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By shifting the balance between conformational entropy and internal energy, polymers modify 
their shape under external stimuli, such as changes in temperature. Prominent among such 
transformations is the coil-globule transition, whereby a polymer can switch from an entropy-
dominated coil conformation to a globular one, governed by energy. The nature of the coil-
globule transition has remained elusive, with evidence for both continuous and discontinuous 
transitions, with the two-state behaviour of proteins as an instance of the latter. Theoretical 
models mostly predict second-order transitions. Here we introduce a model that takes into 
consideration hitherto neglected features common to any polymer. We show that a first-
order phase transition smoothly appears as a function of the model parameters. our results 
can relieve part of the conflicts between theory and experiments in the field of protein folding,  
in the wake of recent studies tracing back the remarkable properties of proteins to basic  
polymer physics. 
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The coil-globule transition (CGT)1 is one of the most important 
phenomena exhibited by polymeric systems; polymers col-
lapse into compact globules in a bad solvent, that is, a solvent 

that is unable to screen the mutual attraction between monomers, 
whereas they expand to coil-like conformations in a good solvent, 
where the only relevant interaction is the repulsive volume exclusion 
between monomers2. The CGT lies behind well-established technol-
ogies based on responsive polymers3, as well as emerging applica-
tions to drug delivery4 and microfluidic devices and sensors5, and it 
sets the logical framework to understand protein folding6, possibly 
the most important natural occurrence of polymer collapse. Because 
of such widespread and crucial experimental and technological rel-
evance, the CGT has been under careful theoretical scrutiny for the 
past three decades. In fact, there is a general agreement on the bad 
and good solvent sides of the transition. Instead, understanding the 
behaviour at the transition point represents a greater challenge. In 
his seminal work, de Gennes7,8 built upon the approach of Flory9 to 
describe the CGT as the transition of a tricritical magnetic system, 
inferring that it had to be a continuous transition. Although a large 
number of experiments have confirmed such prediction, there has 
also been evidence for discontinuous transitions10–12, findings that 
have been to date difficult to reconcile with the theory. Moreover, 
and more fundamentally from a conceptual point of view, proteins 
are known to undergo in most cases a two-state kind of transitions, 
where the folded (native in the biochemistry language) and the 
unfolded states coexist at the transition. This is very much akin to 
what is expected for discontinuous, first-order phase transitions, that 
are indeed characterized by phase coexistence. Although the special 
(non-random) heteropolymeric features of proteins have a crucial 
role in protein thermodynamics13, it must be noted that no simple 
protein model with designed sequence exhibits full-fledged coexist-
ence at the transition. It becomes thus necessary to understand how 
the continuous transition predicted by de Gennes7,8 can be turned 
into a discontinuous one as shown by proteins6,14, and whether it 
is possible to do so. Two paths have been previously proposed to 
that goal. In an early attempt15,16, and more recently in a paper by 
Doniach et al.17, polymers were endowed with a stiffness penaliz-
ing bent conformations, managing to elicit a new phase transition 
taking place within the globular phase and discriminating between 
amorphous and ordered globules. Such phase transition turned out 
to be similar to a first-order liquid–solid transition. Yet, the usual 
CGT retained its continuous nature. Only for very stiff polymers 
the collapse would take place directly toward ordered globules, thus 
changing the CGT order. A different strategy relies on the fine-
tuning of the range of non-bonded interactions, so that within the 
globular phase, some rearrangements could lead from amorphous 
to ordered globules18. Again, this is a discontinuous transition that, 
for a carefully chosen interaction range, could pre-empt the CGT, 
which would otherwise remain continuous. Both these approaches, 
nonetheless, are unlikely to be relevant for synthetic polymers and 
proteins, that are very flexible19 and equipped with interactions of 
many different types and ranges, unlikely to be so fine-tuned, as it is 
required for switching the order of the CGT.

The approach we follow here is based instead on a critical analy-
sis of traditional models of polymers. Taking into account hitherto 
neglected terms in the approximation of realistic Hamiltonians, we 
identify a single key parameter whose variation can result in a switch 
of the transition from continuous to discontinuous. Furthermore, we 
highlight how the subtle interplay between such parameter and the 
polymer length controls the emergence of the distinguishing features 
of first-order phase transitions, in particular phase coexistence.

Results
The self-interacting polymer model. Polymers are made of 
monomers strung together in long chains. Monomers can be 
simple, as in polyethylene (one carbon atom with two side 

hydrogens), or complex, as amino acids in proteins. The covalent 
nature of the backbone interactions enforces almost fixed distances 
between consecutive monomers, whereas their mutual bending 
and torsional (dihedral) angles are restrained to discrete sets of 
values. For example, in polyethylene, the bond length is 0.153 nm, 
the angle between two bonds is about 112°, and three consecutive 
bonds are prevalently arranged in trans, gauche +  or gauche −  
conformations20. As mentioned above, the interactions between 
non-consecutive monomers are governed by two contrasting terms: 
short-range repulsive volume exclusion, which forbids any two 
monomers to occupy the same region of space, and medium-range 
attractive forces such as hydrogen-bonds, hydrophobic and van der 
Waals interactions. Because of the tight constraints on monomer–
monomer distances and relative angles, polymers mostly populate 
only a discrete set of conformations. These features are captured by 
a lattice description, where consecutive monomers occupy nearest-
neighbour lattice sites and two monomers cannot lie at the same 
site. As a consequence, it is a deeply rooted belief that lattices can 
be used to explore the properties of real polymers21. In particular, 
by including an energy term that favours pairs of non-consecutive 
monomers to occupy neighbouring sites (usually called contacts), 
lattice polymers exhibit a CGT belonging to the same universality 
class as predicted by de Gennes22,23. The resulting model has 
been referred to as the Interacting Self-Avoiding Walk (ISAW). To 
improve upon the ISAW and identify the missing ingredients that 
may change the order of the CGT, it is necessary to review how the 
lattice embedding of real polymers is formally justified.

The discrete set of conformations accessible to real polymers 
and captured by the lattice description are the inherent structures24 
(the minima) of a potential function that depends on the full set 
of coordinates in continuous space, V ri({ })


, where 


ri  is the three-

dimensional position vector of the i-th monomer. The full partition 
function of a polymer of N beads is thus
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tion function; the energy is simply given by the number n(γ) of non-
bonded contacts of conformation γ, each contributing an energy  − ε 
(from here on, ε = 1 and kB = 1). Here we focus on the next term in 
the Gaussian approximation of equation (1), which accounts for the 
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rotations and translations). As  − kBT ln[w(γ)] is the vibrational free 
energy associated with conformation γ, and the internal energy is 
trivially 3NkBT/2 for all conformations, w(γ) is seen to embody the 
effects of vibrational entropy of conformation γ.

In our potential energy, the inherent structures correspond  
to conformations that can be embedded on the tetrahedral  
lattice. With this choice, bending angles between consecutive  
bonds have an equilibrium value of q0

1 1 3 109= −( ) °−cos /  ,  
whereas four-body dihedral angles can take the three different 
equilibrium values y p pt,g± = − ±, ( / )3 . The minimum of the con-
tact energy between non-consecutive monomers is set at a dis-
tance, which is precisely the lattice spacing l (l = 1 henceforth). The  
complete potential then reads
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where kbb, kθ, ky t,g  and k are the stiffness constants of the bonds 
between consecutive monomers, of the angles between consecu-
tive triplets, of the dihedral angles between consecutive quadruplets 
and of the non-bonded nearest-neighbour forces, respectively. The 
parameter ky t,g

 further distinguishes between trans and gauche 
conformations (see Methods). The contact matrix ∆i,j is equal to 1 if 
non-consecutive (j≠i ± 1) monomers i and j are nearest neighbours, 

(4)(4)

and it is zero otherwise. The Hessian matrix of the energy function 
(equation (4)) is then obtained after expressing the bending and 
dihedral angles using Cartesian coordinates and expanding to sec-
ond order in the displacements { }∆


ri . We have then compared the 

behaviour of the traditional ISAW equation (2) model and of the 
present scheme, that we have termed, for brevity, Vibrating ISAW, 
henceforth VISAW, equation (3).

Thermodynamics. The thermodynamic behaviour of the ISAW 
model confirms that the associated CGT is continuous in three 
dimensions, as already found previously22. The microcanonical 
entropy is S(E) = ln (E), where (E) is the number of confor-
mations with a given energy E, and its derivative with respect to 
E yields the inverse temperature, β = 1/T = dS(E)/dE. Figure 1a–d 
show that β is a monotonously decreasing function of the energy, 
with no signs of phase coexistence. The picture changes dramatically 
in the VISAW model. Consistently with our canonical simulations 
(see Methods), we define the VISAW microcanonical entropy as 
S E wE( ) ln[ ( )]|= Σg g , where the sum runs over all the conformations 
γ characterized by an energy E. As for the ISAW, here E refers to the 
contact part only of the energy. Figure 1e–h reveal that the deriva-
tive of S(E) is no longer monotonic when vibrations are included 
in the picture. The region where β grows with E, which would cor-
respond to a negative microcanonical specific heat, is canonically 
forbidden and is one of the hallmarks of a discontinuous transition 
with coexistence between two different phases26–28. The coexist-
ence temperature can be extracted from the β(E) curve using the 
customary Maxwell construction; this value βcoex3.18 agrees well 
with the temperature of the (canonical) specific heat maximum 
βmax = 3.20(2).

The difference between Fig. 1a and e, in particular, points to 
the vibrational entropy as the culprit for the change in the order of  
the transition. As a matter of fact, in the context of solid–solid  
transformations, it had already been observed that the specific 

E+E–

dS
/d
E

 =
 1

/T
 =

�
p 

(E
/N

)

3

3.2

3.4

0

4

8

0

4

8

–0.6 –0.4 –0.2
0

5

10

15

� coex= 3.18

�=3.0

�=3.3

0.5

1

1.5

�=1.1

�max= 0.827

�=0.6

0

4

8

0

4

8

–0.6 –0.4 –0.2
E/N E/N

0

5

10

15

a

b

c

d h

g

f

e

Figure 1 | Model thermodynamics. The microcanonical behaviour of polymers according to the IsAW (left column) and VIsAW (right column) for 
N = 180. (a) The derivative of the entropy with respect to the energy, proportional to the number of contacts, corresponds to the inverse temperature 
β = 1/T. The slope is always negative, corresponding to a physical positive specific heat; the energy probability distribution is sampled at temperatures  
(b) higher than, (c) equal to and (d) lower than the temperature of the maximum of the specific heat Tmax, and in all cases it is found to be unimodal. 
(e) A positive slope corresponds to a microcanonical negative specific heat, which is not physical in the canonical ensemble and needs, therefore, the 
maxwell construction to be avoided; the energy probability distribution at temperatures (f) higher than and (h) lower than Tcoex are unimodal, whereas  
at a temperature equal to Tcoex (g) the coexistence of two phases of low and high energy is marked by the presence of two distinct peaks at E −  and E + .
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heat is enhanced at the transition if the high-temperature phase 
is softer, that is, richer in low-frequency vibrational modes29, 
than the low-temperature one. In the present case, the sce-
nario is even more dramatic because the coil and globule phases  
are completely different from a topological point of view; coils are 
low-dimensional, typically soft structures, whereas globules are  
higher-dimensional and stiffer conformations. More precisely, the 
difference in rigidity between coil and globule conformations is 
controlled by the elastic constant k associated with non-bonded 
interactions. Coil conformations, featuring few contacts, are char-
acterized by vibrational spectra rather insensitive to changes in k  
(Fig. 2a). By converse, the spectra of globular conformations  
crucially depend on k; for k = 0, only backbone potential terms 
(bond-length, bending and torsional angles) are present, so that all 
conformations have a vibrational spectrum akin to those of coils 
(Fig. 2b); as k increases, the elastic terms transverse to the back-
bone become progressively more important, making the spectra 
more similar to what is expected for a compact solid, with a dra-
matic depletion of low-frequency modes, the ones that contribute 
the most to the entropy.

Three consequences proceed from the above argument. First, the 
discontinuous nature of the phase transition should be magnified 
by increasing values of k, as the depletion of low-frequency modes 
becomes more pronounced (Fig. 2b). Second, the discontinuous 
nature of the phase transition should equally become more evident 
for increasing values of the polymer length N, at constant values of 
k, because the vibrational modes of longer polymers are progres-
sively softer, hence the low-frequency region more populated and 
thus the depletion induced by k≠0 more relevant. Third, for k = 0, 
the ISAW and the VISAW should fall in the same universality class, 
because the entropy weight is roughly the same for coil and globule 
conformations (Fig. 2a,b for k = 0), and is, to a good approximation, 
a simple multiplicative constant for the partition function.

To prove the above inferences, we have analysed the energy 
probability distribution in these three scenarios. For a fixed length 
(N = 180), the histogram does indeed evolve from single to two-state 
as k increases (Fig. 3a–d). The evolution of the density of states for 
a fixed k and growing lengths (Fig. 3e–h) reveals that phase coexist-
ence emerges as the length is increased, as argued above. To obtain 
a complete picture, we finally inspected how the density of states 
changes with length as k = 0; no coexistence appears, and the energy 
histogram approaches, as argued above, one of the traditional  
tricritical model, which thus defines the universality class for k = 0 
(Fig. 3i–l).

Scaling properties at the transition. The non-analytic part of the 
extensive free energy of self-interacting polymers in the proximity 
of the transition is, by scaling arguments30, of the form

F t N F tN( , ) ( )= f

where t = (T − TC)/TC is the reduced temperature (TC being the 
transition temperature) and φ is the crossover exponent. Thus, the 
specific heat, which is the second derivative of the free energy per 
monomer with respect to temperature, scales at the transition (t = 0) 
as Cv~N 2φ − 1. As a consequence of the mean-field nature of tricriti-
cal transitions in three dimensions, φ = 1/2, implying that Cv~const 
(with expected logarithmic corrections)8,23,31. By converse, in the 
presence of a first-order phase transition, the crossover exponent is 
φ = 1 and Cv~N, by standard finite-size arguments32,33. Interestingly, 
the inverse relation t~1/N (consistent with φ = 1) has been observed 
for a collection of proteins of various lengths, strengthening the case 
for a first-order-like protein-folding transition34. Our simulations 
confirm such predictions (Fig. 4a); the specific heat of the ISAW 
model barely grows with an effective crossover exponent φ = 0.56, 
compatible with the expected φ = 1/2 dressed by logarithmic correc-
tions and/or finite-size effects. When instead fluctuations around 
the energy minima are taken into account, for k = 2 the specific heat 
grows more than linearly with N. As the extensivity of the energy 
sets φ = 1 as the upper bound for the crossover exponent, we inter-
pret superlinearity as a transient behaviour due to the increasing 
separation of the two energy peaks corresponding to the coexisting 
phases (see Figs 1g and 3e–h). Once the distance between the two 
peaks has stabilized, the crossover exponent attains its asymptotic 
value φ = 1. Calorimetry, thus, confirms the discontinuous nature of 
the transition of the present model.

The metric properties of polymers at the transition are also of 
fundamental interest. Polymers below the transition are compact 
globules and their radius of gyration R scales with their length as 
R~N1/3. Much above the transition temperature, the only relevant 
inter-monomer interaction is excluded volume and R N~ nSAW,  
where νSAW0.587 is the exponent of three-dimensional self- 
avoiding walks35. Once again, due to the tricritical nature of the 
transition, characterized by mean-field values of the exponents in 
three dimensions, at the transition point ISAW polymers behave as 
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Figure 2 | Vibrational density of states. Low-frequency part of the density 
of vibrational states as a function of the frequency w l=  (the λs are 
the eigenvalues of the Hessian matrix) for polymers of length N = 100 
and for various values of the contact stiffness parameter k: (a) coil-like 
conformations (5 contacts); (b) compact conformations (number of 
contacts between 52 and 59). The absence of a relevant dependence on 
k for coil conformations contrasts with the dramatic effect that k has on 
compact conformations.
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ideal chains, with the radius of gyration R scaling as the square root 
of the number of monomers (R~N1/2). The behaviour of R/N1/2 as 
a function of N at the ISAW CGT transition is shown in Fig. 4b, 
confirming the theoretical predictions. Two regimes are instead 
clearly discernible in the metric properties of the VISAW model 
at the coexistence temperature; polymers of small length (N≤100) 
behave as random coils (R~N1/2), whereas longer polymers (N≥140) 
scale as SAWs (inset in Fig. 4b). These results are a consequence of 
the discontinuous nature of the transition, where no divergences are 
expected. Indeed, the critical behaviour of the ISAW model con-
forms to the usual scaling at continuous transitions; the ideal metric 
properties encompass a number of monomers that scales as t − 1/φ, 
as posited by equation (5), diverging as the whole polymer is taken 
up at t→0. By converse, at a discontinuous transition, the critical 
region remains of finite size, so that the ideal behaviour that we 
observe can extend only up to finite lengths, and must cross over to 
the dominant non-critical scaling, which in the present case is rep-
resented by the self-avoiding exponent ν0.587 (inset of Fig. 4b). 
To provide a more complete picture, we have also analysed the scal-
ing properties of the VISAW model for k = 0 (Fig. 4a,b), confirming 
that in the absence of vibrations of non-bonded contacts, VISAW 
polymers remain in the ISAW universality class.

Discussion
Ever since de Gennes showed that, for the ISAW model, the CGT 
is continuous, identifying the features capable of changing its order 
has remained one of the major challenges in polymer physics. In 
the years, several different modifications have been proposed, such 
as switching from flexible to semi-flexible polymers15–17, or suit-
ably tuning the range of the non-bonded attractive interactions18. 
These previous attempts have never really succeeded in changing 
the order of the CGT, which is instead simply pre-empted by a first-
order transition under special conditions, such as strongly reduced 

flexibility of the chain backbone or very narrow-range interactions. 
As such scenarios do not really apply to proteins and synthetic poly-
mers, whether any basic polymer model could produce the desired 
discontinuous transition has remained an unanswered issue.

The VISAW model that we presented here is a natural generali-
zation of the ISAW, stemming from basic considerations about the 
structure of a realistic potential compatible with the ISAW approxi-
mations. The inclusion of fluctuations around inherent structures 
in the calculation of the partition function is coherent with mod-
ern developments in condensed matter physics25 and provides a 
clearer picture of the CGT. The change in the order of the transition 
is brought about by the force constant k of non-bonded contacts, 
because of its depleting effect of low-frequency modes for globu-
lar conformations. It is crucial here to stress that it is not the abso-
lute flexibility of the polymers that determines the transition order 
change, but rather the softness difference between globule and coil 
conformations.

Our results also shed light on some difficulties that have hindered 
the assessment of the CGT order from the experimental point of 
view, and on the problems at reconciling the two-state behaviour of 
proteins with fundamental polymer physics. Indeed, very soft, non-
bonded contacts (small k values in the VISAW model) would not 
manifest the discontinuity of the transition if not for extremely long 
polymers. By converse, stiff contacts (high k values) would induce 
phase coexistence for shorter polymers. In this respect, proteins 
stand out because the interactions between adjacent amino acids 
include, most of the time, hydrogen-bond interactions as in second-
ary structures (α-helices and β-sheets). The hydrogen bond is rather 
rigid, as captured by coarse-grained models where its stiffness can 
be up to tens of times larger than for van der Waals or hydrophobic 
interactions36. As a consequence, at variance with other polymers 
with softer interaction, such as polyethylene, polymethylene or  
polystyrene, proteins might be more likely to exhibit two-state 
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Figure 3 | Evolution of the energy probability distribution of the VISAW. The first row portrays the evolution of the energy (per monomer) probability 
distribution for a fixed polymer length, N = 180, and varying values of k (panel a: k = 0, b: 0.02, c: 0.2 and d: 2). As it can be clearly seen, the distribution 
progressively broadens until two peaks become clearly discernible, signalling phase coexistence. The second row reports the evolution of the distribution 
for a fixed value of k (k = 2) and progressively longer polymers (panel e: N = 50, f: 100, g: 140 and h: 180). As for the first row, the distribution becomes 
broader and, eventually, characterized by two peaks. The behaviour of the VIsAW model for k = 0 and increasing lengths (i–l, same length sequence as for 
the second row) approaches the one of the standard IsAW model (dashed line), suggesting that the IsAW model and the VIsAW model for k = 0 belong 
to the same universality class.
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behaviour already at intermediate lengths. At the same time, the 
limited length of proteins clearly hinders the possibility to unambig-
uously distinguish discontinuous from continuous transitions6,37. 
Moreover, it is important to recall that the non-random hetero-
geneity of the amino acid sequence is likely to contribute to the  
sharpness of the transition in proteins13.

The VISAW model that we have introduced here contributes 
thus to a recent emerging scenario where salient features of proteins,  

such as the two-state behaviour and the presence of secondary 
structures, would be attributed to previously unexplored general 
properties of simpler homopolymers38,39.

The results shown here inevitably raise several issues. First and 
foremost, it is crucial to discuss the relations of the present model 
with other approaches that have been used in the past to study the 
CGT. In particular, both lattice and off-lattice models have lent sup-
port to the continuous transition framework. In a previous section, 
it has been shown how the VISAW model builds upon the usual 
approximations leading to lattice models, pushing them one step 
further toward lattice polymers closer to the real ones. The connec-
tion with off-lattice schemes is instead more delicate. Indeed, most 
off-lattice approaches describe polymers as freely jointed chains of 
beads, with no bending and, most importantly, no torsional poten-
tials23,40. A polymer whose backbone is described by a potential 
similar to the one of equation (4) can be considered as fully flex-
ible in the following scenarios: either some re-scaling is implicitly 
invoked, such that the connection between consecutive beads actu-
ally captures several chemical monomers that are in a random coil 
conformation, or the energy barrier between torsional minima is 
much lower than the thermal energy at the CGT, in which case poly-
mers do not feel any torsional restriction. Neither assumption, yet, 
is likely to apply to real polymers; the re-scaling procedure leading 
to a freely jointed description cannot be applied equally well to the 
coil and to the globule phases, as they are conformationally different 
both at the global and local scales; as well, it has been shown that 
realistic torsional potentials do strongly confine conformations at 
room temperature41,42, which is close to the CGT for real polymers, 
implying that the barriers between trans and gauche ±  conforma-
tions are significantly larger than the thermal energy. As a conse-
quence, we argue that a flexible, torsion-free polymer model is not 
necessarily a good model to describe the CGT of real polymers. Fur-
thermore, it is not easy to draw conclusions about the connections 
between lattice VISAW and off-lattice torsion-free polymers, as the 
latter cannot be recovered as a limit of the former. Rather a full-
fledged off-lattice study would be needed, with the energy barrier 
between torsional minima as an extra parameter.

The present work has also some more theoretical, and in some 
sense fundamental, implications. As k = 0 still belongs to the ISAW 
universality class but k≠0 does not, our generalization has actually 
introduced a new parameter that is relevant, in a renormalization 
group perspective, because it leads away from the usual tricritical 
point. Further simulations for small values of k, thus close to the 
ISAW CGT, could also uncover the scaling relation between k, t and 
N, leading to a free energy of the form F N t N kt k( , )f f  with φt the 
usual crossover exponent. Unfortunately, the heavy computational 
costs implied by the need to diagonalize the Hessian matrix at each 
Monte-Carlo step is presently hindering our capability to analyse, 
with reliable statistics, the large span of lengths that would be neces-
sary to assess such subtle scaling features. This, as many other analy-
ses, will be needed in the future to fully understand the properties of 
this new model and to unveil its connections with the behaviour of 
real polymers and proteins.

Methods
Details of the model. In this work, we adopted non-dimensional units. In par-
ticular, the energy of non-bonded monomer contacts is ε = 1 and the Boltzmann 
constant kB = 1. Temperature is expressed in units of ε/kB. The lattice spacing is set 
to l = 1, and the stiffness constants of the potential equation (4) are expressed in 
units of energy. The stiffness constants of the elastic potential equation (4) are set 
to kbb = 150, kθ = 1, ky t = 1 and kyg = 0 6. . The non-bonded interaction constant 
k is varied in the range (0,2). The stiffness of the bond between two consecu-
tive monomer pairs, kbb, is much larger than the others, consistently with other 
coarse-grained off-lattice force fields36,43,44 where the bond is rigid (kbb = ). This 
choice reflects the almost fixed length of a covalent bond. The ratio between the 
trans (ky t) and gauche (kyg) stiffness constants is such that the eigenvalues of the 
corresponding Hessian sub-matrices are equal. In this way the trans and the gauche 
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Figure 4 | Scaling properties at the coil-globule transition. (a) Log–log 
plot of the maximum of the specific heat, CmAX as a function of the 
polymer length N for the IsAW model (black circles) and for the VIsAW 
model in the two cases k = 0 (blue circles) and k = 2 (red circles). The 
VIsAW-specific heat has been reduced by a factor to be plotted with the 
much lower one of the IsAW without compressing too much the latter. 
(b) Log–log plot of the ratio of the average radius of gyration, R, to the 
expected ideal scaling behaviour, N1/2, as a function of the polymer length. 
The data for the IsAW and VIsAW (k = 0) models have been taken at 
the transition point, identified as the temperature TC where the curves 
R(T)/N1/2 intersect, rather than as the temperature of the maximum of 
the specific heat, which is affected by considerable finite size effects. 
Importantly, in both cases, a temperature TC is well identified from the data 
(not shown). In the case of the VIsAW (k = 2), the data have been taken 
at the temperature of the maximum of the specific heat, as in this case no 
clear temperature can be found where the curves R(T)/N1/2 intersect, and 
because the data show, especially for longer polymers, that the transition 
temperature identified using the maxwell construction (Fig. 1e) coincides 
with the one of the maximum of the specific heat. The inset shows the 
behaviour of R(N)0.587 as a function of polymer length to highlight that for 
longer lengths VIsAW polymers behave as self-avoiding chains. Data keys 
in panel b are the same as in panel a.
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direction are individually associated with the same weight and we avoid introduc-
ing any chain semi-flexibility that was already treated in previous models15–17.

The sum over consecutive quadruplets (third term of equation (4)) can be 
expressed more explicitely as three sums over the trans, gauche +  and gauche −  
quadruplets:
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where each quadratic term corresponds to the second-order expansion of a  
potential that can be written as45

V a ki i
k

k i i( ) cos( ), ,y y+ += ∑3 3

with the ak coefficients chosen so that V(ψi + 3,i) has three minima of the same 
value in ψi + 3,i = π,  ± π/3 with second derivative ′′ =V k( )p y t and ′′ ± =V k( / )p y3 g.  
The number of ak coefficients depends then on the number of further conditions 
that are imposed on V(ψi + 3,i).

Details of the simulations and of data analysis. The model was investigated on 
the tetrahedral lattice by means of dynamic Monte Carlo with Pivot moves46,47. 
Each new proposed configuration (γnew) is accepted, if self-avoiding, with  
probability

p e
w
w

n n( ) min ,
( )
( )

( ) ( )]g g
g
g

b g g
old new new old new

old
→ =







−[ ]1 ..

The Multiple Histogram Method technique48 was used to merge data obtained from 
simulations at different temperatures and fixed length. The error bars were estimated 
with the bootstrap method. The derivative of the microcanonical entropy β = dS(E)/
dE (Fig. 1) was calculated by means of a low-noise Lanczos differentiator49. 
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