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The issue of protein dynamics and its implications in the biological
function of proteins are arousing greater and greater interest in
different fields of molecular biology. In cryo-electron tomography
experiments one may take several snapshots of a given biological
macromolecule. In principle, a large enough collection of snapshots
of the molecule may then be used to calculate its equilibrium
configuration in terms of the experimentally accessible degrees of
freedom and, hence, to estimate its potential energy. This infor-
mation would be crucial in order to analyze the biological functions
of biomolecules by directly accessing the relevant dynamical indi-
cators. In this article, we analyze the results of cryo-electron
tomography experiments performed on monoclonal murine IgG2a
antibodies. We measure the equilibrium distribution of the mole-
cule in terms of the relevant angular coordinates and build a
mechanical model of the antibody dynamics. This approach enables
us to derive an explicit expression of the IgG potential energy.
Furthermore, we discuss the configuration space at equilibrium in
relation to results from other techniques, and we set our discussion
in the context of the current debate regarding conformation and
flexibility of antibodies.

I t is now widely recognized that proteins are flexible objects
and exist in populations of different structures, rather then in

a single rigid conformation. In fact, collective motions of do-
mains greatly enhance proteins’ ability to bind other molecules.
Textbooks usually show proteins naked, neglect crucial dynam-
ical aspects such as fluctuations, and take little notice of the
protein environment. Real proteins, however, are wiggling and
jiggling, dressed by the hydration shell, and usually embedded in
a cell or cell membrane (1).

Antibodies link antigens and immunological effector systems
by means of highly mobile linkers that connect the hypervariable
antigen-binding sites to the effector domain (Fc). Antibodies
possess the structural f lexibility to adapt to a huge variety of
antigen shapes and sizes, whereas they share similar conserved
Fc regions that interact with a limited number of effector
systems, such as Fc receptors and complement (2, 3).

The antibody IgG is a glycoprotein with a molecular mass of
150 kDa, which binds to foreign agents such as viruses by
subunits named fragment antigen-binding arms (Fab arms).
Hinges connect two Fab arms to a stem that crystallizes easily
(‘‘Fc’’ stem), so that each antibody can bind to two antigens or
to a single antigen with increased strength. It is known that the
arms of the uncomplexed IgGs are highly flexible and have a
wide range of variability of the reported values of Fab–Fab and
Fab–Fc angles (4).

Two-dimensional electron microscopy and physiochemical
experiments also support a hypothesis of inherent flexibility of
the IgG molecules (4, 5). However, a great variability exists in the
literature as to the average values of crucial structural param-
eters such as Fab–Fab and Fab–Fc angles (6); and, to our
knowledge, no estimate exists of their probability distribution at
equilibrium. Large-scale conformational differences have also
been detected among three complete structures of intact and
functional antibodies (subclasses human IgG1, murine IgG1, and
murine IgG2a) solved by x-ray crystallography (6, 7). These
differences are due, in part, to the high fragility of the IgG
molecules and, more generally, to the limitations intrinsic to

experimental techniques such as electron microscopy and x-ray
analysis.

Electron microscopy analysis preceded crystallographic anal-
ysis (8, 9) of immunoglobulins by more than a decade and, for a
time, has been the only way to analyze their 3D structure (see ref.
4 for a review). Once the x-ray structures were deduced, the role
of electron microscopy gradually moved from gross structural
analysis to address more sophisticated structural and functional
questions. However, electron micrographs are 2D representa-
tions and necessarily present projected images, making inter-
pretation in three dimensions very difficult. On the other hand,
x-ray crystallography suffers from the inherent ambiguities
associated with unpredictability of differential packing environ-
ments within the crystals. Electron tomography is a general
method for 3D reconstruction of individual objects from a tilt
series of electron microscope images (10–13). The electron
tomography method is general in the sense that it can be applied
to any transparent object (14–16); it is not restricted to sym-
metrical or regularly arranged objects (17–19) or to objects with
a preferred orientation on a support grid (20, 21).

In cryo-electron tomography (cryo-ET) experiments the sam-
ple is quenched to the temperature of liquid nitrogen. Therefore,
one gets a gallery of instantaneous snapshots of the system. In ref.
11, data from cryo-ET of individual IgG molecules in solution
have been analyzed and have confirmed that the position of the
Fab arms relative to the Fc stem may greatly differ from one
molecule to another. In this article, we analyze a subset of
high-resolution 3D snapshots from the same set of experiments.
Our aim is 2-fold: reconstruct the equilibrium statistics of the
principal structural parameters and use such information as the
starting point for studying the dynamics of an individual immu-
noglobulin in solution. Hence, we first analyze the experimental
images and introduce a statistical description of the IgG con-
figuration. This study enables us to deduce our first important
result, namely, the probability distributions of the Fab–Fab and
Fab–Fc angles. We then build a simple mechanical model and
derive an effective potential energy for the single antibody,
which also allows us to calculate quantitative estimates of the
relevant frequencies of the IgG motion. This model is the main
result of this article.

In the following sections, we introduce our model and perform
an analysis of the experimental data. We then detail the results
and we summarize our findings and sketch the developments of
the present work. The experimental method and the details of
the imaging process are outlined in Appendix 1, which is pub-
lished as supporting information on the PNAS web site.

The Model
The phase space of a system with n degrees of freedom can be
parameterized by a vector (q� , p�) of n generalized coordinates
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(q1, . . . , qn) and n conjugate momenta (p1, . . . , pn), containing
the information about the system configuration and velocity,
respectively. When the system is in equilibrium with a thermal
bath at temperature T, any point in the phase space can be
occupied with a probability density

��q� , p� � �
1

Z�T�
exp��

K�q�, p�� � V�q��

kBT �, [1]

where K is the kinetic energy, V is the system potential, kB is the
Boltzmann constant, and Z(T) is a temperature-dependent
normalization factor. It is important to notice that, whereas in
Cartesian coordinates the kinetic energy only depends on mo-
menta, in general, it also depends on coordinates (as in the case
of polar coordinates).

If the equilibrium probability density of a system is made
accessible experimentally, it is in principle possible to invert Eq. 1
to extract information regarding the dynamical properties of the
system. This possibility is the case in cryo-ET experiments, where
a direct measure of the equilibrium distribution in the configuration
space can be performed through a statistical analysis of an ensemble
of different snapshots of the system. The equilibrium probability
distribution in the configuration space results from the integration
of Eq. 1 over the conjugate momenta pi:

��q� � �
1

Z�T�
exp��

V�q��

kBT�S�q��, [2]

where

S�q� � � � exp��
K�q�, p��

kBT �dp1. . . dpn. [3]

The function S(q�) is the kinetic contribution to the equilibrium
probability density and must be computed analytically to extract
the potential from the measured �(q�). Once this analysis is done,
we can calculate the potential V as:

V�q� � � �kBT ln���q��

S�q��
� � V0�T�, [4]

where V0(T) is a constant, which depends only on temperature.
We stress that the temperature enters Eq. 4 as a parameter. In
particular, it should be noted that the derivation of Eq. 4 is
rigorous only if the system is at thermodynamic equilibrium (at
the temperature T). In general, the validity of this condition and
the appropriate value of T that characterizes the collection of
snapshots depend on the timescales set by both the experiment
and the system dynamics.

In our model, we consider the immunoglobulin molecule to be
composed of three rigid rods freely jointed together in a common
point (Fig. 1): namely, two (Fab) arms of equal mass M and
length L and the (Fc) stem (pictorially, it may be visualized as
a lobster). As a first approximation, we assume the three bodies
to be connected in a single point and therefore neglect the
translational offsets among the intersections of the Fab and Fc
major axes. Furthermore, at this level of schematization, we do
not take into account the intra-Fab distortions associated with
flexion of the elbow regions. The Fc rod is aligned along the z
axis and two angles are introduced to specify the position of each
Fab relative to the Fc. The angles �i (i � 1, 2) are measured on
the plane perpendicular to the Fc and identify the position of the
Fab–Fc planes. The position of the Fab arms within those planes
is then measured by the angles �i (i � 1, 2). Moreover, we
denote with � the Fab–Fab separation in the Fab–Fab plane.

In the following text, we choose to parametrize the system as
a function of the angles �� � (�1, �2, �1, �2) and the associated

conjugate momenta (actions) �J � (J�1
, J�2

, J�1
, J�2

). In this case,
the mathematical derivation of the Hamiltonian is straightfor-
ward and we get:

H��� , J�� � K��� , J�� � V��� �, [5]

where

K��� , J�� �
1
2I� J�1

2 � J�2

2 �
J�1

2

sin2 �1
�

J�2

2

sin2 �2
�, [6]

and I is the moment of inertia of a rod about an axis perpen-
dicular to its end.

Let us stress that the choice of the set of variables �� is not
unique. A sensible alternative to our choice might well be to
consider the Fab–Fab angle � (see Fig. 1), e.g., by adopting the
set of coordinates (�1, �2, �1, �). However, we note that, for any
given values of �1 and �2, the angle � is confined to the interval
��1 � �2� � � � �1 � �2. As a consequence, one must take such
entropic constraint into account in the derivation of Eq. 2 making
the analytical calculation much more cumbersome.

The function S(�� ) can be computed by inserting the expres-
sion 6 into Eq. 3. After the integration we obtain:

V��� � � �kBT ln� ���� �

sin �1 sin �2
�, [7]

where we have dropped the temperature-dependent additive
constant.

In the next section we first illustrate the derivation of the
equilibrium density �(�� ) from the experimental data and then
discuss its statistical analysis.

Analysis of the Experimental Data
By using cryo-ET, we were able to reconstruct 3D volumes of
IgG molecules in solution. The analysis of the reconstructed
volumes allowed us to isolate 42 reliable structures of individual
molecules. We operated the selection according to strict criteria:
the objects that did not present a fully resolved structure were
rejected. In particular, for all selected molecules, the Fc was

Fig. 1. Coarse-grained model of an immunoglobulin molecule. The two Fab
arms and the Fc are replaced by rigid rods freely jointed in the hinge region. The
relative position of the Fab1,2–Fc arms is described by the two angles �i and �i (i �

1, 2), in the Fabi –Fc planes and in the plane perpendicular to Fc, respectively. The
angle � measures the Fab–Fab separation in the Fab–Fab plane.
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identified and the broadening of the upper part of the segment
clearly displayed. However, it was not possible to align consis-
tently the Fc stems, and thus we could not systematically label the
‘‘left’’ and ‘‘right’’ Fab domains.

A typical gallery of reconstructed, individual IgG molecules is
shown in Fig. 2. The densities are mapped with a continuous
color coding, ranging from blue to red, clearly highlighting the
large-scale structure of the antibody.

For each molecule, we measured the Fab–Fab angle � and the
two Fab–Fc angles �1 and �2 by approximating the three
domains with ellipsoidal envelopes and measuring the angles
formed by their major axes.

As already discussed in The Model, we parametrize the system
in the space (�1, �2, �1, �2). However, we are interested in the
relative motion of the two Fab arms. As a consequence, we
consider the transformation to the relative coordinates � � �2 �
�1 and � � [�2 � �1]�2, while keeping �1 and �2. The angle �
describes the motion of the center of mass of the two Fab arms
projected on a plane perpendicular to the Fc stem. However, we
recall that the ‘‘front’’ and ‘‘back’’ sides of the Fc domain are not
distinguishable within our experimental resolution. Conse-
quently, it appears reasonable to consider the probability �(�1,
�2, �) � ��(�1, �2, �, �)	�, averaged over � in the domain [0,
360°]. We note that, by doing this, we are also neglecting
whatever energy is associated with a torsion of the two Fab arms
as a whole with respect to the Fc axis.

We now wish to estimate the density profile �(�1, �2, �) from
the experimental data. The available population of our config-
urational ensemble is limited. Therefore, we have enough sta-
tistics to only access the coordinate space �1, �2, � one angle at
a time. Furthermore, we are not able to distinguish between the
two Fab domains. Consequently, each molecule contributes two
values to the population of the Fab–Fc angles. Accordingly, we
assume that the density �(�1, �2, �) can be factorized as the
product of three 1D normalized functions in the following
fashion�:

���1 , �2 , �� � �1��1��1��2��2���. [8]

We show in Fig. 3 the normalized histogram of the experi-
mental data �1(�) with �1 � �2 � � (Inset) and the correspond-
ing normalized cumulative distribution. The latter is easily
calculated from the data by noting that it is nothing but the
rank-frequency plot with the axes inverted. In general, it is
preferable to work with the cumulative distributions, because the
low-statistics regions get more populated with the integration.
The experimental data can be clearly interpreted by means of the
uniform distribution in the interval [�min, �max]:

�1��� � � 1
�max � �min

�min 	 � 	 �max

0 otherwise.
[9]

To determine the experimental cutoffs �min and �max, we fitted
the experimental cumulative distribution. From the fit we found
�min 
 15° and �max 
 127.6°.

The projected angles � can be straightforwardly obtained from
the experimental values of �1, �2, and �. They are measured in
the interval [0, 180°], because we cannot systematically identify
the front and back broad sides of the Fc domain in the recon-
structed data. Therefore, to extend the distribution domain to
the interval [180°, 360°], we perform a reflection of the data
around � � 180°. In Fig. 4 we show the normalized histogram
�2(�) (Inset) and the corresponding normalized cumulative dis-
tribution. We found that a simple Lorentzian profile truncated
in [0,360°] fitted the data extremely well:

�2��� �
1

2
� atan��0�
��
�1 � �� � �0


�
�2��1

, [10]

where �0 � 180°, and 
� is the only floating parameter. As we did
for the �1(�), we determined 
� by fitting the experimental
cumulative distribution. From the fit we found 
� 
 91.6°.

The Effective Potential
We are now able to compute the effective potential V(�1, �2, �).
By using Eqs. 8, 9, and 10, Eq. 7 can be written in the following
manner:

V��1 , �2 , �� � V1��1� � V1��2� � V2���, [11]

where

�An argument to test a posteriori the validity of our theoretical framework (including the
hypothesis of factorization) is provided in Appendix 2, which is published as supporting
information on the PNAS web site.

Fig. 2. Gallery of individual IgG molecules visualized by volume rendering in
three dimensions. Three different views of each tomogram are displayed. The
box is 50 � 40 � 50 pixels.

Fig. 3. Experimental cumulative distribution of the �1, �2 angles (E) and fit
with the function C1(�) � �0

� �1(�) d� (red solid line). (Inset) Normalized
histogram of the experimental data and plot of the square function 9 with
�min 
 15° and �max 
 127.6° (red solid line).
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V1��� � kBT0�ln�sin ���
[12]

V2��� � kBT0 ln�1 � �� � �0


�
�2�.

As already mentioned, the temperature T0 is here a constant
parameter. More precisely, the angular distributions obtained
from the experimental snapshots of the IgG molecules are to be
considered estimates of the equilibrium configuration at a
temperature T0. (For a detailed description, see Appendix 3,
which is published as supporting information on the PNAS web
site.)

The potential V1(�) describes the motion of the two Fab arms
in the Fab–Fc planes. It arises from the combination of the flat
experimental distribution of the � angles and the centrifugal
term from the integration of the kinetic part of the Hamiltonian
(Fig. 5).

We are now able to understand the experimental evidence of
equiprobability of any � values in the Fab–Fc planes. It is the
combined effect of two different competing energy terms. On
the one side, the centrifugal term favors configurations at values
close to � � 90°. In fact, the rotation around the Fc axis of a Fab
arm in such configurations has the lowest kinetic energy. On the
other side, one has the potential energy V1(�). It may be
speculated that the latter in turn arises from the combination of
two distinct energy terms. A greater and greater price is paid the
more the chains are bent in the hinge region. However, an energy
gain may also occur in some configurations in terms of contacts
between the CH1 and CH2 subdomains. As a result, we can
sketch the trend of V1(�) as the a single arm moves from �min
to �max in the following fashion. Let us represent the IgG
molecule at the simple level of two mutually crossing identical
(heavy) chains and isolate one of them for reference (Fig. 5, red
chain). The configuration at �min has the lowest energy, which
means that, even though no new contacts can be formed in this
configuration, there is also no bending energy price to pay at all
(configuration a). The more the Fab rotates toward the Fc, the
more it costs to be bent. In particular, it takes about 2kBT0 to
bend the chain at an angle � � 90° (configuration b). However,
some energy may be regained past � � 90° in terms of the new
contacts made available, which gives a gain of about kBT0�2
(configuration c). This makes � 
 90° a barrier that separates
two local minima at � 
 �min and � 
 �max.

The combined effect of this double-minimum energy land-
scape and the centrifugal energy result in a uniform distribution
of the Fab–Fc angles. As we show in Appendix 2, the two Fab
arms are characterized by an average separation � 
 110°.
Translated into the � domain, this information means that the
two local minima at � 
 �min and � 
 �max are occupied by one
Fab at a time.

Of course, the true potential will be a smooth function of � in
the two binding regions. An example of what a more realistic
V1(�) might look like is the dashed curve in Fig. 5, which is the
graph of the function

V1��� � 2kBT0�ln�sin �� �
1

�� � �min�
�

1
��max � ��	,

[13]

where the rigid walls have been replaced by moderate (��1)-like
repulsive terms. The smoothing of the rigid walls causes the two
cuspids at � � �min and � � �max to become new differentiable
minima at � 
 20° and � 
 117°.

By using Eq. 13, we can estimate the characteristic frequencies
�� associated with small oscillations in the two wells as �� 

����I � �3���ML2, where �� � V �1 (�) evaluated at the
bottom of the well, while M 
 8 � 10�23 kg and L 
 80 Å are
the Fab mass and length, respectively. We get ��min


 7.1 � 108

�T0 s�1 and ��max

 1.9 � 108 �T0 s�1.

For small values of � � �0, the potential energy V2(�) can be
expanded as follows:

V2��� 

1
2

���� � �0�
2, [14]

where we have introduced the elastic force constant

�� �
2kBT0


�
2 . [15]

Therefore, for small displacements about the equilibrium posi-
tion �0 � 180°, V2(�) is an elastic energy that accounts for small
oscillations in the plane orthogonal to the Fc. Hence, it describes
the deviations from the equilibrium planar Y-like shape of the

Fig. 4. Experimental cumulative distribution of the � angles (E) and fit with
the function C2(�) � �0

� �2(�) d� (red solid line). (Inset) Normalized histogram
of the experimental data and plot of the truncated Lorentzian 10 with

� 
 91.6°.

Fig. 5. Solid line shows potential energy in the Fab–Fc planes (units of kBT0).
The experimental values of the angular cutoff �min 
 15° and �max 
 127.6° are
explicitly drawn as rigid walls. Dashed line shows smoothed potential (see
text). The relative Fab–Fc position is also represented in the two wells and at
the barrier as a sketch of the two heavy chains mutually crossing in the hinge
region.
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immunoglobulin. We may interpret such elastic energy as
sketched in Fig. 6.

With no antigen bound at the Fab-binding sites, antiintegral
oscillations of the two Fab arms correspond to rotations of the
two halves of the Fc stem against each other around the vertical
axis (Fig. 6a). Such rotation is in turn opposed by the contacts
between the two CH3 immunoglobulin domains at the Fc end
(see the crystal structure of the Fc in Fig. 6). The net result is a
force that opposes oscillations away from the planar � � 180°
configuration. On the other hand, we may imagine that, when the
antibody binds an antigen, the same elastic energy might be used
to weaken the contacts in the Fc tail, thus making it easier for
the back region to open up and bind to other molecules. This
would be extremely useful, e.g., in the binding process of the
antibody–antigen complex to the specific receptors on immune
cells (Fig. 6b).

We stress that the strength of such elastic force is rather small.
This corresponds to a very broad distribution in the range 0 �
� � 2�0, with a large standard deviation 
� 
 �0�2. Correspond-
ingly, we note that the hinges cannot be expected to transmit
mechanical energy between the Fabs and Fc domains as per-
fectly rigid joints because of their intrinsic bendability. In other
words, only a limited portion of the energy involved in any
displacements of either domain will be effectively transferred in
the above-mentioned fashion. We may imagine the remaining
energy to be evenly dissipated in the deformation of the hinges
themselves.

The characteristic frequency �� associated with small oscilla-
tions in the potential well V2(�) depends, in general, on the
values of �1 and �2. Yet, we can estimate �� by linearizing the
equations of motion of the system in the vicinity of the equilib-
rium positions of the system. These positions are the two
degenerate configurations �1 � (�min, �max, �0) and (�max, �min,
�0), plus the arms-down and arms-up configurations at �2 �
(�max, �max, �0) and �3 � (�min, �min, �0), respectively. However,
we observe that the latter arrangement is assigned a very small

probability of occurrence in terms of the corresponding � and �.
Hence, we are left with the two characteristic frequencies:

��
�1� 
 ���

2I� 1
sin2 �min

�
1

sin2 �max
[16]

��
�2� 
 ���

I
1

sin �max
.

By inserting the best-fit result 
� 
 91.6° in Eq. 15 we get ��
[1] 


2.3 � 108 �T0 s�1 and ��
[2] 
 1.1 � 108 �T0 s�1. However, we

observe that the frequency ��
[1] is nearly twice ��

[2]. As a
consequence, it is the latter that should be regarded as the value
setting the frequency scale in �. Unfortunately, the precise value
of T0, in general, will depend in a complicated fashion on the
solvent viscosity and the characteristic timescales of the molec-
ular vibrations as compared with the timescale of the temper-
ature quench. To be more precise, the ambient temperature
Tamb 
 20°C is only an upper bound. On the other hand, a lower
bound can be identified at the temperature T�, which marks the
divergence of water viscosity. At such temperatures, a transition
occurs in the solvent from a liquid to a solid (glasslike) phase
during the quenching process. We can estimate T� by fitting the
experimental values of the water viscosity measured in the
interval [0,100°C] (22). We found T� 
 �45°C (data not shown).
Such a value is in excellent agreement with the accepted estimate
of the singularity point of liquid water Ts 
 228 K, where the Cp,
isothermal expansivity and isothermal compressibility all di-
verge. At that point, it is believed that water becomes a rigid gel
with a structure closely resembling that of ice I, when quenched
at 106–107°C�s (ref. 23 and references therein and ref. 24).

We remark that the use of the two limiting values Tamb and T�

in 16 results in a difference of �10% in the estimates of the
frequencies of small oscillations. By choosing T0 � T� we
therefore obtain:

�� 
 1.6  109 s�1

��min

 1.0  1010 s�1 [17]

��max

 2.9  109 s�1.

Conclusions
In the first part of this work we measured the experimental
probability distributions of the relevant angular coordinates of
an IgG molecule at equilibrium. We showed that the average
value of the Fab–Fab angle is 
110°. Its distribution is a broad
bell-shaped function, with a standard deviation of 
30°. This
finding correlates well with the estimates obtained by other
dynamical measurements, such as dielectric relaxation experi-
ments on bovine IgG (25) (� 
 126°) and immunoelectron
microscopy studies (4) (� � 127 � 32° for IgG2). A worst
agreement is found with the only IgG2 intact structure from
x-ray crystallography, namely, murine IgG2A mAb 231 [PDB ID
code 1IGT (26)]. We observe that the measured values of the
Fab–Fab angle of 172° might be affected by unpredictable errors
originating by the special packing environment within the crys-
tal. Of course, this shortcoming of x-ray crystallography is
unavoidable when applied to highly flexible systems such as
antibodies. The results from the other two x-ray structures of
intact IgG antibodies are � 
 148° [PDB ID code 1IGY (27)] and
� 
 117° [PDB ID code 1HZH (28)]. However, both the latter
molecules are IgG1 antibodies. Consequently, the differences in
hinge conformation between IgG1 and IgG2 species do not allow
a straight comparison of our results with those structures.

We note that our findings may also point the correct way to
normal mode analysis of antibodies, whereby crystal structures
modified according to more accurate structural measurements

Fig. 6. (Upper) Schematization of the halves of an Fc stem. The chains are
explicitly shown to cross at the hinge level. (a) Unbound antibody. (b) Anti-
body–antigen complex (Lower) Two views of the crystal structure of the
Fc domain from human immunoglobulin IgG. The two heavy chains have
different colors (from the web site of M. Clark, available at www.path.cam.
ac.uk��mrc7�igs�mikeimages.html#Model).
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would seem the appropriate equilibrium positions to use in the
analysis.

Furthermore, we showed that the Fab–Fc angles are approx-
imately uniformly distributed between the two limiting values
�min 
 15° and �max 
 127.6°. Such boundaries reflect the
excluded-volume steric constraints imposed by the molecular
structure. We can give a pictorial description of the configuration
space of an IgG molecule by following the spatial arrangement
of Fig. 1. The only constraint is �min � �1 and �2 � �max. Hence,
it is enough to cut away from a sphere of radius L two cones of
aperture 2�min and 2(180° � �max), respectively (Fig. 7). There-
fore, no matter where the Fab arms are positioned with respect
to the Fc, the molecule always has two accessible regions. The
extension of the banned regions can be quantified in terms of the
corresponding solid-angle fractions as

fm �
1

4� �
0

2�

d��
0

�m

d� 
 0.02

[18]

fM � 1 �
1

4� �
0

2�

d��
0

�M

d� 
 0.2.

These estimates show that, on average, the IgG molecules prefer
to confine the motion of the Fab arms in a region corresponding
to 
80% of the whole solid angle. Of course, an identical
scenario holds at any position of the Fc stem with respect to a
given absolute reference frame. In summary, the angular dis-
tance between either Fab and the Fc cannot be smaller than

50°. This fact may have interesting implications in the neutral-
ization mechanisms of the antigen–antibody complexes, which
require the interaction of the Fc domain with different biological
units, such as specific receptors on immune cells.

In the second part of the work, we established a connection
between the measured angular distributions and the dynamics of
the antibody. In particular, we derived an explicit expression for
the potential energy function of the molecule based on a simple
mechanical model. The inverse path may then be taken to
investigate the equilibrium distribution of a single IgG in solu-
tion through computer simulation of its Langevin dynamics.
Preliminary results (not reported here) confirm the consistency
of our procedure. In particular, the dynamical approach opens
the way to direct access to different dynamical indicators,
potentially linked to the biological functions of the antibody.
These indicators include two-point time-correlation functions
between selected degrees of freedom, such as Fab–Fab angles
and Fab–Fc angles or Fab1–Fc and Fab2–Fc angles. In addition,
straight access to the molecule dynamics may be used for
comparison with results from different experimental techniques,
such as dielectric relaxation measurements or fluorescence
resonance energy transfer microscopy.
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Fig. 7. Representation of the IgG configuration space. The vertical axis of the
sphere coincides with the Fc stem; the hinge region lies at its center.
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