as the skin.
Thus, from the local concentration, one should be able to
characterize the functional connectome of the tissue, seen as

a complex network of interlinked CG components. Other
applications may include the diffusion of molecules that
mediate quorum sensing in multibacterial colonies, e.g.,
social interactions of bacteria in biofilms [42,43]. In this
case, it would be instructive to adapt our algorithm to resolve
the statistics of interactions among different species.
In its present formulation, our approach is suited for

symmetric networks only. Future extensions are planned to
reconstruct the distribution of outgoing and incoming
connectivities in asymmetric crowded networks, i.e., when
detailed balance may break, by examining the directed
flux of particles from just one node. Finally, it would be
interesting to gauge the impact of endowing nodes with a
finite carrying capacity on other measures of centrality
introduced in the literature.
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FIG. 2. Examples of network reconstructions, pðkÞ vs k. (a) Erdos-Renyi network with Ω ¼ 1000. The probability p for a link
between any two pairs of nodes is set to 0.5. Exact profiles (blue circles) and profiles reconstructed with s ¼ 600 (red squares). The
estimated number of nodes is Ω ¼ P

kpðkÞ ¼ 1000. (b) Scale-free network with Ω ¼ 500 and γ ¼ 2. The degree distribution pðkÞ is
plotted in log-log scale, focusing on the relevant region in k. Blue circles represent the exact distribution, while red squares identify the
profile reconstructed with s ¼ 150 independent single-node measurements. The estimated number of nodes is Ω ¼ P

kpðkÞ ¼ 500.2.
(c) Reconstructed (red squares) vs exact (blue circles) degree distribution for the undirected Karate Club network (shown in the inset),
Ω ¼ 34. Here, s ¼ 20. The estimated size of the network is Ω ¼ P

kpðkÞ ¼ 34.02. (d) The performance of the method is assessed by
using the (symmetrized) C. elegans metabolic network (displayed in the inset) with Ω ¼ 453. Blue circles depict the exact distribution,
while red squares refer to the reconstruction performed with s ¼ 200 experiments, which gives Ω ¼ P

kpðkÞ ¼ 453.76.

PHYSICAL REVIEW LETTERS 120, 158301 (2018)

158301-4



has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie
Sklodowska-Curie Grant Agreement No 642563.

*Corresponding author.
malbor.asllani@unamur.be

[1] M. E. J. Newman, Networks: An Introduction (Oxford
University Press, Oxford, 2010).

[2] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and
D. U. Hwang, Phys. Rep. 424, 175 (2006).

[3] R. Albert andA.-L. Barabasi, Rev.Mod. Phys. 74, 47 (2002).
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