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Abstract
Diffusion-limited reactions are commonly found in biochemical processes such as enzyme
catalysis, colloid and protein aggregation and binding between different macromolecules in
cells. Usually, such reactions are modeled within the Smoluchowski framework by considering
purely diffusive boundary problems. However, inertial effects are not always negligible in real
biological or physical media on typical observation time frames. This is all the more so for
non-bulk phenomena involving physical boundaries, that introduce additional time and space
constraints. In this paper, we present and test a novel numerical scheme, based on event-driven
Brownian dynamics, that allows us to explore a wide range of velocity relaxation times, from
the purely diffusive case to the underdamped regime. We show that our algorithm perfectly
reproduces the solution of the Fokker–Planck problem with absorbing boundary conditions in
all the regimes considered and is thus a good tool for studying diffusion-guided reactions in
complex biological environments.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Diffusion-limited reactions are commonly found in biochem-
ical processes such as enzyme catalysis, colloid and protein
aggregation or binding between different macromolecules, for
instance antigens and antibodies in cells [1, 2]. These processes
are characterized by their reaction rate, that is the number of
reactions per unit time. Within the simplest approximation,
a bi-molecular diffusion-controlled reaction is modeled as an
irreversible absorption process of the kind a + b → a →
a′, where a is the sink moiety, b is the reactant and a′ is
the product. The first step is the diffusion-guided encounter,
the second is the chemical fixation of the encounter complex
and the overall reaction rate can be computed from the two
corresponding rates. In the limit of infinite dilution, the
encounter rate can be evaluated directly from the solution of the
diffusion equation (DE). Smoluchowski was the first to derive
an analytical solution of the DE in presence of an absorbing
boundary [3]. As a matter of fact, his solution is still the

starting point for describing chemical and biological reactions
in a wide range of cases [4–9].

Despite its success, an important limitation to Smolu-
chowski’s theory is that inertial effects on the particle dynamics
are neglected. In other words, the DE approach assumes
that the velocities of the particles are always relaxed and
consequently distributed according to a Maxwell distribution
at any time. This assumption is fully legitimate for phe-
nomena that occur on times much longer than the velocity
relaxation time. However, diffusion problems in the presence
of absorbing boundaries introduce an additional, intrinsic
timescale (the inverse of the encounter rate), such that bulk
and near-to-sink regions may be characterized by different
relaxation properties. Harris proposed a more comprehensive
approach based on an approximate solution of the Fokker–
Planck equation (FPE) [10]. The FPE allows one to set
boundary conditions that depend on the velocities. In this way,
one avoids the inconsistency of imposing a vanishing density
at contact, a condition that is strictly fulfilled only in the limit
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of instantaneous relaxation. From an experimental point of
view, it is essential to evaluate a priori whether the traditional
overdamped scheme is reasonable or not for describing the
system of interest.

In this paper we present a novel algorithm for simulating
the classical absorption problem of a spherical sink in a
solution of non-interacting particles. The core of the algorithm
is based on event-driven Brownian dynamics (EDBD). The
generalization of the same problem to the case of hard-
core diffusing particles will be reported elsewhere [11]. We
performed simulations under several conditions and used both
the DE and FPE formalisms to model the results. We show
that our dynamics reproduce precisely the FPE predictions, the
differences with the DE results being indeed due to inertial
effects in close agreement with Harris’s predictions. The paper
is organized as follows. In section 2 we introduce the necessary
theoretical background, more specifically the DE and FPE
frameworks. Following the theory, we present the details of
our numerical algorithm and simulation scheme in section 3.
The results of our simulations are reported and compared with
the theoretical predictions in section 4. In the final section,
we summarize our findings and present possible applications
of our numerical protocol (section 5).

2. Diffusion and Fokker–Planck equations

Brownian motion in the presence of an absorbing spherical sink
is described at the macroscopic level by the diffusion equation
(DE)

∂ρ(r, t)

∂ t
= D∇2ρ(r, t) (1)

with the boundary conditions

ρ(r = R0, t) = 0 lim
r→∞ ρ(r, t) = ρ∞ (2)

where R0 is the contact distance at the sink. The solution to this
problem was first derived by Smoluchowski in the pioneering
work on diffusion-limited reactions [3, 12, 13]. Within
Smoluchowski theory, an encounter between two spherical
particles is assumed and a macroscopic constitutive relation is
used relating the current to the gradient of the density, namely
Fick’s law

j (r, t) = −D
∂ρ(r, t)

∂r
(3)

where D is the diffusion coefficient. This relation is used to
calculate the absorption rate κs as the stationary flux across a
spherical surface outside the sink

κs = 4π R2
0 D

∂ρ(r, t)

∂r

∣
∣
∣
∣
r=R0

. (4)

The steady-state solution of the boundary problem, equa-
tions (1) and (2), reads

ρ(r) = ρ∞
(

1 − R0

r

)

(5)

where R0 = RP+RR, RP and RR being the radii of the substrate
particles and of the reactive sink, respectively. By inserting the

above expression into equation (4), the known Smoluchowski
rate is obtained:

κs = 4π DR0ρ∞. (6)

The diffusion equation provides a good macroscopic descrip-
tion of an overdamped stochastic dynamics. However, when
inertial effects are important, the appropriate macroscopic
paradigm is that of the Fokker–Planck equation (FPE), describ-
ing the evolution of a probability measure in the phase space.
In particular, when inertial effects are to be considered in the
presence of an absorbing boundary, the condition of vanishing
density (2) is no longer adequate for times shorter than the
relaxation time of the velocity autocorrelation function. In this
case, more general boundary conditions should be imposed,
including velocities, in the picture. An approximate solution
to this generalized boundary problem was derived by Harris
in the early 1980s [10]. Within the FPE framework, one
considers the full phase-space distribution function f (r, v, t),
thus retaining the ability to discriminate between incoming
and outgoing particles at the absorbing boundary. Thus, the
correct boundary conditions can be imposed by picking out
only particles leaving the sink, so only the density of the latter
is strictly set to zero.

Following Harris [10], the stationary solution of the FPE
in the presence of an absorbing spherical sink reads

ρ(r) = ρ0

{

1 − α(r)R0

r
+ O

[(
R0

r

)2
]}

(7)

where

α(r) = 4λR0

3πC(R0)

[

1 + 1.85λR0 + 1.05e−λ(r−R0)
A(r)

A(R0)

]

(8)
with A(r) = [1+8λr/(3π)](8π/18)−1 and C(r) = 0.79(λr)2 +
2.35λr + 2.27. The crucial parameter is the inverse boundary-
layer length

λ = 3

2

√

π

2Dτ
(9)

incorporating inertial effects through the velocity relaxation
time

τ = m D

kBT
. (10)

The dimensionless parameter λR0 gauges the weight of inertial
effects and thus quantifies the deviation from the purely
diffusive regime. It expresses the ratio between the length
traveled at the thermal velocity before relaxation, λ−1, and
the typical length associated with the symmetry breaking
implied by the sink, i.e. the contact distance R0. In the limit
λR0 � 1, the system is overdamped and inertial effects
become negligible. In contrast, when λR0 ∼ 1, the system
behavior deviates substantially from the results of the DE and
the FPE formalism must be used instead.

In order to determine how inertial effects shape diffusion
around the sink, Harris worked out a space-dependent
expression for the diffusion coefficient, showing that diffusion
close to the boundary is inhibited, while at large distance
Fick’s law is recovered with the diffusion coefficient given by
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Figure 1. Cartoon illustrating the simulation scheme. Particles
diffuse across the spherical bounding box. When a particle comes in
contact with the sink (here at time ti ) an absorption event occurs and
the particle is instantaneously reinserted in the buffer. The internal
wall of the buffer is semi-permeable, allowing particles from the
buffer to enter the box but blocking the opposite flux.

Einstein’s relation D = kBT/mτ . In line with this effect, the
absorbing rate is also depressed:

κ

κs
= 4λR0

3πC(R0)
(1 + 1.85λR0). (11)

The amplitude of the rate reduction depends on the
dimensionless parameter λR0, the Smoluchowski expression
κs being recovered in the limit λR0 → ∞. The lowest-
order correction to the Smoluchowski rate can be obtained by
expanding expression (11) in the vicinity of (λR0)

−1 = 0,
which gives

κ

κs
= 1 − 2.42

λR0
+ O[(λR0)

−2]. (12)

3. Event-driven Brownian dynamics

Event-driven Brownian Dynamics has been introduced
recently for hard-sphere systems [14]. The algorithm
employs a combination of event-driven and Brownian velocity
randomization steps to simulate efficiently the stochastic
dynamics of a many-body hard-sphere system, when the
singular nature of the potential prevents the use of standard
Brownian dynamics techniques. The algorithm consists of the
following steps:

(i) the particles move according to standard event-driven
molecular dynamics (EDMD) [15];

(ii) at regular intervals 	t , velocities are randomized by
drawing from a Maxwell distribution corresponding to a
given temperature T .

It can be shown that the above dynamics is Brownian with a
short-time diffusivity given by

Ds = 	t

2

kBT

m
(13)

Figure 2. Evolution of the number of particles contained in the
buffer, following an initial random distribution of the particles within
the bounding box. The equilibration can be estimated from this
monitoring. After the equilibration steps the constant number of
particles in the buffer ensures the condition of constant flux at the
outer boundary.

where m is the mass of the particles and (2m/	t) plays
the role of an effective friction coefficient [16]. Hence, the
characteristic velocity randomization time 	t , which is chosen
a priori, is directly proportional to the single-particle diffusion
and should be consistent with the physical properties of the
system that one wants to simulate. In particular, a short 	t
will result in an overdamped dynamics, while a large 	t will
yield an underdamped regime. Clearly, in the limit 	t →
∞ the system follows standard EDMD. So far, EDBD has
been used for bulk conditions, where the fluid is placed in
a box with periodic boundary conditions. For instance, it
has been successfully applied to study gelation of colloidal
particles [14, 17]. In principle, EDBD can also be employed
to simulate systems with given boundary conditions and thus
describe, e.g., diffusion-driven absorbing processes.

In the present study, we adapted the EDBD to the
particular configuration of an absorbing sink of radius RR

located at the center of a spherical bounding box with particles
of mass m = 1 that diffuse around it and, eventually, get
absorbed. The temperature is fixed at T = 1. The simulation
scheme is depicted in figure 1. Particles diffuse inside the
box and, as they come in contact with the sink, they are
instantaneously absorbed. Following one such event, a particle
is reinserted in a buffer layer outside the bounding box. The
internal spherical surface marking the boundary between the
buffer and the box is semi-permeable: particles within the
buffer can cross it freely while particles inside the box get
reflected back. The total number of particles N = NB + NS

is fixed, NB and NS being the number of particles inside the
buffer and within the box, respectively. At the beginning of the
simulations, the particles are uniformly distributed within the
bounding box. To describe how a typical simulation proceeds,
NB is plotted as a function of time in figure 2. Initially,
a large number of particles close to the sink are absorbed,
which marks a rapid increase of NB. After such transients,
fluctuations flatten rapidly and a steady state is reached. In
this situation, a constant flux of particles from the buffer to the
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sink is established, corresponding to a well-defined value of
the absorption rate.

Different methods have been introduced to describe
chemical associations [18–20]. Here, we present a simulation
scheme that is very efficient and has several advantages.
The computation of the encounter rate is usually based on
first-passage-time techniques, where a bunch of trajectories
are followed while individual runs are stopped as soon as a
particle either reaches the sink or escapes beyond a certain
distance from it [21]. However, even if such schemes
allow the use of variable-step integration algorithms, they
do not allow a straight evaluation of the density profiles
ρ(r). With the present method, we can easily monitor such
static quantities, that can carry precious information on the
dynamics. This is the case, for example, if one wishes
to relax the infinite-dilution approximation and consider the
diffusion of interacting particles [11]. Another advantage is
that the condition of absorption is imposed on the velocity
field, i.e. when a particle and the sink collide. In this way, the
boundary conditions are imposed similarly to the FPE, i.e. on
the velocities. One slight disadvantage is that the reflective
boundary conditions will induce a structuring close to the outer
shell when non-ideal (e.g. hard-core) particles are considered,
akin to the density oscillations that emerge in a liquid close to a
wall [22]. However, such modulation is rapidly damped in the
bulk, and this problem can be simply overcome by considering
a box large enough that the sink and boundary regions are
decoupled up to the desired accuracy. More precisely, RS

should be chosen such that the boundary conditions of the
diffusion equation are well approximated, that is

ρ(R∗) 	 ρ(r → ∞) = ρ∞ (14)

meaning that there exists a distance R∗ < RS where the
density fluctuations in the steady state do not exceed a chosen
tolerance. In this study, we determine R∗ by requiring that
|	ρ|/ρ < 5 × 10−3 and approximate the bulk density of the
system as ρ∞ = ρ(R∗).

The main quantity that we wish to determine is the steady-
state encounter rate κ . The usual way is to estimate κ by
fitting the long-time tail of the survival probability S(t) of the
substrate particles around the reactive sink [23]. Within our
simulation scheme, the time marking each absorption event ti ,
i = 1, 2, . . . , n is recorded during a simulation run and the
reaction rate is calculated from the distribution of time intervals
between consecutive events

κ =
[

1

n

n−1∑

i=1

(ti+1 − ti)

]−1

. (15)

Our algorithm provides a natural way to weight inertial
effects, namely tuning the time interval 	t between two
consecutive randomization events. By doing this, we can
adjust the relative weights of the event-driven and BD steps,
and consequently modulate the dynamics from underdamped
to overdamped regimes. Thus, our simulations enable us to
compare the numerical results for the rate κ and the stationary
profiles ρ(r) against the analytical predictions for both the
diffusion and Fokker–Planck boundary problems in the case

Figure 3. Normalized rate as a function of the velocity relaxation
time 	t . The Fokker–Planck solution (solid line) and the simulation
results (circles) are shown together with the solution of the diffusion
equation (dashed line). N = 20 000.

of non-interacting particles. More generally, we stress that
our numerical scheme allows us to introduce an interaction
between particles in a natural way. We can, for example,
consider hard-core repulsion and examine the interplay of
inertial and excluded-volume effects as a function of the
packing fraction [11].

Our reference unit length is the sink diameter. In the cases
discussed here, we chose a ratio of 1.5 between the radii of
the diffusing particles (RP = 0.75) and the radius of the sink
(RR = 0.5). By using almost similar radii, one can determine
the rate of absorption with good statistical accuracy through
relatively short simulation runs. Indeed, the 1 − (RR + RP)/r
functional form of the density profiles away from the sink
implies that the latter converge to the bulk density less rapidly
for smaller RP, so a larger bounding box should be used to
achieve the desired accuracy at the box edge. This, in turn,
would require a larger number of particles N , since the rate
is directly proportional to the density. With the chosen size
ratio, we attained the required precision with N up to 20 000.
Moreover, such size ratio proves useful for the generalization
of our simulations to the case of interacting particles, as tracer-
and sink-induced spatial signatures in the density profiles can
still be recognized [11].

4. Results

The Harris solution predicts that the discrepancy between the
rate of absorption computed through the FPE and that of the
diffusion boundary problem increases linearly with 	t for
moderate strength of the inertial effects, as attested to by
the lowest-order correction to the Smoluchowski rate (12).
Figure 3 shows the ratio between the numerically measured
rate of absorption κ and the one expressed by equation (4) as
a function of 	t . It is manifest that our numerical scheme
reproduces perfectly the FPE rate (11) for a range of 	t
between 0.01 and 0.3. For larger values of 	t , the agreement
is slightly worse. However, it must be stressed that under
such conditions we are not able to discern whether this is due

4
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to numerical artifacts associated with our numerical scheme
or simply to the fact that the approximations made in the
derivation of equation (7) are no longer valid.

What is important to remark here, however, is the
discrepancy with respect to the Smoluchowski rate. Indeed,
figure 3 confirms that the use of the DE is legitimate only in the
overdamped limit. In this case 	t → 0 and the velocities of
the Brownian particles are almost instantaneously randomized.
As soon as 	t increases, the rate starts decreasing due to
the emergence of inertial effects. This fact has implications
that reach far beyond the test of our numerical algorithm,
since deviations from the purely diffusive behavior have been
demonstrated in many contexts, such as for solvate ions in
water or aerosol particle coagulation [10]. This can have
important consequences when the Smoluchowski framework is
used in the interpretation of experiments performed in a regime
where inertial effects are non-negligible.

As we discussed above, one of the advantages of the
present method is the possibility of computing the density
profiles that set in when the absorption process reaches an
equilibrium. This is particularly important in the case of
interacting particles. In fact, we have shown that modulations
in the density distributions can alter the rate of absorption
in a highly non-trivial fashion [11]. We are in a position
to investigate how the velocity relaxation time 	t affects the
stationary profiles. Since we are interested in highlighting
the deviation from the DE solutions, we focus on the ratio
ρ(r)/ρDE(r) for several values of 	t . The outcome of our
numerical experiments is summarized in figure 4. There is
a clear deviation from the purely diffusive regime. In all
cases we observe an important increase of the density with
respect to the DE solution (5) close to the sink. Such deviation
depends strongly on the value of 	t : while it is around 10%
for 	t = 5 × 10−2, the true density in the vicinity of the sink
becomes more than five times greater than the Smoluchowski
solution for 	t = 1.

Inertial effects in the bulk can in general be ignored,
since they extend on timescales that are much shorter than
the typical time frame of interest (around picoseconds for
a simple liquid). In diffusion-controlled reactions, however,
the nature of the boundary conditions causes inertial effects
to have a substantial impact on the density profile and, as a
consequence, on the rate. Note that, by virtue of the integral
relation connecting the two quantities, a significant deviation in
the profile still affects the rate to an appreciable extent even if
such variation is mostly confined to a restricted region around
the sink. Overall, however, due to the long-range nature of
the density distributions, a deviation can be measured also at
large distances from the sink. To better quantify this effect,
we computed the absolute value of the density deviations with
respect to diffusion as a function of 	t at a given distance d
from the sink

δρ(d) =
∣
∣
∣
∣

ρ(d)

ρDE(d)
− 1

∣
∣
∣
∣
. (16)

In figure 5 the numerical results are compared to the FPE
theory. As expected, the difference between the FPE and
DE solutions decreases with the distance from the sink. Far
away from the absorbing boundary (d = 20) the deviation is

Figure 4. Normalized density distribution for different velocity
relaxation times 	t . The Fokker–Planck solution (solid lines) and
the simulation results (circles) are shown together with the solution
of the diffusion equation (dashed lines). N = 20 000.

less than 5% for all 	t . At intermediate distances (d = 4),
however, the discrepancy can be up to 20%. This proves that,
at distances of a few particle diameters from the absorber, the
density profile strongly depends on the friction acting on the
particles.

5. Conclusions

In this paper we presented a new numerical scheme, employing
event-driven Brownian dynamics simulations in order to
study diffusion-limited encounter reactions. Within our
method, which is not based on a first-passage-time approach,
a stationary current of particles is established across the
simulation box to the absorbing sink. As a consequence, the
stationary density profiles can be measured directly after a
first transient. The bounding box is spherical with reflective
boundary conditions from the inside. In this way, the natural
symmetry of the system is enforced in the simulations. In this
work, we used non-interacting particles to test the algorithm
against theoretical predictions, but the same approach can be
used to describe systems of interacting particles.
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Figure 5. Deviation of the density profiles from the Smoluchowski
solution as a function of the velocity relaxation time 	t at different
distances d from the sink. The dotted lines are obtained from the
theoretical FPE predictions and the squares are the simulation results.

We considered the analytical solutions of two different
theoretical models. The first is the traditional Smoluchowski
theory, where the microscopic dynamics of the particles is
described at the macroscopic level by the diffusion equation
with absorbing boundary conditions coupled to Fick’s law. The
second approach, developed by Harris [10], is based on an
approximate solution of the Fokker–Planck equation. Such a
method corrects for the intrinsic inconsistency of the boundary
conditions at the sink by considering also the velocities.
Harris’s formulation is more general, since it does not assume
that the velocity correlation functions relax instantaneously. In
many real systems, inertial effects are relevant and should be
taken into account.

We have shown that our numerical results for the
absorption rate and for the radial density profiles match to a
very good extent the FPE predictions for all the values of the
velocity relaxation time 	t considered. In contrast, the purely
diffusive model yields accurate estimates of the numerics
only at large distances from the sink or in the overdamped
regime, that is for small 	t . This confirms that the use of
Smoluchowski theory for diffusion-guided reactions requires
some care, as already pointed out by several authors [10].

Our method is conceived so as to be naturally applicable
to systems of interacting particles. Indeed, we have used
it to show that, when excluded-volume effects are non-
negligible, the rate does not depend trivially on the density and
may display non-monotonic behavior as the packing fraction
increases [11]. In the future we plan to apply the present
algorithm to describe more complicated reactions of biological
relevance and to granular materials. It will be interesting, for
example, to investigate the interplay of inertial and excluded-
volume effects in systems with multiple reaction centers. In
this way we will be able to quantify negative and positive
cooperativity effects associated with the presence of multiple
sinks as well as the influence of the geometrical arrangement

of the latter. For example, such framework is a relevant one in
ligand–receptor binding phenomena on cell surfaces, where the
timescale associated with receptor clustering on the membrane
and the consequent geometrical constraints are likely to play a
major role in determining the overall binding efficiency.

In summary, our results confirm that great care needs
to be taken when using a simple diffusive model to discuss
experimental results, since in many cases the consequences
of an underdamped dynamics may be observable beyond the
typical particle timescales and length scales, such as for
many biological reactions occurring in vivo or in colloidal
suspensions.
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