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Deterministic versus statistical description of structure 

Coordinate (PDB) files reflect a  
deterministic description 
of macromolecular structure. In a sense it  
is a deceptively static picture that can only  
thought of as a starting point  

Notion of universality comes immediately 
when thinking to polymeric systems (e.g. DNA). 
Think of a virus DNA ejected into the cell, 
relevant questions are (i) how much space 
it takes (ii) where in the cell it does so  



The random walk model 

1D:	  segments	  at	  +/-‐1800	  with	  	  
respect	  to	  each	  other	  

3D:	  where	  links	  are	  restricted	  to	  900	  angles	  

Determinis<c:	  	  vector	  r(s)	  of	  posi<on	  at	  a	  distance	  s	  along	  the	  contour	  	  
Sta<s<cal:	  Rigid	  segments	  of	  length	  a	  connected	  by	  flexible	  links	  	  	  



1D random walk model 

The history of the walker is built as a sequence of N right and left moves, each with  
probability ½. Each move starts anew (no correlation). 

o  There are a total of 2N admissible configurations 
o  All configurations are equally probable (1/2N ) 

The mean size of the polymer scales as the square  
root of the number of segments (“diffusion”) 

The i-th step of the walk is 
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Probability of a given macromolecular state 
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Probability distribution of end-to-end distance 
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Use Stirling approximation and expand the logarithms…  

log(N !) ≈ N log N −N + log
√

2πN

log(1± x) = ±x− x2

2
+O(x3)

log p(R,N) = log 2− log
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2πN − R2

2Na2
A-er	  some	  algebra	  	  
(do	  it!)	  
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It is nothing but the  
central limit theorem 

R =
�

i

xi
is Gaussian-distributed, if xi are  
iid variables with finite mean and variance 

Overwhelming  
probability of zero  
separation of ends  



… and it is Gaussian in three dimensions as well! 

It	  immediately	  follows	  that	  the	  distribu<on	  of	  end-‐to-‐end	  separa<on	  is	  Gaussian	  	  
in	  three	  dimensions	  as	  well	  (the	  condi<ons	  of	  the	  central	  limit	  theorem	  are	  met)	  	  
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The persistence length Bacterial genome  
that has escaped the  
bacterial cell 

The persistence length is a measure of the length  
scale over which a polymer remains roughly straight  

t(s) Tangent vector at a position  
s along the contour length 

Average over all the configurations 

Persistence length 

�t(s) · t(u)� = e−|s−u|/ξp

This formula is valid for a free polymer. If the  
polymer is subject to constraints (i.e. ends  
attached) the correlation will change 



The Kuhn length 

A good example of long flexible polymer is provided by genomic DNA of viruses such  
as λ-phage, with a contour length of L = 16.6 µm. 

This should be compared with the persistence length of DNA, ξp about 50 nm (room  
temperature and solvent conditions typical of the cellular environment). 

By the very definition of persistence length, we can think of the polymer as consisting  
of L / ξp  connected links that take random orientations with respect to each 
other. This is the logic that gives rise to the freely-jointed chain model   

The length of the uncorrelated steps is known as Kuhn length 

Let us derive the relation between the Kuhn length and the persistence length. We start  
from the end-to-end vector 
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The Kuhn length and the persistence length 

�R · R� =
� L

0
ds

� L

0
du �t(s) · t(u)�

=
� L

0
ds

� L

0
du e−|s−u|/ξp ≈ 2Lξp L � ξp

From the random walk  
model we know that 

This gives a quantitative rule that allows to treat a given polymer  
with a given persistence length as a random walk (freely-jointed chain) 

�R · R� = Na2 = La =⇒ a = 2ξp



Interpreting force-extension curves of DNA	  



Freely-jointed chain model 



The dangling mass analogy of a constant load 



G(L) = −fL− kBT log W (L, N)Free energy in the presence 
of a load 

As the chain stretches the “mass” 
is lowered and the potential energy 
decreases 

The more conformations available 
for a given contour length L, the  
higher the entropy and the lower  
the free energy 

W (nr, N) =
N !

nr!(N − nr)!
L = (nr − nl)a

Using Stirling approximation and neglecting constant terms (only free-energy  
differences matter!) 

G(L) = −2fanr + kBT [nr log nr + (N − nr) log(N − nr)]
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The most probable value of L minimizes the free energy 

L = (nr − nl)a = Na tanh
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In the small-force regime, the DNA behaves as an entropic spring 

fa� kBT =⇒
�

Double-stranded DNA, a ≈ 100 nm =⇒ f � 40 fN
Single-stranded DNA, a ≈ 1.5 nm =⇒ f � 3 pN



In three dimensions … 

The calculations are simpler if we assume that at each site the monomer vector can 
assume all orientations.  
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The one-particle  
partition function 

The N-particle  
partition function Note	  that	  the	  factor	  1/N!	  is	  

absent	  here.	  The	  reason	  is	  	  
that	  the	  monomers	  are	  not	  
undis<nguishable	  and	  the	  	  
polymer	  is	  virtually	  directed	  
(ends	  fixed)	  
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The average chain length is the thermodynamically conjugate variable of the  
external force f  
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Again entropic spring. The 
force constant is three times 
stiffer than in 1D 
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What do the experiment reveal?	  

For weak forces DNA is indeed  
an entropic spring !  

Bending has to be  
included in the  
picture 

Adapted from  
Bustamante et al.  
Science 265, 1599 (1994)	  

Dashed line:  
Freely jointed chain 

Solid line:  
Worm-like chain 


