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Deterministic versus statistical description of structure 

Coordinate (PDB) files reflect a  
deterministic description 
of macromolecular structure. In a sense it  
is a deceptively static picture that can only  
thought of as a starting point  

Notion of universality comes immediately 
when thinking to polymeric systems (e.g. DNA). 
Think of a virus DNA ejected into the cell, 
relevant questions are (i) how much space 
it takes (ii) where in the cell it does so  



The random walk model 

1D:	
  segments	
  at	
  +/-­‐1800	
  with	
  	
  
respect	
  to	
  each	
  other	
  

3D:	
  where	
  links	
  are	
  restricted	
  to	
  900	
  angles	
  

Determinis<c:	
  	
  vector	
  r(s)	
  of	
  posi<on	
  at	
  a	
  distance	
  s	
  along	
  the	
  contour	
  	
  
Sta<s<cal:	
  Rigid	
  segments	
  of	
  length	
  a	
  connected	
  by	
  flexible	
  links	
  	
  	
  



1D random walk model 

The history of the walker is built as a sequence of N right and left moves, each with  
probability ½. Each move starts anew (no correlation). 

o  There are a total of 2N admissible configurations 
o  All configurations are equally probable (1/2N ) 

The mean size of the polymer scales as the square  
root of the number of segments (“diffusion”) 

The i-th step of the walk is 
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Probability of a given macromolecular state 
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Probability distribution of end-to-end distance 
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Use Stirling approximation and expand the logarithms…  

log(N !) ≈ N log N −N + log
√

2πN

log(1± x) = ±x− x2

2
+O(x3)

log p(R,N) = log 2− log
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2πN − R2

2Na2
A-er	
  some	
  algebra	
  	
  
(do	
  it!)	
  

P (R,N) =
p(r, N)
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2πNa2

e−R2/2Na2

It is nothing but the  
central limit theorem 

R =
�

i

xi
is Gaussian-distributed, if xi are  
iid variables with finite mean and variance 

Overwhelming  
probability of zero  
separation of ends  



… and it is Gaussian in three dimensions as well! 

It	
  immediately	
  follows	
  that	
  the	
  distribu<on	
  of	
  end-­‐to-­‐end	
  separa<on	
  is	
  Gaussian	
  	
  
in	
  three	
  dimensions	
  as	
  well	
  (the	
  condi<ons	
  of	
  the	
  central	
  limit	
  theorem	
  are	
  met)	
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The persistence length Bacterial genome  
that has escaped the  
bacterial cell 

The persistence length is a measure of the length  
scale over which a polymer remains roughly straight  

t(s) Tangent vector at a position  
s along the contour length 

Average over all the configurations 

Persistence length 

�t(s) · t(u)� = e−|s−u|/ξp

This formula is valid for a free polymer. If the  
polymer is subject to constraints (i.e. ends  
attached) the correlation will change 



The Kuhn length 

A good example of long flexible polymer is provided by genomic DNA of viruses such  
as λ-phage, with a contour length of L = 16.6 µm. 

This should be compared with the persistence length of DNA, ξp about 50 nm (room  
temperature and solvent conditions typical of the cellular environment). 

By the very definition of persistence length, we can think of the polymer as consisting  
of L / ξp  connected links that take random orientations with respect to each 
other. This is the logic that gives rise to the freely-jointed chain model   

The length of the uncorrelated steps is known as Kuhn length 

Let us derive the relation between the Kuhn length and the persistence length. We start  
from the end-to-end vector 
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The Kuhn length and the persistence length 

�R · R� =
� L

0
ds

� L

0
du �t(s) · t(u)�

=
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0
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� L

0
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From the random walk  
model we know that 

This gives a quantitative rule that allows to treat a given polymer  
with a given persistence length as a random walk (freely-jointed chain) 

�R · R� = Na2 = La =⇒ a = 2ξp



Interpreting force-extension curves of DNA	
  



Freely-jointed chain model 



The dangling mass analogy of a constant load 



G(L) = −fL− kBT log W (L, N)Free energy in the presence 
of a load 

As the chain stretches the “mass” 
is lowered and the potential energy 
decreases 

The more conformations available 
for a given contour length L, the  
higher the entropy and the lower  
the free energy 

W (nr, N) =
N !

nr!(N − nr)!
L = (nr − nl)a

Using Stirling approximation and neglecting constant terms (only free-energy  
differences matter!) 

G(L) = −2fanr + kBT [nr log nr + (N − nr) log(N − nr)]
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The most probable value of L minimizes the free energy 

L = (nr − nl)a = Na tanh
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In the small-force regime, the DNA behaves as an entropic spring 

fa� kBT =⇒
�

Double-stranded DNA, a ≈ 100 nm =⇒ f � 40 fN
Single-stranded DNA, a ≈ 1.5 nm =⇒ f � 3 pN



In three dimensions … 

The calculations are simpler if we assume that at each site the monomer vector can 
assume all orientations.  
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The one-particle  
partition function 

The N-particle  
partition function Note	
  that	
  the	
  factor	
  1/N!	
  is	
  

absent	
  here.	
  The	
  reason	
  is	
  	
  
that	
  the	
  monomers	
  are	
  not	
  
undis<nguishable	
  and	
  the	
  	
  
polymer	
  is	
  virtually	
  directed	
  
(ends	
  fixed)	
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The average chain length is the thermodynamically conjugate variable of the  
external force f  
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Again entropic spring. The 
force constant is three times 
stiffer than in 1D 
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What do the experiment reveal?	
  

For weak forces DNA is indeed  
an entropic spring !  

Bending has to be  
included in the  
picture 

Adapted from  
Bustamante et al.  
Science 265, 1599 (1994)	
  

Dashed line:  
Freely jointed chain 

Solid line:  
Worm-like chain 


