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Summary

In this paper, we describe two methods for computerized
analysis of cryo electron tomography reconstructions of
biomolecules. Both methods aim at quantifying the degree
of structural flexibility of macromolecules and eventually
resolving the inner dynamics through automatized protocols.
The first method performs a Brownian dynamics evolution
of a simplified molecular model into a fictitious force
field generated by the tomograms. This procedure enables
us to dock the simplified model into the experimental
profiles. The second uses a fuzzy framework to delineate the
subparts of the proteins and subsequently determine their
interdomain relations. The two methods are discussed and
their complementarities highlighted with reference to the
case of the immonoglobulin antibody. Both artificial maps,
constructed from immunoglobulin G entries in the Protein
DataBankandreal tomogramsareanalyzed.Robustness issues
and agreement with previously reported measurements are
discussed.

1. General background

Nowadays it is becoming increasingly evident that dynamics
play a crucial role in the biological functions of macr-
omolecules. Proteins exhibit a variable degree of structural
flexibility that is related to their intrinsic ability of functioning
as a molecular machine. Collective motions of domains are
in fact believed to greatly enhance proteins’ ability to bind
other molecules. Flexible units might act as dynamical gates
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that govern the accessibility of specific sites and indirectly
control the cascade of reactions triggered by a binding event.
A satisfactory comprehension of protein functional dynamics
is therefore a great challenge, at the frontier of biology and
physics. In this perspective, a crucial requirement is to combine
single molecule techniques allowing for individual particle
imaging and automatic (computerized) tools to extract the
relevant structural information from the obtained images.

Recent developments of single molecule detection
techniques have made it possible to unravel the structural
variability of macromolecular assemblies through specific
experiments. Among others, electron tomography (ET) is often
seen to be most promising for studying large macromolecular
complexes within their cellular context (Sali et al., 2003),
but can also be successfully used to access the structure of
individual biomolecules in solution. Hence, by analyzing a
large gallery of reconstructed profiles, we can qualitatively
inspect the inherent, large-scale, flexibility of the various
molecular domains involved. To quantify the degree of
variability as displayed by the available tomograms, it
is important to develop automatic procedures for image
analysis. Throughout the years, many methods for this
purpose have been presented, mostly focusing on proteins in
cellular context. Just recently, one issue of Journal of Structural
Biology was even completely devoted to Software tools for
macromolecular microscopy (Carragher et al., 2007), a topic
that includes also automatic image analysis methods. One
commonly used strategy amounts to combine the relatively
low-resolution ET data with high-resolution structures of
proteins as determined by X-ray crystallography (or by single
particle ET), i.e. docking of high- and low-resolution density
maps. The docking is performed interactively or, alternatively,
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following more automatic procedures, see the survey by
Wriggers and Chacó (2001). Several program packages
for handling ET data have been developed, which includes
docking possibilities, e.g. Situs by Wriggers et al. (1999).
In general, it is indeed an interesting approach to virtually
‘enhance’ the ET resolution through a docking analysis. In
practise, however, this method relies on the assumption that
detailed maps of individual subunits are accessible through
X-ray crystallography (or by single particle ET), which is
not always the case. More importantly, current docking
procedures assume rigid molecular structures, and do not
accommodate for the degree of structural flexibility exhibited
by several macromolecular specimens.

In this paper, we shall present two complementary
methods, which will constitute an alternative approach
to ET data analysis, and eventually provide an additional
tool to shed light on the issue of proteins’ dynamics. It is
worth emphasizing that an ensemble made of structural
parameters,eachsetdescribingadifferentspatialarrangement
of a given molecule within the collection, will constitute a
unique input to develop simplified, coarse-grained, models
of the macromolecules under study. By further elaborating
this structural information, we can aim at resolving the
relevant physical interactions directly from the experimental
measurements, as it is has been outlined by Bongini et al.
(2004).

The first method discussed in the following allows to extract
geometrical features from observed cryo electron tomography
(Cryo-ET) profiles, once a simplified model of the geometry
of the molecule is put forward. The method uses a Brownian
dynamics algorithm to evolve the resulting mechanical model
in a fictitious force field generated by the raw data density.
In the end of this procedure, the model is dynamically
adjusted to the experimental structure and consequently the
intrinsic geometry resolved. This amounts to quantitatively
characterize the mutual orientation of the units that are
assumed to form the coarse-grained model through direct
estimates of their linear dimensions and relative angles.

In general, it is however difficult to a priori propose a
realistic description of a macromolecular assembly in terms
of a collection of massive entities, by simple visual inspection.
Indeed, such a process should be assisted and complemented
by dedicated strategies that are able to decompose the 3D
profiles in individual building blocks. Traditionally, from an
image analysis point of view, the position of distinct subparts is
recovered after having delineated the object of interest, in this
case a macromolecule, from the surrounding background, i.e.
by first applying a crisp segmentation algorithm. However, for
Cryo-ET data, this approach is not the ideal one. Nevertheless
it is still used, e.g. in Volkmann (2002) and Baker et al. (2006),
where subunit identification is to some extent based on an
initial segmentation into macromolecule and background.
There are two reasons why we suggest a different strategy.
Firstly, the imaged macromolecules are usually so small that,

despite the high resolution, they will consist only of a limited
number of image elements. Feature extraction based on a
crisp segmentation then is nonrobust, as small errors in
delineation of the actual borders can be dramatically magnified
in the subsequent analysis. Secondly, the transmission electron
microscopy (TEM) images used to reconstruct the tomogram
are recorded in a low-dose setting to prevent radiation damages
which results in low-contrast Cryo-ET images, i.e. there is
actually no distinct border between object and background
visible in the image. Conversely, to take full advantage of
the information contained into the grey-level distribution of
the imaged macromolecules, we can resort to other, more
appropriate, strategies. In this specific case, we use a fuzzy
segmentation instead of a crisp one, and base our analysis
on the so called fuzzy object. In the fuzzy object, the grey-level
in each element is proportional to the degree of membership
the element has to the object. A method that exploits the
automatic decomposition of fuzzy objects is proposed here
and is shown to provide a robust decomposition of the
experimental volumes. Once the building blocks are identified,
all structural parameters relative to their mutual orientation
can be extracted. All these are sensible information, of
paramount importance when aiming at developing a realistic
model of the macromolecule.

In this paper, we provide an account of the above two
approaches. The methods are described separately in Section 4
and 5, respectively. We illustrate the methods by focusing on the
case of the Immunoglobulin G (IgG) antibodies. In particular,
we consider density maps constructed from the Protein Data
Bank (PDB) models, Berman et al. (2000), as well as available
Cryo-ET data sets. The reasons for choosing the IgG antibody
as a case study are essentially twofold. First of all, IgG are
well-characterized macromolecules from a structural point of
view and the complete X-ray crystallographic map, deposited
in PDB, will serve as an input to generate a full set of phantom
data. More importantly, we have access to a collection of Cryo-
ET reconstructions of the IgG, already published in Sandin
et al. (2004), which will be used to test the performance of our
analysis tools versus real data.

As we shall discuss in Sections 4 and 5, the two approaches
are indeed highly complementary and hold promise to result
in novel postprocessing tools for quantitatively measuring the
degree of spatial variability as seen from Cryo-ET experiments.
This issue is further addressed in Section 6.

2. Cryo-electron tomography: the case of the antibody

Tomography means imaging by sections or sectioning. In the
case of Cryo-ET, an electron microscope is used to capture
projection images of the biological specimen. In order to reduce
the radiation damage, the specimen is instantaneously frozen
at the liquid nitrogen temperature (about −180◦C), before
inspection. Quick-freezing causes the water to form vitreous
ice around the proteins, preserving their hydrated structure
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and immobilizing them in the states they lastly occupied. The
biological specimen is then imaged in a TEM by irradiating
it from different angles. The full 3D structure is recovered by
backprojecting the set of 2D images. Standard reconstruction
tools can be complemented by the Constrained Maximum
EntropyTomography(COMET),arefinementprocedure,which
enhances the signal-to-noise ratio in an iterative manner,
thus allowing more details to be included in the tomograms
Skoglund et al. 1996).

In the data collection strategy for individual 3D
reconstruction, evenly distributed projections covering the
sphere in all directions are ideally used. In practise, this is
difficult to realize. The simplified strategy normally used, is
to record projections onto a stationary CCD device while
rotating the specimen in even discrete steps around a single
axis orthogonal to the electron beam. What can be usually
varied is exposure times over the projections to compensate for
specimen thickness variation after tilting. This is called a single
axis tilt series (SATS) and is the data collection strategy which
has been used to collect the data for all the specimen discussed
in our paper.

With single, or double, axis data collection schemes, a large
portion of data is not accessible. In the SATS case, the projection
angles are commonly ranging between ±60 degrees, which in
turn implies that a large ensemble of possible directions remain
unexplored. This is the so called ‘missing wedge’ phenomenon,
also referred to as ‘missing valley’ because the inaccessible lines
fill a V-shaped region in Fourier space. When adopting a double
tilt acquisition scheme, the amount of missing data is reduced
but not gone.

The missing valley of data is clearly manifested in the
3D volume as a tendency for the observed specimen density
to disappear along the direction of the electron beam.
This mechanism affects the resolution of the reconstructed
tomogram, which is therefore sensitive to the direction
(anisotropy). Conversely, in 3D reconstruction originating
from, e.g. single particle ET, all projection directions are equally
sampled due to the random orientation of the molecules in the
specimen and, consequently, the missing data problem is less
crucial.

As an additional source of difficulties, one should mention
the ‘dose problem’ which arises due to specimen damage
induced by electron-specimen interaction. The extent of the
damage is proportional to the amount of energy deposited on
the specimen and this in turn limits the number of images
that can be collected before altering the structural properties
of the sample under investigation. As a consequence, TEM
images are to be recorded in a low-dose setting: for an ice–
embedded biological sample the total dose cannot exceed
2000–5000 e−/nm2 depending on the acceleration voltage
of the microscope, a limit that prevents severe damage to
occur. In a typical ET experiment, the total dose has to be
partitioned among different projections and therefore each
micrograph appears to be extremely noisy (low signal-to-noise

ratio). We shall return on these issues in Sections 4 and 5, when
discussing the importance of representing the tomograms in a
fuzzy setting.

In a recent paper by Sandin et al. (2004), Cryo-ET
experiments on the monoclonal murine antibody IgG2a
were described. Antibodies are crucial constituents of our
immunological defence system. They bind to foreign agents
and target them, for instance, for destruction. The IgG antibody
is the most abundant antibody in blood and has a molecular
weight of about 150 kDa. It is composed of three subunits, two
fragment antigen binding arms (abbreviated as ‘Fab’ arms) and
a stem (‘Fc’). The connections are provided by a flexible hinge
that allows for a significant relative mobility of the two arms,
as demonstrated by 2D electron microscopy analysis (Roux,
1999). The methods presented in this paper (Section 4 and
5) are illustrated using data from the experiment reported by
Sandin et al. (2004). We refer to that article for details.

3. From PDB entry to volume image

As previously anticipated, the forthcoming analysis is carried
out on antibodies imaged through Cryo-ET experiments. In
addition, to fully validate the proposed strategies we have
constructed a set of artificial profiles from the antibodies maps
deposited in the PDB (Berman et al., 2000).

The only crystallographic structure of an intact IgG2
antibody, corresponds to murine IgG2A mAb 231, as reported
in Harris et al. (1997) (PDB code 1IGT). In the following study,
we also consider intact murine IgG1 mAb 61.1.3, as reported
in Ollmann Saphire et al. (2002) (PDB code 1IGY).

From a PDB entry, it is possible to generate a volume image,
having a certain voxel size (i.e. the size of the volume picture
element) and resolution, of the corresponding macromolecule.
Here, we use a model where a Gauss kernel is placed at
each atom position and multiplied by the mass of that atom
(Pittet et al., 1999). The total density is then calculated by
adding the contributions from Gauss kernels of atoms in the
vicinity of the voxel. This results in an image with floating
point values, which is linearly stretched and rounded off to an
8-bit integer image. The resolution of the image is 2σ , σ being
the variance used to calculate the Gauss kernel. This procedure
for creating low-resolution data from PDB entries, mimicking
for example Cryo-ET data, has been used in the past, e.g. in
the Situs program package for visualization and docking of
single molecules (Wriggers & Birmanns, 2001). We assume a
voxel size of 5.24 Å, which corresponds to the pixel size of the
micrographs recorded in Cryo-ET experiments. Moreover, we
construct volumes corresponding to resolution 10, 15, 20 and
25 Å, see Fig. 1.

4. From a coarse-grained representation to the parameters
determination

Let us now turn to discussing our first strategy aimed at
extracting geometrical features from a Cryo-ET density map.
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Fig. 1. Volume rendering of IgGs from PDB entries at pixel size 5.24 Å and resolution 10, 15, 20 and 25 Å (from left to right, respectively).

In the spirit of a coarse-grained representation, a set of massive
units of appropriate shapes are assumed to represent the
protein’s rigid domains, the hinged connections between them
beingmodelledwithflexible junctions.Suchmechanicalmodel
is then fitted to the experimental 3D tomograms and the
positions of its constituting elements used as reference point to
deduce relevant structural information, such as interdomain
distances and angles. To shed light onto the technical details
of the implementation we shall consider the case of the IgG
antibody.

IgG antibodies can be represented by means of three massive
spheres jointed together into a common point through as many
Hookean springs of given strength. The latter are introduced
in order to control the radial extensions of the arms. As
mentioned in Section 2, the subunits of an IgG antibody
are connected by flexible hinges. The hinge allows not only
for angular movement but also radial stretching, an effect
which is incorporated in our proposed representation through
the springs. A stiff spring will result in a rigid connection,
thus preventing excessive stretching to occur. The three
spheres can therefore attain different spatial configurations
and in principle adjust their relative orientation to match
the conformations observed in direct experiments on real
antibodies. This simplified model (depicted in Fig. 2) represents
a variant of the scheme introduced in Bongini et al. (2004).

4.1 Generating a force field from the measured densities

To adjust the coarse grained representation of the molecule
into the measured volumes we adopt the following strategy.
The Cryo-ET density, hereafter ρ(r), is placed in the middle of
a large box and there immobilized, while the schematic bead
and spring scaffold is let evolve until it superposes to the true
density with the desired accuracy. To accomplish the last step
we evolve the model protein according to a Langevin dynamics
under the influence of random collisions with a surrounding

Fig. 2. The schematic model of the IgG antibody and definition of
the relevant structural parameters (angles relative to units’ mutual
orientation and extension of the various arms).

fictitious solvent (Uhlenbeck & Ornstein, 1930; Reif, 1965).
Assuming that no external force field is being imposed, the
equation of motion reads:

d 2r
d t2

= −γ
d r
d t

+ f(t)
m

, (1)

where r labels the particle position and m denotes the mass of
the domain. The first contribution on the right hand side is a
frictional force that describes the drag on the particle due to
the solvent. The magnitude of the drag is related to the friction
coefficient γ . The term f(t) is a fluctuating random force with
zero mean that models the impact with the fluid molecules.
In order to satisfy a fluctuation-dissipation balance, the mean
squared amplitude of the random force and γ must be chosen
so that their ratio is fixed and proportional to the temperature
of the fictitious solvent.

In the present application we consider each sphere to
evolve according to Eq. (1), while respecting the geometrical
constraints imposed by the IgG-like topology. In turn, this
implies modifying the above equation of motion to account for
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an external component of the force, namely Fconstr. The latter
represents the contribution of the radial springs, that prevents
the spheres from leaving the structural assembly and lets them
adjust to the experimental density map. Furthermore, the
external force should include a repulsive pairwise contribution
in order to prevent the spheres from occasionally occupying the
same region of space. As the main ingredient of this scheme,
we introduce a fictitious force field F, that is generated from the
tomographic density ρ(r) as:

Fρ(r) = ∇rρ(r). (2)

The latter tends to favour the motion towards the portion of
explored volume occupied by the tomogram. In conclusion,
Eq. (1) is transformed into:

d 2r
d t2

= −γ
d r
d t

+ 1
m

[Fconstr + ∇rρ(r) + f(t)]. (3)

After a transient evolution, the model structure eventually
reaches a long-lived steady state and docks into the
experimental profile. Due to the repulsive forces introduced
in our simulations, each lobe of the Cryo-ET map correctly
shows to be visited by one sphere at a time. In order to ensure
convergence to sufficiently long-lived states, we found that the
temperature of the fictitious solvent should be at least one order
of magnitude smaller than the peak density in the tomogram.
Likewise, the time step of the numerical integration of Eq. (3)
must be chosen at least one order of magnitude smaller than
1/γ in order to ensure the thermal equilibration of the model
with the solvent.

4.2 Results

The procedure of dynamical docking is illustrated in Fig. 3,
with reference to the structure 1IGY constructed at 20 Å
resolution (see Fig. 1). Different snapshots are displayed relative
to subsequent steps in the iterative procedure, thus allowing
to visualize the convergence toward the final, steady-state
solution. Once the model structure is fitted into the PDB
volume, one can calculate the associated angles θ 12, θ 13 and
θ 23, as defined in Fig. 2.

We further focused on 1IGT and 1IGY low-passed to different
resolutions, as discussed in the preceding Section 3. Our
mechanical model is dynamically evolved for each of the

Table 1. Angles and arms extensions (in Å) for the PDB data constructed
at different resolutions (pixel size 5.24 Å), after dynamical docking of the
simplified model depicted in Fig. 2. The relaxed length of the spring is set
to r 0 = 70 Å.

Res θ 12 θ 13 θ 23 a b c

PDB id 1IGT
10 Å 136◦ 106◦ 108◦ 69 Å 65 Å 72 Å
15 Å 135◦ 108◦ 109◦ 69 Å 66 Å 71 Å
20 Å 131◦ 107◦ 115◦ 67 Å 68 Å 71 Å
25 Å 120◦ 109◦ 116◦ 67 Å 68 Å 71 Å

PDB id 1IGY
10 Å 110◦ 116◦ 120◦ 68 Å 64 Å 69 Å
15 Å 111◦ 111◦ 128◦ 66 Å 67 Å 70 Å
20 Å 110◦ 112◦ 125◦ 66 Å 66 Å 66 Å
25 Å 112◦ 113◦ 125◦ 67 Å 67 Å 69 Å

considered cases and eventually fitted to the maps. The final
estimates of the angles are reported in Table 1. Such values are
approximately similar in the interesting range of 15–20 Å,
corresponding to the resolution estimated for a successful
Cryo-ET experiment. Deviations are instead observed at 10 Å
and 25 Å. In the former case, the hole located in the middle
of the Fc stem and Fab arms becomes distinctly visible. The
potential associated with each density lobe is hence bimodal
and the spheres can be trapped in proximity of either available
state. Conversely, at a lower resolution the map is too smoothed,
thus inducing local distortions into the fitted model. The final
extension of the arms (corresponding to the stretching of the
connecting springs) also shows a robust convergence. The
values corresponding to the final steady state are reported in
Table 1.

Finally, we applied the method to real Cryo-ET data. The
model is shown to correctly interpret the observed profile, as
confirmed by inspection of Fig. 4. As previously discussed, 3D
tomograms are obtained from noisy 2D micrographs (low-dose
condition) and display anisotropic resolution, the latter being
associated with unphysical stretching of the reconstructed
profiles.

When adjusting the mechanical model to a selected Cryo-
ET map, the algorithm may then converge to a global

Fig. 3. Dynamical docking of the coarse-grained model into the PDB distribution for 1IGY low-passed to 20 Å. During the iteration steps, the model is
evolved according to the Langevin dynamics scheme discussed above and is eventually shown to adapt to the analyzed density distribution.
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Fig. 4. The dynamical model of IgG fitted to a real tomogram as
reconstructed from Cryo-ET. The relative angles are calculated to θ 12 =
109, θ 13 = 106 and θ 23 = 119. The extensions of arms are a = b = c �
65 Å.

minimum which is slightly affected by the aforementioned
intrinsic distortions. It must nonetheless be stressed that
the reconstructed molecules are randomly oriented in the
biological specimen. Hence the combined effect of different
and independent distortions will not bias the distribution
of the measured structural parameters towards any specific
direction but it will simply result in an artificial enhancement
of the observed flexibility. On the one hand, by averaging
over different replica of the molecule, the most probable
conformation is hence correctly displayed. On the other, by
reconstructing the distribution of the measured structural
parameters, one in general obtain a blurred version of the
sought profile, resulting from the convolution with an a priori
unknown distortion probability function. The same kind of
reasoning certainly applies to the shot noise, which can
be assumed to be evenly distributed over the 2D image, and
hence equally sparsed at the level of the 3D representation.
Notice however that such undesired perturbation could be in
principle corrected for, provided one can assume a reasonable
guess for the standard deviation of the statistical distribution
of the density distortions. Concerning the case of the IgG, we
shall notice that, by construction, each sphere will be forced
to visit one of the Fab arms/Fc lobes at the time. Hence, errors
in resolving the geometry of a single tomogram will be solely
limited to local rearrangement of the spheres in the selected
portion of volume. Those in turn will depend on the overall
resolution of the reconstructed image. Based on the estimates
performed by Sandin et al. (2004), a reasonable working figure
for the error on the fitted angles is around a few percents.

We remark that in the present analysis (for both real and
PDB-based maps), we observed a robust convergence of the
docked structure. Other sets of data could in principle display
a pronounced sensitivity to the initial guess of the parameters,
thus revealing the presence of an intricate density landscape.
This being the case, one should run independent tests by
initializing the model scaffold in different conformation and
draw a statistic of the final docked profiles.

In conclusion, we stress again that the parametrization
chosen here to represent the conformational changes of an
antibody is directly inspired by the coarse-grained description
proposed in reference Bongini et al. (2004). As an additional

feature with respect to the latter, we have here explicitly allowed
for the radial stretching of the binding arms. However, despite
such improvement, the model still neglects other important
effects, such as the translational offset associated with the
hinge region, an intrinsic properties that can be quantified
by segmenting the reconstructed immunoglobulin molecule
into independent units. This observation motivates the search
for other, more flexible, analysis schemes. One promising such
strategy is detailed in the following section.

5. A fuzzy framework allowing for structural interpretation

As briefly described in Section 1 and further emphasized in the
previous sections, it is not always the case that a correct model
of the macromolecule is known a priori. Hence, other additional
methods are sought, acting in a more blind way, which could
be used to determine the structural characteristics of the
macromolecule. The knowledge gained from such analysis can
serve as an input to construct a refined mechanical model.
Aiming at filling the gap between experimental measurements
and data analysis, we have here developed a computerized tool
to extract structural information from an unknown density
profile. In this section, we describe the general method which
is intended to identify the units composing a large clustered
agglomerate and quantify the parameters specifying their
mutualconnections.Inourcase, theagglomeratesaretypically
macromolecules imaged using Cryo-ET. For this specific reason
we need to take into account the fact that the input data are
represented by low-contrast images (as the TEM images are
recorded in a low-dose setting to prevent radiation damages)
and that each blob consists of a small amount of voxels
(typically 500 voxels for a Fab arm). The method is applied
to the case of IgG: the aim is to identify its three domains,
the Fc stem and the two Fab arms, and extract measures
corresponding to the angles as well as translation between
the domains.

In the end of the next section, we will also discuss in a
comparative way other published techniques for identifying
subunits of macromolecular assemblies.

5.1 Delineating and decomposing a reconstructed macromolecule
into its subparts

In Svensson (2007), a decomposition scheme for fuzzy objects
was introduced. An adjusted version was applied to Cryo-ET
images of the IgG antibody (Svensson et al., 2006), which
allowed for automatic delineation and decomposition into Fc
stem and Fab arms. In the following we recall the general
framework and its application to IgG (in the next subsection).

One commonly used crisp approach for separating clustered
bloblike structures, such as cell nuclei in a fluorescence
microscopic image of some tissue, or subunits of a
macromolecular assembly, is to identify the most internal part
of each blob in the cluster, the seed of the part, and then
apply a region growing process to the identity labelled seeds
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(Vincent, 1993). The seeds can be identified, e.g. as being
local maxima in the distance transform of the structure. The
distance transform is an image in which each point is assigned
a value corresponding to its closest distance to a point outside
the structure. Hence local maxima are located internally in
each part.

Shape analysis is usually, exactly as described in the previous
paragraph, applied to binary images, i.e. where the grey-level
image depicting the object to be studied has been segmented
into object and background. In cases where low-contrast
images are used it is difficult to take a crisp decision on how to
delineate the object, i.e. a decision on which voxels belong to the
object and which to the background, as the edge information
is low. This decision influences the subsequent shape analysis.
Moreover, when the studied object consists only of a small
number of voxels this decision is even more crucial. In addition,
as pointed out in Section 2, the effect of the ‘missing valley’ of
data existing in the image acquisition method used here is
that the object have a more fuzzy appearance along the beam
direction. Therefore it is for many reasons of interest to, if
possible, make the analysis resorting to a fuzzy setting. This
is a quickly growing approach within the field of computerized
image analysis and is what we will make use of here. A brief
introduction, including the concepts necessary for this article,
can be found in the following paragraphs.

We start by recalling the definition of a fuzzy object. Recall
that the fuzzy objects in our case are macromolecules and the
parts of a fuzzy object are typically the Fab arms and the Fc
stem for the IgG antibody. The theory of fuzzy sets applied
to digital images originates in the work by Zadeh (1965).
A 3D fuzzy digital object O is a fuzzy subset defined on Z3,
i.e. O = {( p, μO( p)) | p ∈ Z3}, where μO : Z3 → [0, 1]. This
means that we have an image where the grey-level in each
voxel corresponds to the degree of membership for the object,
a high value indicates that it is likely the voxel belongs to
the object while a low-valued voxel is more likely to belong
to the background. The fuzzy object can be identified using a
fuzzy segmentation method. See the recent review by Udupa
and Saha (2003). The first step to delineate the subparts of
a macromolecule is to identify the fuzzy object corresponding
to it. This can be done, e.g. in the way described for the IgG
antibody in Svensson et al. (2006).

Once the fuzzy object has been identified, we compute the
fuzzy distance transform (FDT) (Levi & Montanari, 1970; Saha
et al., 2002) of the fuzzy object. The FDT is a replica of the fuzzy
object image where each voxel v in the fuzzy object, i.e. for
which μO(v) > 0, is assigned the fuzzy distance to its closest
voxel u outside the fuzzy object, i.e. the shortest length of a path
between v and u. The length is weighted with the membership
values of the voxels along the path. This means that the FDT will
have high (fuzzy distance) values corresponding to the ‘centre’
of each blob (nearly convex part) of the fuzzy object, analogous
to what was described for the crisp case above. By combining
grey-levels, taken from the fuzzy object or even from the

original grey-level image, and distance information we further
emphasize the internal grey-level structure as well as stress the
shape of a subunit. For this reason we detect all local maxima
on the FDT. There may be more than one local maximum
corresponding to each part. However all are centrally located.
We apply fuzzy distance based hierarchical clustering (Gedda
& Svensson, 2006) to group the local maxima into seeds,
where each seed correspond to one part of the fuzzy object.
The reason for choosing hierarchical clustering is because it
is a deterministic unsupervized clustering technique which
allows to find the number of clusters most suitable for the
set. The decomposition scheme for fuzzy objects is a general
framework which can be used in other applications, e.g. in
Svensson (2007), it was successfully used to identify cell
nuclei in a fluorescence microscopic image of a tissue slice
from carcinoma of the prostate. To finally identify the part
corresponding to each seed we apply region growing in terms
of seeded watershed segmentation (Vincent & Soille, 1991) to
the FDT.

Also the method described by Volkmann (2002) makes use of
watershed segmentation. However, there are some significant
differences between the two methods. Volkmann (2002) uses
the original grey-level distribution, while we further emphasize
the structure by resorting to the FDT and thereby also take into
account the shape of a subunit. Furthermore, in Volkmann
(2002) seeds correspond to local grey-level maxima in the
original image. This set is, as pointed out by the authors,
noisy and a sophisticated preprocessing step is required in
order to reduce the set of candidate seeds. We instead make
use of local maxima detected on the FDT and fuzzy distance
based hierarchical clustering. By this we can find natural
clusters of local maxima, each corresponding to one seed in
the subsequent region growing process, in a more elaborated
way, which also enable us to account for a priori knowledge,
if such exists. In Baker et al. (2006), seeding together with
region growing is also used. The set of seeds is detected
based on the original grey-level data. As for Volkmann (2002)
this set needs to be reduced. The reduction is done using
a sophisticated filtering technique (gradient vector diffusion
by the same authors). Once the seeds are identified, region
growing is performed by means of fast marching (Sethian,
1999). The region growing part will give a result similar
to what could be obtained with watershed segmentation. To
summarize, the three methods, our and the above referred to,
all use seeding and region growing, though distinct strategies
make the implementation different. In particular, we remark
that both the methods we have compared with are developed
for Cryo-ET data of large macromolecular assemblies, where
each subunit is significantly larger than the Fc stem and the Fab
arms. Moreover, they are actually developed for single particle
ET and rely on symmetry inherent by the imaging method.
In our case, we focus on smaller particles and therefore need
to secure a method which is even more robust to small shape
changes.
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Fig. 5. The decomposition scheme illustrated on one slice of a Cryo-ET image: (a) the original image; (b) the fuzzy object for which the support is given in
green; (c) the FDT with seeds overlayed and (d) the decomposed fuzzy object.

5.2 The IgG antibody: from decomposition to determination of
structural parameters

To find an IgG antibody, in a Cryo-ET image, and decompose
it into its Fc stem and Fab arms, we use a properly adjusted
version of the scheme outlined above. The fuzzy object is
delineated using fuzzy connectedness and the knowledge that
the IgG antibody should consist of around 1500 voxels with the
used sampling (Creighton, 1993) and thereafter decomposed
parts. For the hierarchical clustering used in the decomposition
scheme we take advantage of the a priori knowledge that three
parts are to be identified for the case of the IgG. In Fig. 5, the
process is illustrated on a slice from a Cryo-ET image, showing
a cross section of the two Fab arms: in (a) the original image is
shown; (b) the delineated fuzzy object; (c) the FDT with seeds
overlayed and (d) the decomposed fuzzy object. We remark that
the method is applied directly to the 3D image. This means that
there can be more voxels (local maxima) belonging to the same
seed placed in other slices. A detailed description of the method
can be found in Svensson, et al. (2006).

Once the Fc stem and the two Fab arms for each IgG antibody
have been identified, the structural parameters are to be
extracted. We illustrate this process by showing how the main
orientation of the Fc stem and Fab arms can be estimated in
order to determine the interdomain angles for the IgG antibody,
as well as the translation between the domains. We make use
of not only the shape of the identified IgG antibodies but also
the grey-level distribution inside. Each part is represented by
its first principal component (PC1), i.e. a vector for which
the voxels included is closest to in a least square sense, see
e.g. Duda et al. (2001). The principal components of a set
X of p random variables X1, . . . , Xp are the eigenvectors of
the covariance matrix Σ of X. In our case X is equal to
the coordinates of the voxels for the specific part. To give
more relevance to voxels having high grey-levels in the fuzzy
object, each voxel is weighted proportionally to its grey-level.
Taking the first eigenvector for ΣFab1, ΣFab2 and ΣFc, we get
a vector representation consisting of PCFab1, PCFab2 and PCFc

corresponding to the IgG antibody. The interdomain angles
are calculated in a straightforward way using PCFab1, PCFab2

and PCFc. The validity of the vector representation is given
by the eigenvalues corresponding to the eigenvectors. If the

variance, i.e. the relative eigenvalue, explained by the first
eigenvector is significantly larger than the variance explained
by the second eigenvector for ΣFab1, ΣFab2 and ΣFc, it means
that PCFab1, PCFab2 and PCFc is a suitable representation.

To compute the translation between the two Fab arms, we
define the Fab dyad as being a plane perpendicular to the vector
connecting centre of mass (COM) for the Fab arms, in the
following denoted COMFab1 and COMFab2, and placed midway
between COMFab1 and COMFab2. The translation is then given
as the distance between the points in the plane where PCFab1

and PCFab2 intersect the plane.

5.3 Results

The method to determine structural parameters described
above is developed to make contact with the angles and
translation measured in X-ray crystallography experiments. In
this section, we verify that this is actually the case by making
a comparison with measurements for PDB code 1IGT and
1IGY. Moreover, we show that the proposed method, including
decomposition of fuzzy objects and subsequent determination
of structural parameters, is stable under changes in resolution.
Finally we apply the method to Cryo-ET data.

In Fig. 6, the method is illustrated for 1IGY, constructed at
20 Å. To the left, the result of the decomposition scheme is
shown, with the Fc stem in yellow and the two Fab arms in
red and blue. PCFab1, PCFab2 and PCFc, used to measure the
interdomain angles are shown in the middle. The Fab1–Fab2
translationmeasurementis illustratedbyshowingtheFabdyad
together with PCFab1 and PCFab2 (right). The positions where
the plane intersects the PCs are marked out with bullets. For
all PCs, the COMs corresponding to their parts are also labelled
with bullets.

In Table 2, the interdomain angles and Fab1–Fab2
translation for 1IGT and 1IGY measured using our method
are listed. The results are stable under changes in resolution.
The only case where the results deviate is observed of 1IGY at
25 Å resolution. As reported in the result part of Section 4,
this is due to the smoothing effect present in lower resolution
images. In Ollmann Saphire et al. (2002), the results from
variousX-raycrystallographyexperimentsontheIgGantibody
are summarized. The relevant measures, i.e. the angles and
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Fig. 6. For PDB code 1IGY constructed at 20 Å resolution: surface rendering of the Fc stem (yellow) and the Fab arms (red and blue); PCFab1, PCFab2 and
PCFc; and Fab dyad, PCFab1 and PCFab2.

Table 2. Measurements for PDB data constructed at different resolutions
(voxel size 5.24 Å) using the method described in Section 5.2.

Fc–Fab1 Fc–Fab2 Fab1–Fab2 Fab1–Fab2
Res Angle Angle Angle Translation

PDB code 1IGT
10 Å 70◦ 111◦ 174◦ 12 Å
15 Å 74◦ 110◦ 172◦ 12 Å
20 Å 70◦ 109◦ 173◦ 10 Å
25 Å 70◦ 113◦ 171◦ 8 Å

X-ray crystallography (IgG1 mAb 61.1.3)
as reported by Ollmann Saphire et al. (2002)

66◦ 113◦ 172◦ 9 Å

PDB code 1IGY
10 Å 82◦ 120◦ 116◦ 16 Å
15 Å 87◦ 117◦ 117◦ 16 Å
20 Å 80◦ 114◦ 118◦ 14 Å
25 Å 81◦ 128◦ 114◦ 20 Å

X-ray crystallography (IgG1 mAb 61.1.3)
as reported by Ollmann Saphire et al. (2002)

78◦ 123◦ 115◦ 9 Å

Fab1–Fab2 translation for 1IGT and 1IGY, are listed in
Table 2. As can be seen, our measurements, automatically
extracted using the method described in this section, correlate
well to the homologous parameters determined from X-ray
crystallography maps.

The vector representations PCFab1, PCFab2 and PCFc used in
Table 2 are in all cases such that the variance explained by the
first eigenvector is significantly larger than for the second, see
Table 3. In the weakest case (1IGT at 15 Å), 47% is explained
by the first and 42% by the second eigenvector. For most cases,
the difference between the first and the second is at least
20 percentage units.

In Fig. 7, the results for the same IgG antibody as used in
Fig. 4 are shown, illustrated in the same way as for 1IGY (Fig.
6): the result of the decomposition scheme with Fc stem in
yellow and the two Fab arms in red and blue; PCFab1, PCFab2 and
PCFc, used to measure interdomain angles; and the Fab dyad
together with PCFab1 and PCFab2, used to measure translation.
Also in this case, the vector representation PCFab1, PCFab2 and

Table 3. Variances explained by the eigenvectors.

PCFc PCFab1 PCFab2

Res 1st 2nd 1st 2nd 1st 2nd

PDB code 1IGT (%)
10 Å 48 40 66 22 68 22
15 Å 47 42 66 22 69 21
20 Å 47 41 66 21 67 20
25 Å 48 38 64 22 67 20

PDB code 1IGY (%)
10 Å 49 39 69 21 67 22
15 Å 49 40 73 18 68 21
20 Å 50 37 71 19 70 20
25 Å 50 34 72 17 69 19

PCFc describes the data well. In the weakest case (Fab1), the
variance explained by the first eigenvector is 59% while for the
second it is 24%.

6. DISCUSSION

In this paper, we have outlined two complementary strategies
to analyze Cryo-ET reconstructions. The first exploits a
Brownian dynamics framework to dock a coarse-grained
representation of the biomolecule into the imaged map.
Once the reduced model is adjusted into the tomogram,
one can proceed with a straightforward extraction of the
relevant geometrical information. The second is an automatic
decomposition scheme based on a fuzzy representation of
the protein, which allows to partly compensate for the
‘missing valley’ artefact existing in Cryo-ET data. In a fuzzy
representation (fuzzy object), the grey-level in each point is
a measure of the degree of membership the point has to the
original object, in this case the protein. By combining distance
information and grey-level information, the most internal part
of each subpart of the protein can be identified, e.g. the Fab
arms and the Fc stem for the case of the IgG antibody. Once
this decomposition is done, principal component analysis is
used to find the major axis of each part and from that resolve
the structural characteristic. The idea of using a Brownian

C© 2007 The Authors
Journal compilation C© 2007 The Royal Microscopical Society, Journal of Microscopy, 228, 174–184



R E S O LV I N G T H E G E O M E T RY O F B I O M O L E C U L E S 1 8 3

Fig. 7. For one IgG antibody imaged using Cryo-ET: surface rendering of the Fc stem (yellow) and the Fab arms (red and blue); PCFab1, PCFab2 and PCFc;
and Fab dyad, PCFab1 and PCFab2. The corresponding angles are 70◦ (Fc–Fab1), 144◦ (Fc–Fab2) and 146◦ (Fab1–Fab2) and the translation 45 Å.

dynamics framework for this type of image data is, according
to our knowledge, new. It is promising as it allows for a
direct way of expressing the dynamics. The decomposition
scheme used in the second approach shares some similarities
with e.g. Volkmann (2002) and Baker et al. (2006). However,
our proposed scheme is more stable for small subunits with
respect to existing implementations and does not rely on
symmetry. Moreover, it enables one to take advantage of a priori
knowledge, which can be straightforwardly incorporated into
the algorithm, if beneficial.

The fuzzy based method can be seen as a complement to
the first when schematic description cannot be designed by
visual inspection. In such cases, the decomposition scheme is
used in a blind way, meaning that the number of subparts is not
given as a priori information. Instead the most suitable number
is found based on outer shape and grey-level distribution
(Svensson, 2007). This decomposition and the interdomain
relations described by it can serve as an input to develop,
or eventually refine, a simplified mechanical model of the
protein. Importantly, a quantitative measure of the degree
of internal flexibility opens up the perspective of deriving an
effective estimate of the relevant physical interactions that rule
the dynamical evolution of the macromolecule under study
(Bongini et al. 2004).

The above two techniques constitute a powerful
combination for automatic postprocessing data analysis and
naturally complement Cryo-ET for structural determination
purposes. The procedures are here validated with reference to
the case of the IgG. Both artificial maps, constructed from IgG
entries in the PDB (Berman et al., 2000), and real tomogram
are analyzed and reported. As concerns the PDB volumes,
different resolutions are used (10 Å, . . . , 25 Å) to assess the
robustness of the schemes. The conclusion from this analysis
is that the methods are robust for changes in resolution,
spanning from a resolution close to what can be achieved in
X-ray crystallography experiments to that of Cryo-ET.

Automatic analysis of data as presented here is of importance
to allow for large-scale reproducible studies. The Brownian
dynamics scheme converges after a few iterations, with
reference to the IgG case of study: in general, the computational
load depends on the amount of details that are to be modelled,
the level of coarse-graining being in practise set by the
experimental resolution limit. The method is particularly
suitable for investigating molecular structure that can be

visually segmented in interlaced subunits. The fuzzy based
approach constitutes a computationally efficient alternative
which enables for a quick extraction of the molecules structural
information. The significance of the measured parameters
can be quantified through the eigenvalues, as proposed in
Section 5.3.

It is worth pointing out that already at 20 Å resolution it
is possible to measure the relative orientation of the various
domains with results that are shown to match analogous
estimates for the corresponding X-ray maps, (Ollmann Saphire
et al., 2002), as confirmed by the fuzzy based method, see
Table 2. This observation indicates that reliable structural
information can be successfully deduced from Cryo-ET data.

Finally, it should be emphasized that the techniques here
illustrated, are flexible. Hence, they could with suitable
adjustmentsbesuccessfullyemployedtoquantitativelyanalyze
an ample spectrum of candidate objects, ranging from
individualbiomoleculesto largemacromolecularassemblies.
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