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Glasslike Structure of Globular Proteins and the Boson Peak
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Vibrational spectra of proteins and topologically disordered solids display a common anomaly at low
frequencies, known as boson peak. We show that such feature in globular proteins can be deciphered in
terms of an energy landscape picture, as it is for glassy systems. Exploiting the tools of Euclidean random
matrix theory, we clarify the physical origin of such anomaly in terms of a mechanical instability of the
system. As a natural explanation, we argue that such instability is relevant for proteins in order for their
molecular functions to be optimally rooted in their structures.
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Proteins are characterized by mechanically stable,
unique native structures that bear a precise relation with
their biological functions. Yet, in most cases, specific
functionality is accompanied by large-amplitude dynami-
cal conformational changes that require high flexibility [1].
Protein structures are complex, hierarchical ones, charac-
terized by short-range order and overall spatial correlations
that bear strong similarities with those of glassy materials
[2]. In actual fact, proteins and glasses share many physical
properties, such as peculiar relaxation processes [3] and the
occurrence of a dynamical transition as revealed by the
temperature dependence of the atomic mean square dis-
placements (MSD) [1,4,5].

Interestingly, there exists a remarkable similarity of the
Raman and neutron-scattering spectra of proteins with
those of glasses and supercooled liquids [4], i.e., a peak
that develops at low temperatures in the low-frequency
regions. Such anomaly, known as boson peak (BP), also
shows up in the experimentally determined density of
states when divided by the Debye law, i.e., g�!�=!2 [6].
Several models have been proposed for the explanation of
the BP in proteins, among which the phonon-fracton model
[7], and the log-normal distribution model [8].

The BP is, on the other hand, a universal feature of many
glassy systems [9]. In this context, several possible explan-
ations have been proposed, from the two-level system
scenario [10] to localized modes arising from a strong
scattering of the phonons by the disorder [11], from
‘‘glassy’’ van Hove singularities [12] to a mechanical in-
stability [13]. Recently, the possibility that a BP may be a
general feature of weakly connected systems has also been
investigated [14,15].

In a different analytical framework [16], the excess of
low-energy modes with respect to the Debye behavior is
viewed as a symptomatic effect of the topological phase
transition which is conjectured to happen in glasses at low
temperatures [13]. Recently, a quantitative description of
the BP phenomenology has been given within the formal-
ism of the Euclidean Random Matrix (ERM) theory [16],
whose predictions have been confirmed by numerical
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simulations on realistic glass-forming systems, emphasiz-
ing its universal character [17].

In this Letter, we show that the emergence of a BP in
globular proteins is the signature of a structural instability
of the saddle-phonon kind akin to that predicted within the
ERM theory of glasses. Remarkably, our explanation al-
lows for a natural interpretation of such instability in
proteins in terms of the mutual relations among their
structure, dynamics, and biological function.

To investigate the vibrational properties of a given
globular protein, we coarse grain its structure at the
amino-acid level and build the associated elastic network
(EN). The application of EN models to proteins is rela-
tively recent [18], since it has commonly been assumed
that little structural detail could be given up in order to
model their complex energy landscapes. However, there is
now strong evidence that most features of the large- and
medium-scale dynamics of proteins’ fluctuations around
their native states, related to function and stability, can be
successfully reproduced by simple harmonic interactions
between amino acids [19–23]. In view of the BP phenome-
nology, it is important to mention the growing consensus
that an explanation in glasses could be found within a
purely harmonic context [24].

In the framework of EN models, the potential energy is
written as a sum of pairwise harmonic potentials,
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where ~rij � ~ri � ~rj, ~ri being the position of the ith particle,

~r�0�i its equilibrium position, and kij the stiffness of the
spring connecting particles i and j. More precisely, the
vector ~ri represents the instantaneous position of the �
carbon of the ith amino acid, ~r�0�i its position in the native
state as determined from x-ray crystallography or nuclear
magnetic resonance, and kij can take different functional

forms, such as kij � ���rc � j ~r
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model [21] ], which is the one we adopt here. The parame-
ter � sets the physical units for force constants, and can be
fixed by requiring the theoretical MSDs to match the
experimental ones as determined from x-ray spectra [19].

In the harmonic approximation, the total potential en-
ergy (1) is the quadratic form V �f~rg� � 1

2 ~r
TK ~r, where the

contact matrix Ki�;j� (�;� � 1; 2; 3) is the Hessian of the
function (1) evaluated at the equilibrium structure. Were
the position vectors in the native structure ~r�0�i arranged at
random, K would exactly fall in the class of Euclidean
Random Matrices. Even if protein structures are surely not
random, an analysis of the pair correlation function g�r�
reveals interesting features. In Fig. 1 we plot g�r� for serum
albumin, a relatively large globular protein whose equiva-
lent ellipsoid [25] has principal radii measuring 2.3, 3.7,
and 4 nm, and for an identical number of residues uni-
formly distributed within such ellipsoid. The comparison
shows that the protein structure is characterized by two
well-defined coordination shells, namely, the nearest
neighbors at fixed distance along the chain and the next-
nearest off-chain neighbors, including the pairs belonging
to alpha helices and those lying at turning regions, such as
loops. After a third, less resolved shell all pairwise spatial
correlations are lost. We repeated this analysis for several
proteins and always found that the second and the third
peaks are always related to the presence of secondary
motifs as well as to the intrinsic flexibility of the peptide
chain, while beyond such range spatial correlations are
absent. This fact is a clear indication that, as far as large-
scale structural properties are involved, proteins are well
approximated by random assemblies of amino acids with
specified density.

The analogy between protein structures and disordered
systems with no long-range order suggests that a common
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FIG. 1. Plot of the pair correlation function for serum albumin
(N � 578, solid line) and for a collection of an equal number of
residues uniformly distributed in its equivalent ellipsoid (dashed
line). Right inset: a magnification of the tails in lin-log scale.
Left inset: average connectivity vs cutoff distance (symbols) and
cubic fit (solid line).
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mechanism might be responsible for the emergence of the
BP in both cases. In topologically disordered solids, this
anomaly appears upon increasing the temperature or, as
observed, for example, in silica, upon lowering the density.
In the present case, we are dealing with proteins, i.e.,
objects whose equilibrium structure is fixed by the biologi-
cal function. However, changes in the particle density may
still be simulated by resorting to the free parameter rc. In
the framework of EN models, rc sets the range of inter-
particle interactions and should in principle be tuned by
fitting the low-frequency portion of experimental spectra at
temperatures below the dynamical transition, where the
protein vibrates harmonically within a local minimum.
The usual alternative is to compare with spectra as deter-
mined by all-atom force fields [21]. By doing this, one
obtains �c � 3 �A in an all-atom representation [21], which
coarse grains to rc � hNai1=3�c � 8 �A when the average
number of atoms per amino acid hNai � 18 is introduced.
Interestingly, by its very definition, the parameter rc
also allows to regulate an effective local density of the
system by tuning the average connectivity hci � 1

3N �PN
i�1

P3
��1 Ki�;i�. By decreasing the cutoff rc, the average

number of neighbors per residue diminishes accordingly.
Thus, a measure of compactness may be introduced that is
proportional to hci. It can be shown that varying rc induces
a change in the connectivity that scales with the interaction
volume r3

c up to finite-size O�rc� corrections (see left inset
in Fig. 1). This means that we can study the spectral
features of a given protein structure with the additional
degree of freedom of varying density by simply changing
the interaction cutoff rc, which thus plays in this context
the role of a control parameter.

The vibrational spectrum of a protein for a certain value
of the parameter rc is obtained by diagonalizing the contact
matrix. However, especially for small proteins, the finite
number of residues makes it difficult to analyze the low-
frequency features of the spectra. In order to circumvent
this problem, we generated a number of different con-
formers for each of the analyzed structures such that all
of them are by construction compatible with the atomic
MSDs as specified by the native contact matrices. More
precisely, if we write the coordinates of a given conformer
as ~��0� � ~r�0� � �~r, then it is sufficient to take �~r � U ~c,
where U is the matrix of eigenvectors of K and the 3N � 6
coefficients ck are drawn from as many one-dimensional
Gaussian distributions with zero mean and standard devia-
tions �k �

���������������������
�kBT=�k

p
, �k � �!2

k being the eigenvalues
of the contact matrix K. This procedure provides a simple
means to construct an arbitrary number of conformations
that are dynamically equivalent to the native one in the
harmonic approximation.

In Fig. 2 we plot g�!� and g�!�=!2 for several values
of the cutoff rc for two representative proteins of differ-
ent size. Similar results were obtained for a choice of
other proteins. A shoulder manifestly appears in the low-
3-2
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FIG. 3. Plot of the level-spacing statistics of ubiquitin for
different values of the cutoff rc. The Wigner-Dyson (thick solid
line) and Poisson (dashed line) statistics, which describe totally
uncorrelated spectra, are also shown for comparison. Upper
inset: J0 � hs

2i=2 is plotted vs rc. The dashed line represents
the value expected for a fully extended spectrum. Lower inset:
level-spacing statistics for frequencies !< 2:5 meV. The solid
line is a plot of the Wigner surmise.
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FIG. 2. Boson peak analysis for two globular proteins of differ-
ent size. Left panels: serum albumin (1AO6), N � 578 residues.
Right panels: ubiquitin (1UBI), N � 76 residues. The four upper
panels show the density of states for different values of rc (for
1000 thermal replicas). In the four lower ones, we show the fits
to the BP frequency and height with the mean-field expressions
(2). The best-fit results are: r
c � 5:7 �A (serum albumin) and
r
c � 3:5 �A (ubiquitin). The physical units for frequencies were
obtained with rc � 8 �A.
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frequency region as rc is reduced (see upper panels in
Fig. 2), and eventually a divergence develops if rc is
decreased below a critical value. The origin of such peak
can be uncovered by tracking its position !BP and height
hBP as rc, i.e., our effective density, decreases. From the
lower panels of Fig. 2 one can clearly appreciate that the
scaling followed by !BP and hBP is very well interpolated
by the analytical functional forms predicted by the ERM
theory in the mean-field approximation [16], i.e.,

!BP 	 �rc � r


c�
�; hBP 	 �rc � r



c�
�� (2)

with � � 1 and � � 1=2. Therefore, our analysis strongly
suggests that the BP in protein structures at low densities
can be interpreted in terms of a topological instability
utterly analogous to the one found in glasses and glass-
forming liquids [17]. More rigorously, as it is the case for
the Gaussian model in glasses, the BP should be interpreted
19810
as a precursor of the transition within a model that by
definition becomes meaningless at the critical point. This
is precisely what happens in our case, at an interaction
range below which protein structures start unfolding. We
also stress that the shift of!BP towards zero frequency and
the divergence of the BP height as the systems lose rigidity
is a spectral feature equally unveiled within different theo-
retical approaches [12–15].

It is also instructive to study the localization properties
of typical ensembles of spectra through the level-spacing
statistics P�s� [26]. As an example, we plot the results
obtained for ubiquitin in Fig. 3. Overall, the distribution
is very well described by a Wigner law, which holds for
fully extended spectra. As we decrease the cutoff, a small
contribution from localized modes is observed, as the
measure of J0 � hs2i=2 shows (upper inset of Fig. 3).
Otherwise, J0 should be close to 1 in the case of a localized
spectrum, which is never the case. A more refined analysis
[27] performed on several proteins clearly shows that the
only localized modes are due to the tail of the spectrum at
large frequencies, much alike structural glasses [12,28].
This conclusion, further confirmed by the level-spacing
statistics from the low-frequency portion of the spectra
(lower inset of Fig. 3), rules out the presence of localized
modes in the BP region.

The origin of a precursory feature of a topological
instability in proteins can be formally understood by recall-
ing that their structures are those of folded polymers. If the
interaction cutoff rc is lowered below the first off-chain
coordination shell, native conformations lose their folded
nature and become more and more akin to liquids. In fact,
we argue that the appearance of the BP precisely antici-
3-3



TABLE I. Correlation of r
c with structural parameters.

Protein N p (�� �) r
c (Å)

Insulin 51 0.20 0.53 4.57
Protein G 56 0.21 0.70 3.64
Ubiquitin 71 0.20 0.46 3.53
PDZ binding domain 85 0.21 0.55 4.03
Lysozyme 162 0.17 0.74 4.27
Adenylate kinase 214 0.12 0.64 7.85
LAO 238 0.16 0.60 5.44
CYSB 260 0.17 0.59 4.70
PBGD 296 0.16 0.60 3.70
Thermolysin 316 0.18 0.53 4.55
HSP70 ATP-binding domain 382 0.15 0.66 5.28
Fab-fragment 437 0.13 0.48 5.70
Serum albumin 578 0.12 0.70 5.70

Correlation with r
c 0:45 �0:82 0:17 1
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pates such inherent instability before the critical cutoff is
reached. Accordingly, the best-fit values of r
c for all the
analyzed structures never does exceed the first off-chain
coordination shell (see Fig. 2). Keeping in mind that the
optimal value of rc is around 8 Å, i.e., above its critical
value, our results suggest that protein structures express an
inherent trade off between spatial properties of liquids, i.e.,
increased degree of mobility, and the necessity of main-
taining a certain structural stability. Interestingly, from an
extensive analysis on a selection of 13 proteins, we find
that r
c is substantially anticorrelated with the packing
fraction p � 4=3�N=V��d0=2�3, i.e., a measure of global
compactness, whereas weak correlation is found with in-
dicators of local stability, such as the content of � helices
and � sheets. Here N and V are the number of residues and
the volume, while d0 ’ 3:83 �A is the inter-residue distance
along the main chain. Moreover, we also find a positive
correlation between r
c and N, which may signal the larger
mechanical stability of smaller proteins (see Table I).

The above conclusions may be interpreted by regarding
proteins as molecular machines bound to keep a specified
geometry in order to perform their biological function, yet
preserving a high degree of structural flexibility in order to
efficiently explore different conformational states. In this
sense, the mechanical instability underlying the emergence
of a BP appears to be a universal signature of their engi-
neered ability to easily travel between adjacent local min-
ima in their native states. We note that our results agree
with recent estimates of the spectral dimension of globular
proteins, whose non-Debye behavior has been interpreted
in terms of a vibrational instability of the Peierls-Landau
type [29].

Summarizing, in this Letter we have provided compel-
ling evidence of the equivalence of the boson peak phe-
nomenon in globular proteins and glasses. Our analysis
suggests that a topological instability of the saddle-phonon
19810
type in proteins reflects the balance imprinted in their
structures between being capable of rapidly accessing
different minima in the native energy landscape while
keeping a relative mechanical rigidity.
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