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4 Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, CNISM and INFN
Via Marzolo 8, I-35131, Padova, Italy

received 27 March 2014; accepted in final form 23 June 2014
published online 16 July 2014

PACS 05.60.Cd – Classical transport
PACS 66.10.cg – Mass diffusion, including self-diffusion, mutual diffusion, tracer diffusion, etc.
PACS 02.50.Ey – Stochastic processes

Abstract – The influence of crowding on the diffusion of tagged particles in a dense medium
is investigated in the framework of a mean-field model, derived in the continuum limit from
a microscopic stochastic process with exclusion. The probability distribution function of the
tagged particles obeys to a nonlinear Smoluchowski equation, where the force and diffusion
terms are determined self-consistently by the concentration of crowders in the medium. Tran-
sient sub-diffusive or super-diffusive behaviors are observed, depending on the selected initial
conditions, that bridge normal diffusion regimes characterized by different diffusion coefficients.
These anomalous crossovers originate from the microscopic competition for space and reflect
the peculiar form of the non-homogeneous force term in the governing equation. Our results
strongly warn against the overly simplistic identification of crowding with anomalous transport
tout court.

Copyright c© EPLA, 2014

Introduction. – Diffusion is a fundamental process in
nature that describes the spread of particles subject to
random forces from regions of high density to regions of
low density [1]. The hallmark of diffusive transport is the
linear growth in time of the mean square displacement
(MSD) of the spreading particles, 〈ΔR2〉 ∝ t. This is a
simple conclusion that follows directly from the law of con-
servation of matter (in the form of a continuity equation),
when a simple constitutive equation is assumed, stating
that the particle current is proportional to the concentra-
tion gradient. The latter law, known as the (first) Fick’s
law, can be regarded as a simple linear-response prescrip-
tion, thus only appropriate to describe the relaxation of
small density fluctuations.

Despite the fact that Fickean diffusion is generally ap-
propriate to describe the spontaneous spatial rearrange-
ment of particles in suspension, deviations are expected to
occur in various situations of interest, e.g. if fixed obsta-
cles are present (confinement) [2] or when different species

compete for the available space at high concentration,
a scenario often referred to in cellular biology as macro-
molecular crowding [3–13]. Despite the importance
of crowding and confinement effects in diffusion-related
mechanisms in chemistry and biology, there is no con-
sensus on the mechanisms through which crowding and
confinement fine-tune deviations from the classical Fick-
ean picture. This lively debate is reflected by conflicting
experimental reports in the literature concerning the mo-
bility of biomolecules in the cytoplasm and extra-cellular
matrix. Some authors maintain that crowding merely
slows down transport by reducing the diffusion coefficient
but does not alter the MSD exponent [5,12,14,15], while
others [10,16–18] contend the identification of crowding
in the cytoplasm with anomalous (typically sub-diffusive)
transport [19–21], a feature observed in lateral diffusion in
cellular membranes [22–24]. In this case one would have
〈ΔR2〉 ∝ tα with α < 1 (sub-diffusion) or 〈ΔR2〉 ∝ tα with
α > 1 (super-diffusion). It is worthwhile to underline that
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reports of anomalous transport connected to crowding are
not limited to sub-diffusion. For example, super-diffusive
behaviour has been recorded in the motion of endodermal
Hydra cells [25], in the framework of a minimalistic model
of random barriers in a percolation network as a tool to
mimic diffusion in a crowded environment [26] and also in
the case of driven crowded systems [27].

On the experimental side, it is interesting to remark that
often claims of anomalous diffusion in three-dimensional
crowded environments in vitro and in vivo rely on fluo-
rescence recovery after photobleaching (FRAP) data that
are analyzed through ad hoc modifications [17] of stan-
dard theories of fluorescence recovery [28,29]. However,
to our knowledge no first-principle derivations of fluores-
cence recovery curves in the anomalous diffusion regime
have yet been reported, analogous to the long-known equa-
tions derived in the context of normal diffusion [28,29]. Of
course, other techniques exist to investigate particle mo-
bility in complex media, such as single-particle tracking,
which are less flawed by such problems. Interestingly, such
techniques have uncovered anomalous transient regimes
crossing over to normal diffusion in crowded and confining
milieux [30]. The interested reader will find in ref. [31] a
recent and exhaustive review of different measurements
and simulations reporting anomalous transport in biolog-
ical media.

As it is often the case, the truth probably reflects an
intermediate picture. Possibly, complex (even multiple)
crossovers are to be expected between anomalous and nor-
mal diffusion [30,32], or, alternatively, one needs to con-
sider complex space- and geometry-dependent diffusion
coefficients [33,34], as modeled, e.g., by Fick-Jacobs [35]
and related theories [36,37]. However, as it appears clear
from the above recollection, the need for further, system-
atic investigation of transport in crowded and confining
media is evident.

A particularly interesting approach to model transport
in complex media is to derive macroscopic equations
as mean-field approximations of suitable microscopic
stochastic processes. In this way, the microscopic con-
straints imposed by complex environmental factors are
naturally incorporated in the transport equations [38–42].
For example, in ref. [43] we derived a modified
nonlinear equation suitable for describing the mean-
field limit of a persistent random walk in a dense
environment.

The idea is to move from a space-discrete simple ex-
clusion process specifying the competition for space at the
microscopic level. This is an agent-based stochastic model
bound to the condition that no two agents can occupy the
same site [44–46]. In certain limits, the governing equa-
tions obtained through such procedure can be also viewed
as nonlinear diffusion equations derived from generalized
free-energy functionals [47]. In one-dimensional systems,
this setting is also known as single-file diffusion [48–51], a
well-studied problem [2,50,52–55] which is known to dis-
play anomalous transport and other interesting features,

such as violation of the Einstein relation and persistent
effects determined by the initial conditions [56].

In this paper we consider the diffusion of tagged parti-
cles immersed in a densely populated milieu of co-evolving
agents, hereafter the crowders, as a primer for most
fluorescence-based single-molecule tracking experiments.
Following an approach inspired from ref. [43], we derive a
system of partial differential equations for the mean-field
densities of both the tagged particles and the crowders.
For the sake of simplicity, we provide the mathematical
details of our derivation in one dimension and only report
the equations in arbitrary dimension, leaving the details
of these in the supplemental online material in ref. [57].
We stress that our focus is not on the one-dimensional
case, where, despite exact formulations of hydrodynamic
equations exist [58] along with approximate but successful
mean-field approaches [58,59], the validity of mean-field
descriptions is known to break down in certain cases, such
as the prediction of phase diagrams [60], the effects of
boundaries [61]. The paper is organized as follows. In the
next section we introduce our model and work out the sys-
tem of coupled mean-field transport equations. Then, we
study the spreading of an initially localized collection of
tagged particles in one and two dimensions with different
starting configurations of the crowders as possible realiza-
tions of feasible and interesting experiments. Finally, we
summarize our results and stress the important conclu-
sions reported in this paper.

The microscopic model and its mean-field limit.
– To simplify the discussion, let us consider a one-
dimensional problem. As we will show in the following,
the 1D derivation can be readily extended to higher di-
mensions (see supplemental material in ref. [57]) without
altering the ensuing physical picture. Let us consider a
one-dimensional lattice of spacing a. Each site can be oc-
cupied by either a crowder or a tagged particle. We denote
with the binary variables mi(k) and ni(k) the occupancies
of site i at time t = kΔt for the tagged and crowding par-
ticles, respectively. Hence mi(k), ni(k) can be either zero
or one depending on whether site i is occupied or not by
the respective particle.

The stochastic process that governs jumps of the tagged
particles can be cast in the following form:

mi(k + 1) − mi(k) =(
z+

i−1mi−1(k) + z−
i+1mi+1(k)

)
[1 − mi(k)][1 − ni(k)]

− z+
i mi(k)[1 − mi+1(k)][1 − ni+1(k)]

− z−
i mi(k)[1 − mi−1(k)][1 − ni−1(k)]. (1)

Equation (1), and its analogue for species ni(k), can be
regarded as the update rule for a simple Monte Carlo pro-
cess. If the target site is occupied by either a crowder or
a tagged particle, the move cannot occur. The quantities
z±

i are variables that take the value 0 or 1 depending on a
random number ξi uniformly distributed between 0 and 1.
By considering homogeneous jump probabilities, q±

j = q
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ρi(k + 1) − ρi(k) = q (ρi−1(k) + ρi+1(k)) [1 − ρi(k)] [1 − φi(k)]
− q ρi(k) [2 − (ρi−1(k) + ρi+1(k)) − (φi−1(k) + φi+1(k)) + φi+1(k)ρi+1(k) + φi−1(k)ρi−1(k)] ,

φi(k + 1) − φi(k) = w (φi−1(k) + φi+1(k)) [1 − φi(k)] [1 − ρi(k)]
− w φi(k) [2 − (φi−1(k) + φi+1(k)) − (ρi−1(k) + ρi+1(k)) + φi+1(k)ρi+1(k) + φi−1(k)ρi−1(k)] , (3)

for j = i, i ± 1, one can formally write

z+
i−1 = θ(ξi) − θ(ξi − q),

z−
i+1 = θ(ξi − q) − θ(ξi − 2q),

z+
i = θ(ξi − 2q) − θ(ξi − 3q),

z−
i = θ(ξi − 3q) − θ(ξi − 4q), (2)

where θ(x) is the Heaviside step function and we are as-
suming q ≤ 1/4. Equations (2) entail 〈z±

j 〉 = q, where
〈. . . 〉 denotes an average over many values of ξi for a fixed
configuration {ni, mi}. The above process is entirely de-
termined by the jump probabilities q, which we here as-
sume constant and homogeneous.

A (discrete-time) master equation can be obtained by
averaging over many Monte Carlo realizations performed
according to the rule (1) and starting from the same initial
condition (we denote this average by 〈〈. . . 〉〉). Introducing
the one-body occupancy probabilities ρi(k) = 〈〈mi(k)〉〉
and φi(k) = 〈〈ni(k)〉〉 and assuming a mean-field factor-
ization for the two-body and three-body correlations, one
finds the following equation:

see eq. (3) above

where w denotes the jump probability associated with
crowders’ motion. To proceed in the analysis, we assume
that the concentration of tagged particles is small, ρi � 1.
We therefore approximate eqs. (3) as

ρi(k + 1) − ρi(k) = q (ρi−1(k) + ρi+1(k)) [1 − φi(k)]
− qρi(k)[2 − (φi−1(k) + φi+1(k))],

φi(k + 1) − φi(k) = w (φi−1(k) + φi+1(k) − 2φi(k)) . (4)

Note that the microscopic exclusion constraint is lost in
the equation for φi, the crowders occupancy probability.
Tagged particles are in fact highly diluted and thus inter-
fere negligibly with the diffusive motion of the crowders.

Let us now move to the continuum. We do
so formally by letting ρ(x, t) = lima,Δt→0 ρi(k) and
φ(x, t) = lima,Δt→0 φi(k). In addition we must require
lima,Δt→0 qa2/Δt = Dρ and lima,Δt→0 wa2/Δt = Dφ,
where Dρ and Dφ denote the diffusion coefficients of the
tagged particles and the crowders, respectively. Mak-
ing use of the above definitions, one readily obtains the
continuum limit of eqs. (4)

∂φ

∂t
= Dφ

∂2φ

∂x2 ,

∂ρ

∂t
= Dρ

∂

∂x

{
∂

∂x
[(1 − φ)ρ] + 2ρ

∂φ

∂x

}
. (5)

The mean-field density of crowders φ evolves in time fol-
lowing a standard diffusion equation. On the contrary,
the density ρ obeys a nonlinear Smoluchowski equation
where the density of crowders plays the role of an exter-
nal potential, which embodies the excluded-volume rules
imposed at the microscopic level. In the annexed supple-
mental material [57] we give an alternative derivation of
eqs. (5), following a perturbative calculation inspired by
van Kampen system size expansion [62]. We note that the
equation for the evolution of ρ has also been derived in
ref. [63] for a constant non-homogeneous background field
φ(x).

A derivation analogous to the one described above can
be repeated in higher dimensions (see supplemental mate-
rial), leading to a straightforward generalization of eq. (5),

∂φ(x, t)
∂t

= Dφ∇2φ(x, t),

∂ρ(x, t)
∂t

+ ∇ · J(x, t) = 0, (6)

where J = −Dρ{∇[(1 − φ)ρ] + 2ρ∇φ} is the total (os-
motic plus force) current for the tagged species. In the
following section the above equations are integrated nu-
merically, both in one and two dimensions. As we shall
demonstrate, the effective force term leads to the emer-
gence of sub-diffusive or super-diffusive transients in the
dynamics of the tagged species, depending on the chosen
initial conditions.

Sub- and super-diffusive transients. – In order to
monitor the dynamics of the tagged species, we follow the
time evolution of the mean square displacement (MSD)
μ2(t)

μ2(t) =
∫

ρ(x, t)|x − 〈x〉|2 dnx, (7)

where 〈x〉 =
∫

ρ(x, t)xdnx and n denote the dimension.
It is well known that the MSD scales linearly with time
for unobstructed diffusion, while a sub-linear growth of
the MSD is often interpreted as a direct manifestation of
the microscopic competition for available space in crowded
media. As we shall prove in the following, this is an overly
simplistic picture, as more complex scenarios can easily be
obtained by direct integration of eqs. (5), where nonlinear
MSDs emerge only as transient regimes. We are particu-
larly interested in a specific class of initial condition, sym-
metric in the domain of definition, so that 〈x〉 = 0.

Let us first illustrate the one-dimensional case. At time
t = 0, the tagged species is localized at the origin, while
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Fig. 1: (Color online) Rescaled MSD of the tagged species as function of time for different crowding strengths in 1D (left panels)
and 2D (right panels). Time is expressed in units of τ1 = x2

0/2D (1D) and τ2 = r2
0/2D (2D).

the crowders populate a compact domain also centered
at the origin. In formulae, ρ(x, 0) = δ(x), where ρ(·) is
Dirac delta, and φ(x, 0) = φ0 [θ(x + x0) − θ(x − x0)], with
φ0 ∈ [0, 1] gauging the crowding strength (see inset in the
upper-left panel of fig. 1). From here on, as a further
simplification, we assume Dρ = Dφ = D.

Figure 1 shows the rescaled MSD of the tagged species
as a function of time as obtained by integrating eqs. (5) nu-
merically. At short times, the tagged species is immersed
in the almost uniform sea of surrounding crowders. Since
φ is approximately constant, the tagged particles diffuse
normally with an effective diffusion coefficient equal to
D(1−φ0). In the long-time limit, the crowders are evenly
spread over the one-dimensional support (which we imag-
ine closed but very large so as to neglect boundary effects).
Consequently, the density φ is small and its contribution
can be neglected in the Smoluchowski equation for the
evolution of ρ (zero force). Again, we recover normal dif-
fusion, but with a larger diffusion coefficient D. In short,
the rescaled MSD μ2/2Dt is close to (1 − φ0) at short
times and converges asymptotically to 1. The two regimes
of normal diffusion appear bridged by a super-diffusive
crossover.

It is remarkable, and to some extent counter-intuitive,
that a super-diffusive transient is found in a model ac-
counting for crowding in the absence of driving. In
fact, excluded-volume interactions among diffusing agents
are customarily believed to lead to slower-than-diffusive

spread of concentrations. We observe that the time dura-
tion of the super-diffusive transient increases quadratically
with x0, the width of the initial density of crowders.

Of course, the origin of the observed dynamics can be
traced back to the force term in the current of tagged par-
ticles. The effective force F (x, t) = −∂φ(x, t)/∂x induced
by the crowders acts as a systematic bias in the evolution
of the density ρ. Initially, ρ evolves freely, as φ(x, t) 	 φ0
for all values of x where ρ is non-zero. Then, after a time
of the order of τ ∝ x2

0, the support of ρ extends to a
domain where it is no longer possible to assume φ(x, t)
constant. In particular, ∂φ(x, t)/∂x < 0 for x > 0 and
F (x, t) < 0 when x < 0, which implies F (x, t) > 0, hence
a force-induced boost over the osmotic current. The mean-
field force, which stems from the microscopic competition
for space between crowders and tagged particles, pulls the
distribution ρ away from the origin, stretching the right
(left) tail towards the direction of positive (negative) x.
This leads to the super-diffusive transient shown in fig. 1.

A dual situation can be imagined yielding a sub-
diffusive transient. To this end, let us consider the crow-
ders to be initially distributed uniformly in a (large)
one-dimensional domain of size 2L. At time t = 0,
the crowders that populate a segment of width 2x0,
centered around the origin, are removed from the sys-
tem. This amounts to considering the initial distribution
φ(x, 0) = φ0 [1 − θ(x + x0) + θ(x − x0)] (see inset in the
bottom left panel of fig. 1). At short times, the
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diffusion of tagged particles is not affected by the crow-
ders. The rescaled MSD μ2/2Dt is hence approximately
equal to one and stays constant over a finite time win-
dow of order x2

0/D. At long times, the crowders will
have approximately relaxed to the uniform concentration
φL = φ0(1 − x0/L). Hence, the tagged particles will
find themselves diffusing in a uniform medium with a re-
duced diffusion coefficient D(1 − φL). The bottom panel
of fig. 1 confirms our reasoning, as the rescaled MSD
μ2/2Dt is seen to decrease monotonously, interpolating
between the initial plateau μ2/2Dt = 1 and the final
value μ2/2Dt = (1 − φL) < 1. In this case, one thus
observes a sub-diffusive crossover. In fact, in this case
∂φ(x, t)/∂x > 0, for x > 0, which implies F (x, t) < 0,
i.e. an effective force that opposes the osmotic thrust to
delocalization.

Let us now turn to considering the spreading of tagged
particles in two dimensions. To this end, we consider a
straightforward generalization of the initial conditions dis-
cussed above, as exemplified by the cartoons reported in
fig. 1 (right panels). Sub and super-diffusive transients
are again observed depending on the initial conditions, in
stringent analogy with what observed in one dimension.
Along the same lines, the observed behavior can be ra-
tionalized in terms of the effective force on the tagged
species caused by the crowders. In this case, the to-
tal radial current is Jr = −D{∇r[(1 − φ)ρ] + 2ρ∇rφ}.
Again, we see that an effective force in the radial direction
F = 2∇rφ arises when the tagged particles diffuse into re-
gions of changing density of crowders, yielding a current
boost (super-diffusive crossover) or a drop (sub-diffusive
crossover) depending on the initial conditions.

In the online supplemental material [57] we compare
the mean-field prediction with the results of Monte Carlo
simulations of the spreading of an initially localized tagged
particle in two dimensions. As it can be appreciated from
fig. 1 in the online supplemental material, the agreement
is excellent, confirming the soundness of the mean-field
approach.

Conclusion. – The study of molecular diffusion un-
der crowded conditions represents a particularly crucial
topic for its applications to cellular biology. At high den-
sity, particles diffusion is impeded and excluded-volume
effects may no longer be ignored. In this paper we
have considered the diffusive dynamics of an ensem-
ble of inert particles, the tagged species, immersed in
a crowded background of co-evolving agents. This is
a quite general scenario, which can be invoked to de-
scribe different experimental conditions. The tagged par-
ticles are assumed to be sufficiently diluted, a working
hypothesis that allows us to neglect their feedback on
the crowders. As a consequence, the continuum den-
sity of the tagged species is governed by a nonlinear
Smoluchowski equation, where the diffusion coefficients
and the external potential are self-consistently determined
by the time-dependent concentration of crowders.

In the background, the crowders are undisturbed and
undergo normal diffusion.

Working within this framework, we have shown that
transient sub-diffusive as well as super-diffusive regimes
can emerge, depending on the specific initial conditions.
When the crowders are uniformly dispersed in the con-
tainer, but removed from an isolated patch where the
tagged species is initially confined, a sub-diffusive scal-
ing for the mean square displacement is observed. This
crossover regime persists within a finite, possibly very long
time window. On the contrary, if the tagged agents are
trapped inside a uniform patch of crowders inside a much
larger, otherwise empty container, excluded-volume inter-
actions produce an effective force term in the current of
tagged particles, that accelerates their spread with respect
to the osmotic current. We observe that crowding is rather
often associated with anomalous slowing down of trans-
port, i.e. sub-diffusion. It is therefore surprising that the
dynamical interference between crowders and tagged par-
ticles may result in super-diffusive dynamics for certain
choices of the initial condition. The situations described
above can be easily recreated in laboratory experiments,
by initially confining the particles, including those whose
evolution is to be tracked, within a finite portion of the
available space.

In summary, our results prove that both super-diffusion
and sub-diffusion transients can occur as a result of
crowding in one and higher dimensions in the absence of
driving, depending on the initial conditions. These find-
ings strongly warn against the simplistic identification of
crowding with anomalous transport tout court.
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[48] Brzank A. and Schütz G. M., J. Stat. Mech.: Theory

Exp. (2007) P08028.
[49] Mon K. K. and Percus J. K., J. Chem. Phys., 119

(2003) 3343.
[50] Wei Q. H., Bechinger C. and Leiderer P., Science,

287 (2000) 625.
[51] Barkai E. and Silbey R., Phys. Rev. Lett., 102 (2009)

050602.
[52] Ryabov A. and Chvosta P., Phys. Rev. E, 89 (2014)

022132.
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