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Abstract. Modelling the propagation of a pulse in a dense milieu poses fundamental challenges at the
theoretical and applied levels. To this aim, in this paper we generalize the telegraph equation to non-ideal

conditions by extending the concept of persistent ra
This is achieved by introducing an explicit constraint

ndom walk to account for spatial exclusion effects.
in the hopping rates, that weights the occupancy of

the target sites. We derive the mean-field equations, which display nonlinear terms that are important at

high density. We compute the evolution of the mean

square displacement (MSD) for pulses belonging to

a specific class of spatially symmetric initial conditions. The MSD still displays a transition from ballistic
to diffusive behaviour. We derive an analytical formula for the effective velocity of the ballistic stage,
which is shown to depend in a nontrivial fashion upon both the density (area) and the shape of the initial
pulse. After a density-dependent crossover time, nonlinear terms become negligible and normal diffusive

behaviour is recovered at long times.

1 Introduction

Random walks (RW) are widely studied stochastic pro-
cesses with a wealth of different applications in many
fields [1,2]. The persistent random walk (PRW) identi-
fies a special class of RWs, where agents also have a bias
to keep hopping in the same direction as they did in the
past (with finite memory). While the continuum limit of
standard RWs is the diffusion equation, yielding infinite
propagation velocity, the continuum limit of the PRW is
the so-called telegraph equation, which displays a transi-
tion from ballistic to diffusive transport at a characteristic
time. The telegraph equation is also obtained from the so-
called dichotomous (or sometimes also called telegraph)
noise (random switches between two states) when the dis-
tribution of switching times is exponential and the process
is drift-less [3].

The telegraph equation was first studied by Lord
Kelvin, who was interested in the distortion and dissi-
pation of electromagnetic waves in telegraph lines, mo-
tivated by the design of the first transatlantic cable [4],
while PRW and its connection with the telegraph equation
were first studied by Goldstein in 1951 [5]. The telegraph
equation is notoriously used in many contexts, from trans-
port of relativistic particles [6,7] in different milieuz, such
as in multiply scattering media [8], to second sound in lig-
uid helium IT and inertial effects in heat transport [9,10].
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An interesting discussion of many applications of the
telegraph equation can be found in a recent review by
Weiss [11].

Macroscopic transport equations can be derived in a
straightforward manner from microscopic stochastic pro-
cesses, the diffusion equation being the classical text-book
example. In one dimension, for example, if P;(n) denotes
the probability that an agent is at site ¢ on some discrete
manifold at time nAt, a simple unbiased RW corresponds
to the update rule

, 1)

as it is assumed that at each time step the walker can
either jump to its right or to its left with equal proba-
bility. Letting the lattice spacing a and the time step At
go to zero, such that lim, a;—o(a?/At) = D, one obtains
the diffusion equation P (z,t)/0t = D 8*P(x,t)/0z%. Of
course, in performing the continuum limit one is tacitly
assuming that many walkers are performing as many un-
correlated random walks and that a probability of being
at = at time ¢ can be defined by averaging over such un-
correlated trajectories. This requires the walkers to be
transparent to each other. It is then interesting to ask the
following question. If some exclusion rule is enforced, such
that a walker can only jump on an empty site, how will
the macroscopic equations be modified? And what kind of
process will they describe? The macroscopic counterpart
of this problem implies transport in a non-ideal milieu,

Pi(n) = [Pic1(n = 1) + Piga(n — 1)]
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e.g., a dense fluid or a complex scattering medium. Exam-
ples from optics include pulse diffusion in whole blood and
in a dense distribution of particulate matter in the atmo-
sphere and the ocean. Indeed it has been shown that the
telegraph equation can be derived as an approximation to
a physically more realistic transport equation [12].

Microscopic jump processes that implement exclusion
rules go under the name of simple exclusion processes
(SEP). In general, SEPs are space-discrete, agent-based
stochastic processes modeling some kind of transport ac-
cording to specific rules and bound to the constraint that
no two agents can ever occupy the same site. SEPs play a
central role in non-equilibrium statistical physics [13,14].
While the first theoretical ideas underlying such processes
can be traced back to Boltzmann’s works [15], SEPs were
introduced and widely studied in the 70s as simplified
models of one-dimensional transport for phenomena like
hopping conductivity [16] and kinetics of biopolymeriza-
tion [5]. Along the same lines, the asymmetric exclusion
process (ASEP), originally introduced by Spitzer [17],
and the associated macroscopic mean-field equations [18]
have become a paradigm in non-equilibrium statistical
physics [19-21] and have now found many applications,
e.g. to the study of molecular motors [22], transport
through nano-channels [23] and dynamics of microtubule
depolymerization [24].

Starting from this setting, we shall here generalize
the concept of persistent random walk to cases of inter-
est where exclusion effects are to be accounted for. More
precisely, we will introduce a modified PRW featuring an
explicit constraint in the hopping probabilities, that are
now gauged by the occupancy of the target sites. We will
proceed on to deriving the mean-field equations for the
concentration. These will be shown to display nonlinear
terms, that prove however negligible in the diluted limit.
Working at high densities, excluded-volume corrections do
matter, as we shall here substantiate both analytically and
numerically.

The paper is organized as follows. In Section 2 we intro-
duce the persistent simple exclusion process (PSEP) and
derive the mean-field equations for the continuum den-
sities. In Section 3 we characterize the evolution of the
mean square displacement for a pulse belonging to a spe-
cific class of spatially symmetric initial conditions. Inter-
estingly, as a result of the excluded-volume constraint, the
ballistic-to-diffusive transition becomes dependent on the
density. Moreover, the effective velocity that characterizes
the ballistic stage becomes a function of the crowding level
too, but also turns out to depend on the shape of the ini-
tial pulse. Finally, in Section 4 we summarize our results
and sketch possible interesting directions along which to
pursue this work.

2 The persistent simple exclusion process
(PSEP)

Let us consider a bunch of N walkers on a one-dimensional
lattice with spacing d and length L. According to the def-
inition of persistent random walk [5], at regular intervals
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At a walker can jump in the same direction as it did at
the previous step with probability p or invert its direction
with probability g. We take ¢ = 1 — p, which amounts to
assuming that there is no leakage [5] in the system. Let us
denote with a;(n) the probability that a walker is at site
i at time nAt having been at site i — 1 at time (n — 1) At
(right-bound flow) and with b;(n) the probability that a
walker is at site i at time nAt having been at site ¢ + 1 at
time (n — 1)At (left-bound flow). If walkers are invisible
to each other, the following relations hold:

a;(n) =pai—1(n—1)4+qb;—1(n—1)
bi(n) =pbit1(n — 1)+ qaip1(n —1).

(2)
3)

The above equations describe a discrete stochastic pro-
cess. The continuum limit can be obtained by introducing
the continuous probability density P(z,t) = (P;(n)) =
(a;(n) + b;(n)), where (...) denotes an average over the
trajectories of many agents, by letting d — 0, At — 0,
q — 0. By doing this, it is known that one gets the tele-
graph equation [11]

0?P

ot? ot @)

with

v r. (5)

q,ggO At -
In this paper we wish to study how the persistent random
walk is modified if we introduce the constraint that no two
walkers can occupy the same site at the same time. That
is, the probability to jump to a given site is gauged by
the current occupancy of that site. Along the same line of
reasoning of SEPs and ASEPs, we modify equations (2)
and (3) in the following way:

lim =
d,At—0 At

ai(n) —ai(n —1) = [pai—1(n — 1) + ¢bi—1(n — 1)]
x [1 = Pi(n)] —a;j(n—1)

x {pll = Pya(n 1))
+ [l = Pia(n— DI(TM)}

bi(n) = bi(n —1) = [pbiy1(n — 1) + gait1(n — 1)]
« [1— Py(n)] — bi(n — 1)

x {pll = Pa(n = 1)

+ql = Pia(n 1)}

(6)

(7)

where P;(n) = a;(n) + b;(n). Again, the idea is to gauge
jump probabilities by the occupancy of the target sites.
For example, the first term in the r.h.s of equation (6)
states that a net increase of the probability at site i as-
sociated with the right-bound flow is only possible with a
transition rate proportional to the amount of free room at
site 7, i.e., 1 — P;. If all walkers happen to be at site i at
the same time, then P; = 1 and no further increase of a;
nor of b; is possible.

It is interesting to observe here a rather surprising fact.
From the above discussion, one may think that a modified
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diffusion equation including finite-density effects could be
derived through occupancy-gauged hopping rules such as
those appearing in equations (6) and (7) from a standard
random walk without drift (Eq. (1)). However, as first
noticed by Richards in 1977 [16], nonlinear terms cancel
exactly in doing this, and one is left with the standard
diffusion equation in the continuum limit.

In order to take the continuum limit, we first divide
equations (6) and (7) by At and substitute ¢ = 1 — p.
Then, recalling the definitions (5), we get

Oa 0

5t + Yoy [a(l—P)]=—rJ(1—-P)

b 0

5 Yon b(1—P)=rJ(1—P) (8)

where P(z,t) = a(z,t) + b(z,t) and J(z,t) = a(z,t) —
b(x,t).

For the sake of the argument, let us consider the prop-
agation of pulses in a fluid, i.e. travelling density fluctua-
tions. Equations (8) contain the single-particle probability
field P, which is a number between zero and one. The value
P = 1 should then correspond to the maximum density
allowed in the system. Thus, more physical equations can
be obtained by introducing the agent densities

p(z,t) = pyP(,1) (9)
T (x,t) = pud(z,1) (10)
p(5,) = prsala, 1 (11)
o (2,) = puab(i 1) (12)

where p,, is the maximum allowed density, which in prin-
ciple could be regarded as a parameter of the model. If
we imagine that the agents have a finite size o, i.e. we
regard them as hard rods!, one simply have p,, = 1/0.
Introducing the density p,,, equations (8) become

Ip+ 9 P\ _ P
ot +U317 [p+ (1 pM)] =7 (1 PM)
Op— 0

)]0 )

A system of equations for the densities p(z,t) and J (z,t)
can be obtained by adding and subtracting the two
equations (13):

op 0 P B
or TV ou [‘7 (1‘pMﬂ -

Wl (- 2] =er (1 2)

or " ou

L 1t should be emphasized that it is in principle possible to
write mean-field equations for an exclusion process that ac-
counts for extended objects on a line from the beginning. In
reference [25] the authors derive a modified diffusion-advection
equation from a microscopic exclusion process (RW with drift)
for hard rods. However, even if it would be intriguing to do
so, it is rather unclear how to apply the same technique in the
context of the PRW.

ot~ oz
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As a general remark, we see that the microscopic ex-
clusion constraint results in the appearance of nonlin-
ear terms. The standard evolution of the PRW leading
to the telegraph equation is obtained in the dilute limit
p < pu. Conversely, we may consider the full system (14)
as describing transport in a crowded medium. More pre-
cisely, the nonlinear equations (14) embody the micro-
scopic excluded-volume constraint that emerges at high
densities.

3 Mean square displacement

We turn now to analyzing how the excluded-volume con-
straint affects the propagation in an infinite medium of
an initially localized pulse. It is well known that the PRW
displays a transition from ballistic to diffusive transport,
as exemplified by the mean square displacement (MSD),

palt) = - [(@20)) = (1)) (15)

with (2™(t)), = [2™p(x,t)de and N = [ p(z,t)dz. As
it is customarily done, we shall here restrict to a class of
symmetric initial pulses, namely such that p(z,t = 0) =
p(—z,t = 0), J(x,t = 0) = 0, meaning that the initial
distribution of the right-headed agents is equal to that of
the left-headed ones. In this case, it is straightforward to
show that (x(t)) =0 Vt.

For the PRW one has

2

v
pa(t) — p2(0) = o2 (2rt — 1 + e~ 2"

2¢2 for

v t<1/2r

02
| tfor t>1/2r

R

(16)

When excluded-volume effects are important, it appears
impossible to obtain a closed expression for ps(t). How-
ever, one can still capture the asymptotic regime at short
times for a certain class of symmetric initial conditions in
an infinite medium (see Ref. [4] for a critical discussion
of reflecting and absorbing boundary conditions for the
telegraph equation in a bounded domain). Let us consider
the Taylor expansion of (%)

1

pa(t) = 12(0) + pa (0) £ + 2#2”(0) +0(). A7
In order to evaluate the coefficients of the expansion, let
us multiply the first equation of equation (14) by 2? and
the second one by z and integrate. Integrating by parts

and assuming that boundary terms vanish, we obtain:

d

dt <17>Jp =0

b ()

2r
T =0
pM< >Jp

2
(@), —20(x) g+
M

+2r{z) g7 — (18)
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where (...)7 and (...) 7, denote averages with respect to
the corresponding (products of) densities.

Since the initial condition is symmetric, the first equa-
tion of (18) shows that £4(0) = 0. Differentiating the same
equation with respect to time, recalling equations (14) and
integrating by parts eventually leads to:

&2 d 2 d
g2\ =20 (x)g — oar dt ()7

e
~2rlels + 2 el
(70 )
eofeer= g )} o

Evaluating the previous expression at ¢ = 0 makes the
terms that involve the function J disappear. Thus

d? P 2
(z?) = 2° /p(l - ) dx
di? "lizo pM t=0
202 9]
_ e :vp(l _ ) P da (20)
pm pm ) Ox |
which leads to the approximation
a(t) ~ 12(0) + 022 (21)
with
v o\’
Ve = pl1— ) dx
VN [/ < PM t=0
1 1/2
- /xp (1 G ) % dx } (22)
M PM Oz +t=0

where we have used the fact the norm N = [ p(x,t)dz
is constant if boundary terms can be neglected. This is
the case of a broad choice of initial conditions, such as
the propagation of pulses that are initially localized in a
compact domain.

Figure 1 shows the time evolution of us obtained by
integrating numerically the system (18) with a forward-
difference approximation in time and replacing the spatial
derivatives by centered Euler approximations. The initial
conditions are generalized Gaussian pulses of the type

plz,t =0)=ge =" /2, (23)

This allows us to investigate the propagation of a pulse
whose shape varies continuously from Gaussian (5 = 1) to
a sharp, nearly piecewise constant step function (5> 1),
while the parameter ¢ < 1 gauges the level of crowding.
It is not difficult to compute v, analytically from equa-
tion (22) as a function of ¢ for a pulse of the kind (23).
After straightforward calculations, one gets

3¢+2¢T/2

20 3 (24)

ve(9) = v [1 -
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Fig. 1. Mean square displacement for a pulse of the kind (23)
with 8 = 10 as a function of time for different choices of the
crowding parameter ¢. The dashed lines are straight lines of
slope ve as predicted by equation (24). Inset: approach to the
diffusive regime. The parameter D = v?/2r is the theoreti-
cal diffusion coefficient. The solid line refers to the PRW and
vanishes as ¢!, The dashed line is an inverse-power law with
exponent 0.4, to be used as a guide for the eye.

where v = 1+ 1/23. Tt is clear from the figure that the
approximation (24) captures to an excellent extent the
initial ballistic stage. Furthermore, the numerical integra-
tion of equations (18) clearly shows that asymptotically
the propagation becomes diffusive, with the same diffu-
sion coefficient v?/2r as the PRW. This is to be expected
as p — 0 as t — oo and therefore the excluded-volume
constraints (that is, the nonlinear terms) become negligi-
ble. Nevertheless, the inset in Figure 1 clearly shows that
the approach to the diffusive regime is considerably slowed
down as a result of crowding — the more the greater the
excluded-volume constraint.

Our analysis shows that the initial behaviour of the
mean square displacement is qualitatively the same as in
the PRW, i.e., the propagation is ballistic. The effect of
crowding is to decrease the velocity that characterizes the
initial stage of the evolution. In Figure 2 the effective ve-
locity wve, normalized to the diluted limit v, is plotted as
function of the level of crowding and for different choices
of the parameter 3. Remarkably, v, also depends on the
shape of the initially localized density pulse. The ballis-
tic spreading of a super-Gaussian pulse, nearly a sharp
step, proceeds with a considerably lower speed as com-
pared to the spreading of a pure Gaussian pulse (see again
Eq. (22)).

4 Conclusions and perspectives

The persistent random walk yields the so-called telegraph
equation in the continuum limit, which displays a well
known transition from ballistic to diffusive transport. In
the classical microscopic formulation of the PRW, individ-
ual walkers are assumed to jump toward neighboring sites
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Fig. 2. Effective velocity (24) as a function of the level of
crowding for a Gaussian pulse, a generalized Gaussian with
B =10 and a step pulse (8 — 00).

with constant probability. However, one can account for
excluded volume effects by gauging the hopping probabil-
ity to the occupancy of the target sites. By doing so, we ob-
tained a set of two coupled nonlinear transport equations,
that reflect the microscopic competition for the available
space. Microscopic processes which implement exclusion
rules are called simple exclusion processes (SEPs). For this
reason, we refer to the generalized model introduced here
as the persistent simple exclusion process (PSEP).

We go on to investigate the mean-field limit of the
PSEP process for a specific class of initial conditions.
These are generalized Gaussian pulses, whose shape varies
continuously from Gaussian to sharp steps depending on a
control parameter. The pulse amplitude ¢ in this setting
measures the degree of imposed crowding, i.e., the den-
sity of the medium. Numerical integration of our mod-
ified transport equations shows that the PSEP still un-
dergoes a transition from ballistic to diffusive behaviour
of the MSD. However, the velocity of the initial ballis-
tic stage is found to decrease with the density of the
medium (¢). This might be relevant in many cases where
the telegraph equation is used to model physical situa-
tions. Think for example to gel electrophoresis (GEP),
first modeled as a two-state process yielding the telegraph
equation in the 50s [26]. As a molecule moves along a chan-
nel in response to an applied electric field, it may become
entangled in the gel matrix at random times and after
some time detach from the gel fibers because of thermal
fluctuations. Here a(x,t) and b(z, t) represent the concen-
tration of bound and free molecules. Of course, the avail-
able theory does not describe the migration of molecules
in crowded solutions, which may be however interesting
to analyze through GEP.

Remarkably, as a consequence of the excluded-volume
constraint, the velocity of the ballistic stage also de-
pends on the shape of the initial pulse. In particular, at
equal values of crowding ¢, our calculations show that
pulses with sharper edges display smaller velocities and
hence cross over later to diffusive spreading. At long times,
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the propagation becomes diffusive, with the same diffusion
coefficient as for the long-time limit of the telegraph equa-
tion. This is because, as the pulse spreads, the density de-
creases and nonlinear terms become eventually irrelevant.

We envisage to extend this work along different lines.
On the one side it would be interesting to account from the
very beginning for the finite size of the agents along the
lines of [25], beyond the point-like version of the crowd-
ing considered here (i.e., fully penetrable entities). More-
over, it would also be engaging to establish a link between
our treatment and the dichotomous noise picture, in order
to investigate the connection between excluded-volume
constraints and modifications of the switching time
statistics.
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