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DIFFUSION-LIMITED REACTIONS F. PIAZZA

DIFFUSION OF A PAIR OF PARTICLES

Let us consider the motion of an isolated pair of reactants. Let us indicate with Di and xi(t) the
diffusion constant and the position vector of the particles i = 1, 2 in the chosen reference frame.
The diffusive motion of the pair is described by the equation

∂P (x1,x2, t)
∂t

= D1∇2
1ρ(x1,x2, t) +D2∇2

2P (x1,x2, t) (1)

which can be obtained in the usual manner by requiring probability conservation in the form of a
continuity equation involving the probability currents Ji = −Di∇iρ(x1,x2, t)

∂P (x1,x2, t)
∂t

+ ∇1 · J1(x1,x2, t) + ∇2 · J2(x1,x2, t) = 0 (2)

The diffusion equation (1) becomes separable upon performing the following change of variablesr = x1 − x2

R =
√
D2
D1

x1 +
√
D1
D2

x2

(3)

where the coordinate R describes the diffusional centre of mass, while r is the relative pair separa-
tion. This yields

∂P ′(R, r, t)
∂t

= D
(
∇2

R +∇2
r

)
P ′(R, r, t) (4)

where D = D1 +D2 is the coefficient of relative diffusion. Equation (4) is separable and it admits
a solution in the form

P ′(R, r, t) = p(R, t)ρ(r, t) (5)

The unphysical diffusion of the centre of mass can be neglected, while the diffusional motion of the
two particles can be fully described by following the time evolution along the relative separation r.
Therefore, without loss of generality we can take p(R, t) = 1. Accordingly, the pair dynamics is
described by the following equation

∂ρ(r, t)
∂t

= D∇2ρ(r, t) (6)

where we have omitted for brevity the r subscript in the Laplacian operator.
Alternatively, one can perform the simpler change of variables

(x1,x2) −→ (r = x1 − x2,x2) (7)

which amounts to shifting to the frame of reference attached to particle 2. In this case the diffusion
equation becomes

∂P (x1,x1 − r, t)
∂t

= D∇2
rP (x1,x1 − r, t) (8)

which also reduces to equation (6) with

ρ(r, t) =
∫
P (x1,x1 − r, t) d3x1 (9)
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The Smoluchowski equation

Equation (6), valid for non-interacting particles, can be easily[1] generalized to the case of particles
interacting through a 2-body potential V (r). The external force associated with the potential, F =
−∇V (r), causes the particles to drift apart at equilibrium with a relative velocity

v = −∇V (r)
γ

(10)

where γ is the damping coefficient of the fluid where the diffusive motion takes place ([γ] = mass
× time−1). The total probability current including the current associated with the external force
JF = ρv is thus

J(r, t) = −D∇ρ(r, t)− ρ ∇V (r)
γ

(11)

At equilibrium J = 0 and ρ(r, t) ∝ exp[−βV (r, t)], wich implies Einstein’s relation

D =
kBT

γ
(12)

The above relation is in fact a simple expression of the fluctuation-dissipation theorem. As a conse-
quence, the total current can be rewritten as

J(r, t) = −D [∇ρ(r, t) + βρ∇V (r)] (13)

Inserting the above expression in the continuity equation expressing conservation of probability
associated with the radial current [2] Jr = J1 − J2 = −D∇rρ(r, t)

∂ρ(r, t)
∂t

+ ∇r · Jr = 0 (14)

yields the so-called Smoluchowski equation

∂ρ(r, t)
∂t

= D∇ · [∇ρ(r, t) + βρ∇V (r)] (15)

that generalizes the diffusion equation to the presence of a pair-wise interaction potential.
It is interesting to note that the total current (13) can be recast in a slightly different form. We

note that

∇ρ = βρ∇
[
β−1 log

(
ρΛ−3

)]
= βρ∇µ (16)

We recognize the equilibrium chemical potential of the perfect (i.e. non-interacting) ideal (i.e. clas-
sical) gas µ = β−1 log[ρΛ−3] whose density is ρ(r, t),

µ(r, t) =
δF [ρ(r, t)]

δρ
(17)

where δF/δρ denotes the functional derivative of the equilibrium free energy. Λ =
√

2π~/mkBT is
De Broglie’s wavelength [3]. Formally, equation (16) specifies the chemical potential as a function
of time and space. By inserting expression (16) in equation (13) we get

J(r, t) = −β Dρ(r, t) ∇[µ(r, t) + V (r)] (18)
= −β D(r, t) ∇[µ(r, t)− µext(r, t)]

= −β Dρ(r, t)∇
[
δFtot[ρ(r, t)]

δρ

]
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The above expression shows that an external potential can be interpreted as a shift in the chemical
potential. The external potential can be identified as minus the externally fixed chemical potential
µext. Note the appearance of the total free energy

Ftot = F [ρ(r, t)]−
∫
µext(r, t)ρ(r, t) d3r (19)

In equilibrium, the equation of state

δF [ρ(r]
δρ

= µext(r) (20)

is satisfied, and the current J is zero.

For other applications, it is instructive to cast Smoluchowski’s equation in another form. To this end,
we note that the total current (13) can be rewritten as

J(r, t) = −De−βV ∇
(
ρ(r, t)eβV

)
(21)

so that the Smoluchowski equation takes the form

∂ρ(r, t)
∂t

= D∇ ·
[
e−βV ∇

(
ρ(r, t)eβV

)]
(22)

PAIR ANNIHILATION AND THE SURVIVAL PROBABILITY

Let us imagine that a pair of particles spherical particles of radius R/2 is suddenly formed at t = 0
at a separation |r(0)| = r0 and is constrained to diffuse in space. We are interested in studying
the recombination process. Two useful quantities can be introduced, the pair lifetime distribution
P(τ |r0), where τ is the time it takes to the two particles to come to contact at the distance R for the
first time, and the pair survival probability S(t|r0), which is nothing but the cumulative distribution
of the density P

S(t|r0) =
∫ ∞
t

P(τ |r0) dτ (23)

which shows that

P(t|r0) = −dS(t|r0)
dt

(24)

The recombination probability is defined as

Q(t|r0) =
∫ t

0

P(τ |r0) dτ (25)

which corresponds to the normalization

S(t|r0) +Q(t|r0) = 1 (26)

indicating that either the two particles survive isolated or recombine.
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The Green function for the pair recombination problem

The survival probability S(t|r0) can be calculated by solving the following boundary value prob-
lem 

∂G(r, t|r0, t0)
∂t

= D∇2G(r, t|r0, t0) + δ(r − r0)δ(t− t0)
4πr2

G(r, t|r0, t0)|r=R = 0
limr→∞ G(r, t|r0, t0) <∞

(27)

The function G(r, t|r0, t0) is the Green function of the pair diffusion problem. It only depends on the
magnitude of the relative separation and has no angular dependencies. The two (one-dimensional)
delta functions correspond to the initial condition of sudden generation of the pair at time t0 at a
separation r0. In the following, we shall take t0 = 0 for simplicity. The boundary condition at
r = R corresponds to the recombination event.

The survival probability is the sum of all the probabilities that the pair separation lies between r
and r + d3r, that is

S(t|r0) =
∫
G(r, t|r0, 0) d3r (28)

Let us now solve equation (27) and calculate the survival probability. For simplicity, we let t→ Dt.
By taking the Laplace transform of equation (27), we get

sḠ − δ(r − r0)
4πr2

=
2
r

∂Ḡ
∂r

+
∂2Ḡ
∂r2

(29)

where

Ḡ(r, s|r0, 0) =
∫ ∞

0

e−stG(r, t|r0, 0) dt (30)

We look for solutions in the form

Ḡ(r, s|r0, 0) =
f(r, s)
r

By inserting this ansatz in equation (30), the equation is transformed to

f ′′(r, s)− sf(r, s) = −δ(r − r0)
4πr

(31)

The general solutions of the homogenous equation are

f(r, s) = Ae−
√
s r +Be

√
s r

Therefore, the appropriate solution satisfying the boundary condition at infinity is

f(r, s) =
Ae−

√
s r

r
(32)

In order to find a particular integral of equation (31), we take the (one-dimensional) Fourier trans-
form

(k2 + s)f̃ =
1

2(2π)3/2

eikr0

r0
(33)
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where

f̃(k, s) =
1√
2π

∫ ∞
−∞

eikrf(r, s) dr (34)

From standard inverse Fourier tables, we get

f(r, s) =
e−
√
s|r−r0|

8π r0
√
s

(35)

so that the general solution of equation (29) is

Ḡ(r, s|r0, 0) =
Ae−

√
s r

r
+
e−
√
s|r−r0|

8πr r0
√
s

(36)

Imposing the absorbing boundary condition at r = R allows to fix the constant A

A = − 1
8πr0

e−
√
s(r0−2R)

which gives

Ḡ(r, s|r0, 0) =
1

8πr r0
√
s

[
e−
√
s |r−r0| − e−

√
s(r+r0−2R)

]
(37)

The Laplace transform can be inverted through the usual Bromwich closed contour including the
branching point around the pole at s = 0. The result is

G(r, t|r0, 0) =
1

8πr r0

√
πDt

[
e−(r−r0)2/4Dt − e−(r+r0−2R)2/4Dt

]
(38)

The survival probability can now be calculated through eq. (28). The result is

S(t|r0) = 1− R

r0
erfc

(
r0 −R
2
√
Dt

)
(39)

where erfc(x) the complementary error function

erfc(x) =
2√
π

∫ ∞
x

e−x
2
dx (40)

The corresponding recombination probability is

Q(t|r0) = 1− S(t|r0) =
R

r0
erfc

(
r0 −R
2
√
Dt

)
(41)

The stationary values of the survival and recombination probabilities are

S(r0) = lim
t→∞

S(t|r0) = 1− R

r0
(42)

Q(r0) = lim
t→∞

Q(t|r0) =
R

r0

6/17



DIFFUSION-LIMITED REACTIONS F. PIAZZA

FIG. 1: Schematic illustration of the (a) trapping and (b) target problems. Traps are represented as filled circles
and particles by empty circles.

DIFFUSION IN MANY-BODY SYSTEMS: THE TRAPPING AND TARGET PROBLEMS

We have studied the recombination of an isolated pair of particles that diffuse in a fluid. We can now
turn to the problem of particle recombination in a many-particle system. Let us consider a system
composed of two kind of particles, say A (diffusion coefficient DA) and B (diffusion coefficient
DB). Without loss of generality we assume that both particles have the same radius R/2 so that the
encounter distance is R. All particles are assumed as non-interacting. We arbitrarily assign to the
particles of type B the character of traps (sometimes also called quenchers [4]), while we still refer
to particles of type A as the particles. Two conceptually distinct scenarios arise as limiting cases

1. Trapping, DB = 0. A single particle diffuses amidst a stationary configuration of traps and
gets absorbed (it recombines) at the first trap site encountered. This scenario is illustrated
schematically in Fig. 1 (a).

2. Target, DA = 0. Many traps diffuse in the presence of a single stationary particle (the target)
until the first trap hits the target. This scenario is illustrated schematically in Fig. 1 (a).

This problem admits a simple solution only if some assumptions are made. Let us imagine that
the particles of kind A are sufficiently diluted so that one can concentrate on a single A particle
surrounded by many B particles, say N of them. The N + 1-body Smoluchowski equation is then

∂P (xA,x1,x2, . . . ,xN )
∂t

=

(
DA∇2

A +DB

N∑
i=1

∇2
i

)
P (xA,x1,x2, . . . ,xN ) (43)

where xA and the xi’s are the position vectors of the A particle and of the N particles of type B,
respectively, in the laboratory frame. the The next step is to change to the reference frame of the A
particle

ri = xi − xA, i = 1, 2, . . . , N

By doing this, one has

∇2
A =

N∑
i=1

∇2
ri

+
N∑

i6=j=1

∇ri
·∇rj
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and the N -body Smoluchowski equation (43) becomes

∂ρ(r1, r2, . . . , rN , t)
∂t

= (DA +DB)
N∑
i=1

∇2
ri
ρ(r1, r2, . . . , rN , t)

+DA

N∑
i 6=j=1

∇ri ·∇rj ρ(r1, r2, . . . , rN , t)

(44)

where

ρ(r1, r2, . . . , rN , t) =
∫
P (xA, r1 + xA, r2 + xA, . . . , rN + xA) d3xA

We see that, so long as the A particle also diffuses (DA 6= 0) the equation contains cross-terms
that make it non-separable. Separability is recovered only in the case N = 1 (single pair), as we
have already shown [see equation (8)], or for static A particles (DA = 0). Therefore, the full
N -body problem can be reduced to an equivalent two-body problem only under the following two
assumptions

1. One species must be much more diluted than the other, so that the N -body problem can be
reduced to study the fate of a single particle surrounded by many particles of the other species.

2. The diffusion coefficient of the highly diluted species should be much smaller than that of the
other species.

Therefore, a tractable problem might be the quenching of large and highly diluted photo-excited
particles by (smaller) highly mobile and non-interacting quenchers.

Note that equation (44) also makes clear why the target and trapping problem are not equivalent,
as one may naively imagine. One has N particles of one type and a single particle of another type.
What equation (44) is telling you is that considering the single particle as static and the others as
moving or viceversa are not equivalent problems.

The survival probability

We turn now to calculating the survival probability for the N -body problem in the target configura-
tion. Let ρB = N/V be the density of traps. Let us denote with S1(t|r0) the survival probability of
the particle A (taken as static) in the presence of a single diffusing trap initially at r(t = 0) = r0.
This is the definition of a target problem, but could be equally considered as a trapping problem,
as the two are obviously exactly the same for an isolated pair. The single-pair survival probability
S1(t|r0) and its complement, the pair recombination probabilityQ1(t|r0) = 1−S1(t|r0) have been
calculated above,

S1(t|r0) = 1−
(
R

r0

)
erfc

[
r0 −R
2
√
Dt

]
Q1(t|r0) =

(
R

r0

)
erfc

[
r0 −R
2
√
Dt

]
(45)

Since the traps are non-interacting, one can neglect correlations between them. Hence, the survival
probability SN (t) of an A target in the presence of N diffusing traps initially in the configuration
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{ri(0) = xi, i = 1, 2, . . . , N}, is given by

SN (t) =
N∏
i=1

S1(t|xi) (46)

The survival probability is then the average of the function (46) over many realizations of the trap
initial configurations

S(t) = 〈SN (t)〉 = lim
N,V→∞

1
V N

∫ N∏
i=1

S1(t|xi) d3xi (47)

= lim
N,V→∞

[
1− ρB

N

∫
Q1(t|xi) d3xi

]N
= exp

[
−ρB

∫
Q1(t|xi) d3xi

]
where the limit is performed in the usual way as to keep the density ρB = N/V finite. The integral
in the last equation is easily calculated, which finally gives the Smoluchowski survival probability

S(t) = exp
[
−kSt

(
1 +

2R√
πDt

)]
(48)

The encounter rate

The encounter rate κ can be easily calculated from the N -body survival probability. This describes
the probability per unit time of an A− B encounter in both the trapping and target problems under
the above-stated hypotheses. One should be careful in recognizing that when traps are interacting,
many-body effects are expected to have different consequences in the target and trapping problems.
In general, one has

κ =
1
〈τ〉

=
[∫ ∞

0

τ P(τ) dτ
]−1

(49)

where 〈τ〉 is the average lifetime of an A − B pair and P(t) is the lifetime density distribution. In
general, one has

P(t) = −dS(t)
dt

(see eq. (24)). Therefore, an integration by parts in eq. (49) with the boundary condition
limt→∞ S(t) = 0 leads to

κ =
[∫ ∞

0

S(t) dt
]−1

(50)

which allows one to calculate the encounter rate (or, equivalently, the average lifetime of a pair)
from the knowledge of the N -body survival probability. Note that the lifetime of an isolated pair
is not well defined! If an attempt is made to use equation (50) with the survival probability of an
isolated pair (45), one gets a diverging lifetime. This is a consequence of the fact that for an isolated
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pair initially at a distance r0 an encounter (recombination) does not take place with probability one,
as limt→∞Q1(t|r0) = R/r0 < 1. This is not the case in the N -body problem, where an encounter
always occurs and

lim
t→∞

Q(t) = lim
t→∞

1− S(t) = 1

Encounter rate in the stationary 2-body problems

Before proceeding to calculate the encounter rate from equation (50) with the survival probabil-
ity (48), it is instructive to calculate κ from the time-independent problem. As we shall see, this
calculation, reported in all graduate textbooks covering diffusion-limited reactions does not provide
the correct result. The argument goes as following.

Under the same hypotheses as the ones stated above, one can solve theN -body encounter problem
by focussing on the fate of a single particle (the highly diluted ones) surrounded by many other
particles, equally taken as non-interacting among them. In this case, we have seen that the N -body
diffusion equation becomes separable and thus it seems legitimate to reduce the full problem to a
two-body problem. We have seen that the appropriate diffusion equation for this problem is

∂ρ(r, t)
∂t

= D∇2ρ(r, t)

where D = DA + DB and r is the relative coordinate. The idea is that the encounter rate can be
computed by solving the following stationary boundary-value problem

∇2ρ(r) = 0
ρ(|r| = R) = 0
lim
r→∞

ρ(r, t) = ρB

(51)

The encounter is treated as an absorbing boundary condition (a sink) at the contact distance R.
Moreover, far from the encounter distance, the density of the B particles should be the bulk density.
In this framework, the encounter rate is nothing but the stationary density flux across any closed
surface around the sink. By virtue of the spherical symmetry of the problem one then has

κ =
∫
Sr

J · n̂ dS = 4πDr2 ∂ρ

∂r

∣∣∣∣
r=R

(52)

where Sr is a sphere of radius r and center at the origin (the sink) and J(r) = −D∇ρ(r) is the
(relative) density current. The solution of the boundary problem (51) is easily found to be

ρ(r) = ρB

(
1− R

r

)
(53)

which gives

κ = kS

def= 4πDRρB (54)

The above expression is widely known as the Smoluchowski encounter rate and predicts a linear
dependence of the rate with the concentration of B particles.
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Now the interesting part. The encounter rate under the (seemingly) same hypotheses as the above
simple calculation can be computed from the N -body survival probability by making use of equa-
tion (50). By doing so, one gets

κ =
kS

1− ekSτ
√
πkSτ erfc(

√
kSτ)

(55)

where τ = R2/πD. If we introduce the packing fraction φ

φ =
4π
3

(
R

2

)3

ρB (56)

it is not difficult to realize that

kSτ = 4R3ρB =
24φ
π

This leads to

κ

kS

=
1

1− e
√

24φ/π
√

24φ erfc(
√

24φ/π)
= 1 +

√
24φ+ 24φ

(
1− 2

π

)
+O

(
φ3/2

)
(57)

Hence, we see that, since the N -body survival probability is not a pure exponentially decreasing
function of time, the steady-state rate κ does not simply equal the Smoluchowski rate kS . Rather, it
is an increasing function of the trap concentration φ. The amazing thing is that the literature is full of
pieces of work where this fact is not recognized, and the expansion (57) is (re)derived in many ways
with the aim of describing many-body effects! As a side remark, we observe that the Smoluchowski
rate would be recovered from equation (50) only if the N -body survival probability were a simple
exponential, S(t) = exp[−kSt].

SPECTRAL TREATMENT OF THE TRAPPING PROBLEM

The trapping problem is a much more general problem than described above. In general, let us
consider a particle that diffuses in a confined volume Ω also hosting a static configuration of traps
of arbitrary shape. This is schematically drawn in Fig. 2. The union of the trap surfaces can be
considered as the pore (external) surface and that is where particles diffusing within the pore get
absorbed. Let ∂Ω represent the pore surface. The trapping problem can be cast in the form of the
following boundary-value problem

∂ρ

∂t
= D∇2ρ+ ρ0δ(t)

ρ|∂Ω = 0
(58)

The initial condition, enforced through the Dirac delta function δ(t), is ρ(r, t = 0) = ρ0. Let
us indicate with φn the orthonormal eigenfunctions [5] of the Laplacian operator satisfying the
boundary conditions in (58),

∇2φn = −λnφn, ρ|∂Ω = 0 (59)
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FIG. 2: Schematic illustration of a particle diffusing within a pore Ω (white space) and getting trapped at the
pore surface ∂Ω. The traps (colored objects) are characterized by absorbing surfaces (the pore surface).

Then solutions of the boundary-value problem (58) can be expressed as linear combinations of the
basis eigenfunctions

ρ(r, t) = ρ0

∑
n

ane
−t/τnφn(r) (60)

where τn = 1/Dλn.
At long times the largest relaxation time τ1 dominates. It is important to stress that the the prin-

cipal (largest) relaxation time is determined by the timescale associated with diffusion within the
largest pores in the system.

The initial condition and the normal mode expansion (66) imply that

∞∑
n=1

anφn(r) = 1 (61)

The orthonormality condition for the eigenfunctions {φn} reads

1
Ω

∫
Ω

φn(r)φm(r) d3r = δnm (62)

Comparison with the normalization condition (61) gives the explicit expression for the expansion
coefficients an

an =
1
Ω

∫
Ω

φn(r) d3r (63)

The normal modes also form a complete basis. To show this, let us take the square of equation (61)
and integrate over the trap-free volume

∞∑
n=1

∞∑
m=1

anam
1
Ω

∫
Ω

φn(r)φm(r) d3r =
1
Ω

∫
Ω

d3r
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From equation (62) one has
∞∑
n=1

a2
n = 1 (64)

We observe, in passing, that for an arbitrary initial condition ρ(r, t = 0) = q(r), one has

bn =
1
Ω

∫
Ω

q(r)φn(r) d3r (65)

which corresponds to an expansion of the type (the coefficient bn have now the dimension of a
concentration)

ρ(r, t) =
∞∑
n=1

bne
−t/τnφn(r) (66)

The survival probability S(t) for a walker diffusing in the trap-free region is defined as

S(t) =
1
Ω

∫
Ω

ρ(r, t)
ρ0

d3r (67)

By using the normal mode expansion (61), we obtain

S(t) =
∞∑
n=1

a2
ne
−t/τn (68)

The mean survival time τ is given by (see also equation (50))

〈τ〉 =
∫ ∞

0

S(t) dt =
∞∑
n=1

a2
nτn (69)

In the thermodynamic limit, Ω, V → ∞ with Ω/V = φ (volume fraction of the trap-free region),
ergodicity enables us to equate ensemble and volume averages of some stochastic function f(r). So
that

〈f〉 = lim
V→∞

1
V

∫
Ω

f(r) d3r (70)

Accordingly, equations (62) and (63) become, respectively
1
φ
〈φnψn〉 = δnm (71)

and

an =
1
φ
〈ψn〉 (72)

An important theorem [6] states that

For random porous media of arbitrary microstructure of porosity φ (volume fraction occupied by the
trap-free region), the mean survival time is bounded from above and below in terms of the principal
relaxation time τ1 as follows

a2
1τ1 ≤ 〈τ〉 ≤ τ1

where

a1 =
1
φ
〈ψ1〉
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Survival probability in a single spherical pore

Let us consider the trapping problem inside a single spherical cavity. The Laplacian eigenfunctions
are solutions of the following equation

r2φ′′n + 2rφ′n + (λnr)2φn = 0 (73)

The solutions are linear combinations of the two spherical Bessel function of order zero

φn(r) = A

[
sinλnr
λnr

]
−B

[
cosλnr
λnr

]
(74)

where A and B are constants to be determined through the boundary conditions. In the limit r → 0
we must require that φn < ∞, which means B = 0. Moreover, at the (interior) spherical surface
r = R we have to enforce absorbing boundary conditions φn(R) = 0. This means that

λn =
nπ

R
n = 1, 2, . . .

The normalization conditions fixes the other arbitrary constant (Ω = 4πR3/3)

1
Ω

∫
Ω

φn(r) d3r = 1 =⇒ A =

√
2
3
nπ

Thus, the expansion coefficients an can be calculated through equation (63). The result is

an =
(−1)n+1

√
6

nπ

so that the survival probability can be finally computed by means of equation (69). We get

S(t) =
6
π2

∞∑
n=1

e−t/τn

n2
(75)

with

τn =
R2

π2n2D
(76)

The largest relaxation time determining the tail of the survival probability is thus τ1 = R2/π2D.
The average lifetime is given by

〈τ〉 =
∫ ∞

0

S(t) dt =
6R2

π4D

∞∑
n=1

1
n4

=
R2

15π4D

a classical result.

THE TRAPPING PROBLEM ON A GRAPH

Let us consider a walker diffusing on a graph containing N nodes. The graph is uniquely specified
by the connectivity matrix

cij =

{
1 if a link exists between nodes i and j
0 otherwise
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The connectivity of the i-th site is thus defined as

ki =
N∑
j=1

cij

This means that from a given site m the walker jumps with a given rate (probability per unit time)
wm→j to one of the km sites that share a link with it. This process is described by the following
master equation

dPm(t)
dt

=
N∑
j=1

cjmwj→m Pj(t)−

 N∑
j 6=m=1

cjmwm→j

Pm(t) (77)

where Pm(t) is the probability that the walker be at site (node) m at time t.
As in the trapping problem in the continuum, we imagine that certain sites are labeled (once for

all) as traps and act as sinks for the walker. We want to estimate the average lifetime of the walker
and the its survival probability as a function of time. For that we shall restrict to random (Erdös-
Rény) graphs, that is graphs where all nodes are connected with the same fixed probability p, or
random regular graphs (constant connectivity is also enforced). We note that the average lifetime
can also be computed (we shall maybe do it later) as a mean-first passage time, which is not difficult
to compute for diffusion on a graph).

Let us imagine to label the n nodes i1, i2, . . . , in as traps. From each trap there are kip , p =
1, 2, . . . , n links emanating towards its neighboring nodes. The total number of links emanating
from all traps is thus

Kn =
n∑
p=1

kip

The probability q that the walker during its diffusive motion hop on one of these Kn links (being
thus absorbed) is proportional to the corresponding fraction

q = A
Kn

N〈k〉

where

〈k〉 =
1
N

N∑
i=1

ki

is the average connectivity of the graph. Let us consider a certain number of walkers nw, that do not
see each other in their diffusive motion in the graph. Their density at time t is ρ(t) = nw(t)/N . In
the absence of the traps, the master equation (77) conserves the number of walkers, ρ = const.. In
the presence of the n traps, the density of walkers will decrease exponentially according to

dρ

dt
= −qρ

that is

S(t) =
ρ(t)
ρ(0)

= exp
[
−AKn

N〈k〉
t

]
(78)
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This should be regarded as a partial answer, as the total number of links emanating from the traps
Kn is not specified.

The above expression for the survival probability is valid under the hypothesis that the fraction of
links connecting traps among them is negligible. This amounts to require that all links emanating
from a trap connect to a non-trap node. The fraction of non-trap nodes is

N − n
N

In a random graph links exist independently of one another. Then the probability that all Kn links
extend to non-trap nodes is(

N − n
N

)Kn

=
(

1− n

N

)Kn

≈ 1− n2〈k〉
N

where we have used 〈Kn〉 ≈ n〈k〉. This is O(1) if the following condition is respected

n�

√
N

〈k〉
(79)

This is also the condition for the expression (78) to hold. Let us see how to calculate S(t) in the two
above mentioned cases.

Random regular graphs

In a random regular graph ki = k. Thus

Kn =
n∑
p=1

kip = nk

Hence

S(t) = e−Act

where c = n/N is the trap concentration.

Erdös-Rény graphs

In a random graph the probability distribution of connectivity is Poisson

P (k) =
〈k〉ke−〈k〉

k!
(80)

Single trap In this case Kn is nothing but the connectivity of the trap. Therefore, the global
survival probability will be given by averaging the single-Kn survival probability over the distribu-
tion (80), that is

S(t) =
∞∑
k=1

〈k〉ke−〈k〉

k!
exp

[
− Ak

N〈k〉
t

]
(81)

' exp
[
−〈k〉

(
1− e−At/N〈k〉

)]
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The above sum starts from k = 1 as we consider that there are no traps on isolated nodes. This
amounts to neglect P0 = e−〈k〉, which is reasonable if 〈k〉 is large enough.

Many traps The sum of n Poisson variables is still a Poisson variable, with average given by n
times the single one. This means that

P (Kn) =
[n〈k〉]ke−n〈k〉

k!
(82)

By following the same line of reasoning as for the single-trap case, we have

S(t) =
∞∑
k=n

[n〈k〉]ke−n〈k〉

k!
exp

[
− Ak

N〈k〉
t

]
(83)

' exp
[
−n〈k〉

(
1− e−At/N〈k〉

)]
The sum starts at k = n as this is the lowest possible value for Kn, corresponding to only one link
per trap. We note that

1. For t� N〈k〉 one recover the regular random graph result, S(t) ∝ exp[−Act].

2. For later times, the survival probability does not depend on the trap concentration only (as
at early times). Rather, it depends on n and N separately. This is because at long times the
configurations with small values of Kn contribute the most, and these scale as n. However,
the probability that a particle falls on a trap still scale as the total number of links, that is
' N〈k〉.
As a further demonstration of this feature, one can calculate the average lifetime 〈τ〉 from

〈τ〉 =
∫ ∞

0

S(t) dt

The result is

〈τ〉 =
1

An〈k〉c
+ γ + log[n〈k〉] +O

(
1
N

)
where γ is the Eulero-Mascheroni constant.

[1] This is actually the major part of one of the famous papers by Albert Einstein published in the annus
mirabilis 1905

[2] The quoted expression corresponds to our choice p = 1.
[3] Note that we could have chosen an arbitrary length to make the argument of the logarithm non-dimensional.
[4] This terminology arises from the study of fluorescence quenching experiments, where one type of particles

are excited by laser pulses, while the other kind of particles is able to quench them to the ground state upon
encounter at the contact distance R

[5] That a complete set of orthonormal eigenfunctions of the Laplacian operator with Dirichlet-type boundary
conditions on ∂Ω exist is guaranteed by the powerful ...... theorem.

[6] See S. Torquato, Random Heterogeneous Materials, Springer, section 13.7.2.
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