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Abstract
We report the results of molecular dynamics simulations of an off-lattice protein model
featuring a physical force-field and amino-acid sequence. We show that localized modes of
nonlinear origin, discrete breathers (DBs), emerge naturally as continuations of a subset of
high-frequency normal modes residing at specific sites dictated by the native fold. DBs are
time-periodic, space-localized vibrational modes that exist generically in nonlinear discrete
systems and are known for their resilience and ability to concentrate energy for long times. In
the case of the small β-barrel structure that we consider, DB-mediated localization occurs on
the turns connecting the strands. At high energies, DBs stabilize the structure by concentrating
energy on a few sites, while their collapse marks the onset of large-amplitude fluctuations of
the protein. Furthermore, we show how breathers develop as energy-accumulating centres
following perturbations even at distant locations, thus mediating efficient and irreversible
energy transfers. Remarkably, due to the presence of angular potentials, the breather induces a
local static distortion of the native fold. Altogether, the combination of these two nonlinear
effects may provide a ready means for remotely controlling local conformational changes in
proteins.

1. Introduction

Biopolymers such as proteins and nucleic acids fold into
complex three-dimensional structures, whose shape is strictly
connected to their biological function [1]. The conformation
of such molecules can change dynamically, in turn modulating
the function: for example, activation or inactivation of
enzymes relies on specific structural modifications occurring
at specific locations [2–4]. Typically, such changes are driven
by either mechanical forces or by converting chemical energy
into conformational rearrangements and thus into mechanical
work.

Proteins under physiological conditions are immersed
in a thermal bath and therefore exhibit random thermal
fluctuations. However, the biological function of a given
biopolymer is often closely related to a particular kind of
motion, typically involving large-scale vibrations [5–9] or the
fluctuations of entire hinge-domain units [10–12].

If collective, low-frequency modes have been traditionally
assumed to describe functional patterns, there is growing
evidence that high-frequency vibrations contain information
on protein stability [13]. Importantly, fast modes are
strongly localized, due to the geometric heterogeneity of
protein structures. Typically, such vibrations are localized at
extremely stiff regions, such as hinges, which in turn assume a
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prominent role in regulating protein stability and function, as
also suggested by experiments [4]. It is also known that active
sites of enzymes have a marked tendency to be located within
the stiffest segments of the structures [14, 15], which provides
a further intriguing motivation to investigate the connection
between localized vibrations and the peculiarities of protein
folds.

When nonlinear effects are considered, the connection
between the dynamics of localized modes and the details
of the scaffolds becomes more interesting. Recently, it
has been shown that high-frequency normal modes (NMs)
can be continued to nonlinear localized vibrations of high
energy termed discrete breathers (DBs) [14], also known
as intrinsic localized modes [16]. DBs are time-periodic,
spatially localized vibrations that emerge generically in many-
body nonlinear systems [17, 18]. Despite being localized
in space, DBs are collective modes. Therefore, in a DB
solution, all particles vibrate at the same frequency, which
is non-resonant with any of the NM frequencies. Also in view
of this, DBs are generally rather resilient to perturbations,
including thermal noise [17]. This means that energy can be
stored in a system through the excitation of a DB for longer
times compared to its period. Remarkably, DB-like vibrations
have been also observed experimentally in many systems
[18–22].

While DBs have been widely studied in spatially
homogeneous systems [18], the role played by spatial
inhomogeneity on their properties remains largely unknown.
However, the dynamical behaviour of DBs discovered so far in
protein models is remarkable. In the context of the nonlinear
network model (NNM), it has been shown that DBs emerge
spontaneously, upon surface cooling, at a few specific sites,
invariably within the stiffest regions [23]. Moreover, they
are also able to self-excite at a target site upon injecting
some energy at a different location, thus mediating high-yield
energy transfer events [24–26]. In a more simplified model,
it has been shown that DB excitation lowers the free-energy
barrier associated with a given enzyme-catalyzed reaction [27],
thus confirming the role of protein dynamics in reaction-rate
enhancement by enzymes highlighted by recent experiments
[28]. Furthermore, DBs have been shown to enhance noise-
free escape over a barrier for a chain of coupled nonlinear
oscillators [29].

However, DBs in proteins have only been found and
characterized so far in extremely simplified models, either
taking into account the three-dimensional folds but with no
heterogeneity in the force constants [14], or with slightly
more elaborate potentials but imposing crudely simplified
geometries [30–32]. Importantly, all studies performed so far
notably lacked (i) realistic inter-particle potentials and (ii) an
explicit account of the amino acid sequence. In this paper, we
make a step forward by investigating DB excitation and their
properties in a realistic off-lattice model of protein dynamics
with coarse-grained realistic interaction potentials and a three-
code amino-acid sequence.

The paper is organized as follows. In the following
section, we introduce our system and describe the model, along
with an account of our simulation and analysis protocols. In

section 3, we describe the emergence of DBs as the numerical
continuation of NMs and provide a thorough characterization
of their properties. Finally, we summarize our findings and
outline possible future directions prompted by our results.

2. Model and numerical methods

The 3D off-lattice protein model studied in this paper is a
modified version of the one initially introduced in [33] and
successively generalized to include a harmonic interaction
between next-neighbouring beads instead of rigid bonds [34].
This model has been studied to describe thermally-driven
folding and unfolding [33–40] and, more recently, to reproduce
mechanical manipulation experiments [41–46]. It consists of
a chain of L point-like monomers mimicking the residues of
a polypeptidic chain with an associated aminoacid sequence
coded by a three-letter alphabet: hydrophobic (B), polar
(P) and neutral (N). The intramolecular potential consists
of four terms: a stiff nearest-neighbour harmonic potential,
VH , intended to maintain the bond distance almost constant,
a three-body interaction VA, which accounts for the energy
associated with bond angles, a four-body interaction VD

corresponding to the dihedral angle potential and a long-range
Lennard–Jones (LJ) interaction, VLJ, acting on all pairs i, j

such that |i − j | > 2, namely

VH(ri,i+1) = α(ri,i+1 − r0)
2 (1)

VA(θi) = A cos(θi) + B cos(2θi) − V0 (2)

VD(ϕi, θi, θi+1) = Ci[1 − S(θi)S(θi+1) cos(ϕi)]

+ Di[1 − S(θi)S(θi+1) cos(3ϕi)] (3)

VLJ(ri,j ) = εi,j

(
1

r12
i,j

− ci,j

r6
i,j

)
. (4)

Here, ri,j is the distance between the ith and the j th monomer,
while θi and ϕi are the bond and dihedral angles at the ith
monomer, respectively. The parameters α and r0 = 1 fix
the strength and the equilibrium distance between consecutive
monomers along the backbone, respectively. The term VA(θi)

corresponds, up to the second order, to a harmonic term
kθ (θi − θ0)

2/2, where

A = −kθ

cos θ0

sin2 θ0
, B = kθ

4 sin2 θ0
,

V0 = A cos θ0 + B cos(2θ0),

with kθ = 20, θ0 = 5π/12 [47].
The dihedral-angle potential is characterized by three

minima for ϕ = 0 (associated with the so-called trans state)
and ϕ = ±2π/3 (corresponding to cis states). This term is
mainly responsible for the formation of secondary structures.
In particular, large values of the parameters Ci,Di favour the
formation of the trans state and therefore of β-sheets, while
when cis states prevail, α-helices are formed. The parameters
(Ci,Di) have been chosen as in [37], i.e. if two or more beads
among the four defining ϕ are neutral (N), then Ci = 0 and
Di = 0.2; in all the other cases, Ci = Di = 1.2. The
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Figure 1. NC of the protein model. Different colours represent the
three different types of beads: white (neutral), light blue (polar) and
sand (hydrophobic). Parameters are L = 46, α = 1000.

tapering function S(θi) = 1 − cos32(θi) has been introduced
in the expression of VD in order to smooth off the singularities
introduced by the derivatives of the dihedral angle cosines (for
an exact definition, see [44, 48]).

The LJ term VLJ describes the interactions with the
solvent, which depend on the nature of the interacting residues
as follows: if any of the two monomers is neutral, the potential
is repulsive cN,X = 0 and its energy scale is fixed by εN,X = 4;
for interactions between hydrophobic residues, cB,B = 1
and εB,B = 4; for any polar–polar or polar–hydrophobic
interaction, cP,P ≡ cP,B = −1 and εP,P ≡ εP,B = 8/3.

According to the above definitions, the Hamiltonian of
the system reads

H = K + V =
L∑

i=1

|�p(i)|2
2

+
L−1∑
i=1

VH (ri,i+1) +
L−1∑
i=2

VA(θi)

+
L−2∑
i=2

VD(ϕi, θi, θi+1) +
L−3∑
i=1

L∑
j=i+3

VLJ(rij ) (5)

where all monomers are assumed to have the same unitary
mass.

In this paper, we consider the following sequence of
L = 46 monomers: B9N3(PB)4N3B9N3(PB)5P . This
sequence has been widely analysed in the past for thermal
folding [33–40] as well as for mechanically induced unfolding
and refolding [41–44]. Here, we adopt the same potential
and parameters as in [37, 43, 44], except for a stiffer
harmonic constant α (50 � α � 1000). The simulations
reported henceforth refer to α = 1000, except when otherwise
indicated. We have verified that this choice does not affect
the thermodynamic properties of the model (i.e. the folding
temperature and the hydrophobic collapse temperature) found
in [44] for α = 50. This result could be expected, since the
harmonic bead–bead interaction introduced in [34] has been
already shown not to alter the folding properties of the original
Honeycutt–Thirumalai model [33].

With the above choice of parameters, the heteropolymer
exhibits a four-stranded β-barrel native configuration (NC),
described by the coordinates �qNC(i), i = 1, . . . , L, and
shown in figure 1. The NC corresponds to the absolute
minimum of the potential energy, whose value for α = 1000
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Figure 2. (a) Frequencies of the NMs, fk , indexed from
high-frequency modes. (b)–(e) Inverse of the participation ratio for
the corresponding eigenvectors for the increasing value of the
stiffness of the harmonic bonds. The triangles, squares, stars and
circles refer to α = 50, 100, 250 and 1000, respectively.

is VNC ≈ −48.94. The native structure is stabilized by the
attractive hydrophobic interactions among the B residues; in
particular, the first and third B9 strands, forming the core of the
NC, are parallel to each other and anti-parallel to the second
and fourth strand (PB)4 and (PB)5P . The latter are exposed
to the solvent due to the presence of polar residues. Overall,
the four strands are separated by stretches of three consecutive
neutral beads, forming three turns (see figure 1). These involve
the following sites: 10–12 (first turn), 21–23 (second turn) and
33–35 (third turn).

In the following, we report equilibrium microcanonical
results obtained by integrating Hamilton’s equations by means
of a fourth-order symplectic integrator [49] with a time-step
of 10−3 time units (ensuring a relative energy conservation of
∼10−7). In all cases, the initial coordinates of the beads were
taken to correspond to the NC (zero displacement).

2.1. NMs’ analysis

The properties of nonlinear modes in spatially and force-
heterogeneous systems strongly depend on the features of the
linear spectrum: in particular, non-resonant nonlinear modes
may emerge within inter-mode gaps and highly localized
vibrations can be associated with spectrum edges [14]. Hence,
a detailed understanding of the linear spectrum is an essential
pre-requisite for our analysis. More precisely, we wish to
investigate how the NM frequencies and eigenvectors depend
on the harmonic bond stiffness α.

The NM spectrum associated with the NC of our model
protein is composed by 3L − 6 non-zero frequencies {fk =√

λk/2π}, with λk being the eigenvalues of the Hessian
matrix [50]. The NM spectra are reported in figure 2(a) for
values of α ranging from 50 to 1000. The most important
observation for our purposes is that, for large enough values
of α, the spectrum splits into two sets separated by a gap.
The set of high-frequency modes (or bond-stretch modes)
comprises L − 1 modes associated with the stiffest force
constants, that is, bond (backbone) distortions along the chain,
while the set of low-frequency modes is composed by the
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0 20 40 60 80 100 120
mode index k

0

0.2

0.4

Δ
k,V

j

Figure 3. Relative variations of the energetic contributions due to a
perturbation of the NC along the direction of the kth NM, as given
by equation (6), for α = 1000. The circles, triangles, diamond and
stars correspond to 	k,VH

, 	k,VA
, 	k,VD

and 	k,VLJ , respectively.

remaining 2L − 5 modes that represent collective motions
of the beads, which are hardly affected by changes in α.
This interpretation can be substantiated by the following
analysis. We have first slightly perturbed the NC along the
direction of each eigenvector with an arbitrary amplitude ε, i.e.
�qNC(i) → �qk(i) = �qNC(i) + ε �e k(i). Then we have evaluated
the relative variations of the potential energy components Vj ,
j = H (harmonic), A (three-body angular), D (dihedral),
LJ (Lennard–Jones), with respect to their values in the NC
according to the following definition:

	k,Vj
= |Vj (�qk) − Vj (�qNC)|

|Vj (�qk)| . (6)

As is clear from figure 3, the perturbation along the first
45 eigenvectors is only restricted to the degrees of freedom
associated with bond deformation, i.e. to the harmonic
contribution to the potential energy.

Furthermore, the formation of the gap is accompanied by
a localization of the eigenvectors around the edges of the two
sets of modes facing the gap. In order to characterize the
degree of localization of the kth NM �e k(i) (i = 1, 2, . . . , L),
we measured its inverse participation ratio [51],

ξk =
L∑

i=1

|�e k(i)|4 (7)

where the eigenvectors are normalized to unity. For an
eigenvector localized on a single site, ξ � 1, while for a
completely delocalized state, ξ � 1/L. Therefore, the more
the eigenvector is localized, the larger is ξ . The inverse
participation ratio is plotted in figures 2(b)–(e) for different
values of α. In particular, for α = 50 all the eigenvectors
are extended (see figure 2(b)). However, by increasing α, the
degree of localization of NMs at the lower edge of the high-
frequency set (k = 43, 44, 45) and of the first three NMs at
the edge of the low-frequency set (k = 46, 47, 49) increases
(figures 2 (c)–(e)). A further increase in stiffness does not
only lead to an enhancement of localization in the proximity
of the gap, but also determines the localization of the first three

0 10 20 30 40
site index

-0.4

-0.2

0

0.2

0.4

e
x

e
y

e
z

-0.4

-0.2

0

0.2

0.4

0.6

k=1

k=45

Figure 4. Cartesian components of the eigenvectors �e 1 (top) and
�e 45 (bottom) corresponding to the frequencies at the upper and
lower edges of the bond-stretch modes, respectively, for α = 1000.

bond-stretch eigenvectors (k = 1, 2, 3), see figure 2(e). It is
also interesting to observe that for increasing α the first and
last three highest frequencies detach more and more from the
core of the set (see again figure 2(a)). In the following, we
will fix α = 1000.

We note that the most localized modes of the high-
frequency set are localized at the three turns of the NC, more
precisely, modes k = 1, 45 at the first turn (figure 4), NMs
k = 2, 44 at the third turn and modes k = 3, 43 at the second
one. The modes at both edges of the high-frequency set are
characterized by single or groups of neighbouring oscillators
in opposition of phase, as shown in figure 4. Qualitatively,
one may interpret them as impurity modes with the turns
acting as structural defects [52]. Interestingly, for a toy
model reproducing a single bent 2D chain with fixed curvature,
Archilla et al [31] also reported a pair of localized modes lying
at the set edge, with frequencies slightly detached from the core
of the set itself. Concerning k = 46, 47, 48 at the edge of the
low-frequency set, only the y-component appears localized
on the first and third β-strand B9, with the oscillators on
the first and third strands in opposition of phase. Since these
strands represent the core of the protein, we expect that the
excitation of these modes should cause large rearrangements
in the structure, leading to protein unfolding.

3. Emergence of DBs

In this section, we show how DBs can be created by exciting the
NC along the direction of certain NMs. In these simulations,
we initialize the beads’ positions in the NC and assign the
initial velocities proportional to the pattern of the selected
NM. The amplitudes of the kinetic energy perturbation K0 will
be henceforth measured in temperature units T = 2K0/3L,
where a unitary Boltzmann constant is assumed.

As we shall show, the excitation of a NM provides an
effective means of feeding energy to a DB. However, due to
specific selection rules matching spatial overlap between NMs
[62], a portion of the initial energy necessarily flows into a
number of other modes. Such background radiation competes

4
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Figure 5. (a) Total energy difference per site 	Etot(i) with i = 1, . . . , L, as a function of the time, for DB1 with an initial temperature
T = 0.63. (b) Kinetic site energy 〈Ekin(i)〉 averaged over a time span of the order of 50–100 breather’s periods in order to smooth out
fluctuations. From top to bottom DB1 with initial temperature T = 0.63, DB2 at T = 0.42 and DB3 at T = 0.63. Cooling parameters are
γ = 0.001, 	t = 0.02 (a) and 	t = 0.005 (b). The grey regions mark the protein turns (see the text).

with the nonlinear localization process. This in turn, as we
shall see in the following, accelerates the collapse of nonlinear
modes. In order to analyse DB properties, it proves useful to
get rid of background radiation through surface damping [23].
To this end, in the first part of the work we shall cool down the
velocities of the beads at the chain terminals. More precisely,
we integrate Hamilton’s equations of motion while rescaling,
at regular time intervals 	t , the momenta of the beads located
at the chain terminals i = 1, . . . , 4 and i = 43, . . . , 46), that
is,

�p(i) → �p′(i) = (1 − γ )�p(i) with γ � 1. (8)

Unless otherwise specified, the cooling parameters are fixed
to γ = 0.001 and 	t = 0.02. In section 3.1.1, a comparison
between the dynamics with and without cooling is presented.

In order to visualize the energy localization along the
chain highlighting the emergence of a DB, we recorded the
site kinetic energy Ekin(i) and the total excitation energy per
site 	Etot(i) = Ekin(i) + V (i) − VNC(i), where V (i) is the
potential energy contribution which can be associated with the
ith bead (see the appendix for the exact definition) and VNC(i)

is the corresponding value in the NC. The presence of a DB is
detected as a protracted concentration of energy on a limited
number of sites.

Our first important observation is that a stable DB can
be created by perturbing the NC along the direction of each
of the first 45 modes, or along a linear combination of them.
An example is reported in figure 5(a) for the excitation of the
lower edge mode of the high-frequency set. Remarkably, only
three distinct breathers were observed to emerge despite the
different directions of the employed perturbations. They are
located close to the three turns and we thus denote them as
DB1, DB2 and DB3, after the index of the corresponding turn
(figure 5(b)).

A peculiarity of such localized modes is that they feature
patterns that are not simply localized over a few adjacent sites.
Rather, they display non-negligible components localized
elsewhere in the chain. This can be appreciated by looking to

10
-2 1

E
DB

10
-4

10
-2

1

1-π
45

0 2000 4000
t

0.7

0.8

0.9

1.0

π
45

0 100 200t

0.8

1.0

π
45

(a) (b)

Figure 6. DB obtained as a continuation of NM k = 45. (a) Time
evolution of the projection π45 for T = 0.21. The inset shows a
close-up of the short-time dynamics. (b) 1 − π 45 as a function of the
total energy EDB. The dashed line represents a power law of the type
1 − π45 ∝ E

η
DB with η ≈ 0.88.

the average site kinetic energy reported in figure 5(b) for the
three breathers. The largest contribution to the DB total energy
comes indeed from the few sites located at the corresponding
turn. However, energy components two-orders of magnitude
smaller can be found over the other turns too. The origin
of these peculiar localization patterns can be found in the
three-dimensional structure of the protein, and it is induced by
the requirement of momentum conservation. In other words,
the special built-in momentum-conservation properties of NM
patterns are reproduced by DBs. As a matter of fact, it turns
out that a mode that is localized at a few sites conserves its
momentum by fractioning an equal and opposite amount of
momentum among a few other locations, instead of spreading
it over the whole structure. The interesting question arises
whether this is a generic feature of NMs in proteins or it is
rather the expression of the peculiar native fold considered
here.
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(a) (b)

Figure 7. Displacement field of DB1. Side (a) and front (b) views (only displacements larger than 1.0 have been shown as arrows). The
initial condition corresponds to T = 0.63.

The three DBs can be considered as nonlinear
continuations of three corresponding NMs, which are localized
at the same turns and whose vibration patterns can be
considered as precursors of the DB displacement fields. This
is confirmed by looking at the normalized projections πk of the
breathers’ velocity fields on the corresponding modes, defined
as

πk =
〈

L∑
i=1

�p(i)√
2K

· �ek(i)

〉
t

(9)

where the angular brackets denote the average over a window
of w time units (w = 4 in the following). Figure 6(a) shows
that, for DBs originating from NM 45, after an initial transient
π45 shows a stable trend with very small residual oscillations
around the mean value π45 evaluated in the last stage of the
simulation (3000 � time � 4000). The projections on the
other modes (not shown in the figure) are smaller than 0.015.
In figure 6(b), we plot 1 − π45 as a function of the DB total
energy, EDB = K + V − VNC, measured in the last stage. The
figure shows that 1−π45 vanishes when the energy is decreased
following a nearly linear trend.

These results confirm and generalize what was reported
in the context of the NNM, where gap-less breathers were
shown to arise as continuations of edge NMs [14]. Also in the
framework of the NNM, a few special regions were shown to
act as energy-accumulating centres upon generic excitation of
the system, exactly as we observed here [23].

Perturbations along all the bond-stretch modes of
amplitude T = 0.63 resulted in the excitation of DB1 or
DB3, while DB2 was observed only in a few cases. The
reason why DB2 seems somehow more difficult to excite is
likely to depend upon the peculiar structural neighbourhood
of the second turn. This region lies deeper inside the core of
the protein, where beads are more constrained, thus hindering
the DB oscillations (see also the sketch showing DB patterns
in figure 7).

The DB frequencies fDB1, fDB2 and fDB3 are computed
from the power spectrum of the displacements of the most
energetic bead within each DB. Typical DB spectra feature a
main peak and minor (several orders of magnitude smaller)
peaks signalling the residual excitation of a few NMs. The
measured frequencies are shown in figure 8 as functions of
the DB total energy EDB; all three DBs exhibit an almost
linear decrease characterized by the same dispersion relation
fDB(EDB) = fk(1 − EDB/ε), where fk is the frequency of the

0 20 40 60 80E0
0

20

40

E
DB

0 10 20 30
E

DB
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8.5
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f
DB

f
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f
DB2

f
DB3

f
45

f
43

f
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Figure 8. DBs originating from k = 45 (DB1), k = 43 (DB2) and
k = 44 (DB3). Frequencies of DBs as a function of their total
energy EDB. The horizontal dashed lines flag the frequencies of the
corresponding NMs. The inset displays EDB as a function of the
initial energy E0 = K0 − VNC for the three DBs: the circles,
triangles and squares refer to DB1, DB2 and DB3, respectively. The
dashed line marks the full-efficiency regime EDB = E0.

NM from which the DB originates and ε ≈ 250. We note that
ε could be in principle calculated through Lindstedt–Poincaré
perturbation theory as done, for example, in [14].

The decrease of the DB frequency with the energy EDB

suggests that the relevant nonlinearity is of the soft type [17].6

This explains why the presence of a gap is necessary for the
formation of localized nonlinear modes. Indeed, we were
unable to excite DBs in cases where the spectrum is gap less.

The frequencies fDB1 and fDB3 originate from the bottom
of the bond-stretch modes (f44 ≈ f45) and enter the gap for
arbitrary small energies. In contrast, fDB2 lies between f 43

and f 44 for small energies, staying manifestly non-resonant
with the neighbouring high-frequency modes. This behaviour
is reminiscent of intra-band DBs predicted by Kopidakis and
Aubry in nonlinear disordered chains [53, 54] and found
analytically in NNMs of proteins [14]. For larger energies,
the frequency decreases further and also these DBs eventually
enter the gap.

6 Following standard convention in the domain of nonlinear physics, hard and
soft types refer here to the exponent of the leading power-law nonlinearity in
the effective potential term responsible for the emergence of the DB. Hard
refers to an even exponent, while soft to an odd exponent. Soft (resp. hard)
nonlinearities are associated with a decrease (resp. increase) of the DB
frequency for increasing energy (EDB).
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Figure 9. (a) Total site energies for DB1 and (b) the different
energy contributions at site i = 12 versus time (	Ej = Vj − VNC(j)
where j = H, A, the dihedral and LJ contributions being
negligible). Parameters are T = 0.63, γ = 0.001, 	t = 0.005.

It is instructive to consider whether a given DB can be
created with arbitrary energy by exciting a given NM. The
inset in figure 8 shows the relation between the initial total
energy E0 = K0 − VNC and the energy that is found stored in
the DB. The ratio of the two values can be interpreted as an
estimate of transfer efficiency, i.e. the fraction of the initial
excitation energy channelled into the DB and consequently
pinned down at a very specific location. Remarkably, we see
that all the three DBs are characterized by a nearly unitary
efficiency, up to a point where the curve saturates and then
starts bending down. The transfer of energy from the NM to
the DB is nearly optimal up to initial energies of the order
E0 = K0 − VNC ≈ 30. This indicates the existence of a sort of
maximal ‘DB capacity’—if the NM is fed with larger energies,
the excess energy cannot be further injected in a localized mode
and it is necessarily spread across the whole structure.

Finally, no DB could be excited by perturbing the structure
along NMs belonging to the low-frequency set. This is most
likely a consequence of the soft nonlinearity. Moreover, we
were also unable to excite DBs through arbitrary localized
perturbations of the NC. Indeed, initial conditions of the latter
type have non-zero components over many NMs, including
the ones in the low-frequency set.

3.1. DBs originating from the lower edge mode of the
high-frequency set

In this section, we present a more detailed analysis of the
properties of DB1 originating from the bottom bond-stretch
mode k = 45. This breather is localized on the first turn,
from site 10 to site 14, as is shown in figure 5. The energy
redistribution dynamics within the DB can be appreciated
from figure 9(a). In particular, it is clear that the two site
pairs (12,13) and (11,14) exhibit approximately phase-locked
oscillations, while the two pairs are anti-phase locked among
them. This is another illustration of the fact that the DB
exchanges little or no energy with the surrounding.

It is instructive to analyse the different contributions to
the total energies when the DB is present, in order to quantify
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Figure 10. Difference between the average values of the bond–bond
angles θi when the DB1 is present and the corresponding
equilibrium values (in the NC), θi,NC, when the total energy of DB1
is EDB = 34.6. The inset shows a close-up of the kink region for
increasing energies: the (red) squares, (blue) triangles, (green)
diamonds and (black) circles refer to EDB = 26.3, 31.68,
33.61 and 34.6, respectively.
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Figure 11. (a) Projection of the DB1 velocity field on the
k = 45 NM, π45, as a function of the time for increasing values of
the initial energy. From the top to the bottom curve, T = 0.42,
0.63, 0.84 (non-dissipative dynamics). (b) Kabsch distance δK for
T = 0.63 (non-dissipative dynamics). The vertical arrows mark the
time at which the DB collapses. (c) Comparison of π45 for
dissipative (upper red line), and non-dissipative (lower black line)
dynamics for T = 0.63.

to what extent the different degrees of freedom participate to
the breather dynamics. As can be seen from figure 9(b), at
one of the most energetic sites, i = 12, the DB vibration
involves essentially the backbone bonds (≈84 %) with a small
contribution coming from the angular terms (≈13 %), while
the dihedral and LJ contributions are negligible. The observed
ratios between the different energetic contributions do not
change by varying the initial energy. We observe the same
behaviour for all the sites in the interval (11–13).

A closer inspection of figure 9(b) shows that the harmonic
bond component oscillates at frequencies 2fDB but also has a
sizeable component at fDB. This is due to the soft nonlinearity
which is known to induce a DC component in the displacement
patterns of localized modes [18, 55]. To understand this in
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Figure 12. Time evolution of total site energies starting from
excitation of the upper-edge modes of the high-frequency set: (a)
emergence of DB1 from �e1, T = 0.63 and (b) of DB3 from �e2,
T = 0.84.

a simple way, let us consider two bond lengths along the
backbone at site n , r1 ≡ rn−1,n and r2 ≡ rn,n+1. We may write
their evolution as an oscillating part plus a static distortion of
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Figure 13. Long-range energy transfer starting from �e3 at T = 0.63. (a) Time evolution of total site energies; (b) projections of the DB
velocity field on three NMs as functions of the time.

the bond lengths,

r1(t) = A1 sin(ωt) + 〈r1〉
r2(t) = A2 sin(ωt) + 〈r2〉

where ω = 2πfDB and the angular brackets represent a time
average. Using the definition reported in the appendix, it can
be shown that the contribution of the two bonds to the local
harmonic energy is

VH(n) ∝
(
A2

1 + A2
2

)
2

sin2(ωt)

+ [A1(〈r1〉 − r0) + A2(〈r2〉 − r0)] sin(ωt) (10)

+
(〈r1〉 − r0)

2 + (〈r2〉 − r0)
2

2
.

Thus, the presence of a component at frequency ω implies that
〈r1〉 and/or 〈r2〉 must be different from their equilibrium value
r0. Accordingly, we conclude that the emergence of a DB
also causes a stable structural distortion of the protein. Given
that A1 ≈ A2 ≈ 0.1 (see again figure 9), also tiny differences
〈ri〉 − r0 ≈ 10−3, as we recorded in our simulations, are able
to affect the local bond energies.

Much more prominent is the distortion effect caused
by the soft-nonlinearity in the angular degrees of freedom.
In particular, figure 10 reveals that the breather is also
characterized by a kink-shaped angular distortion. The kink’s
amplitude increases with the total energy stored in the breather
(see the inset in figure 10).

3.1.1. DB collapse and the effect of cooling. In the case
where no cooling is applied (γ = 0), the DBs have a
finite lifetime. To illustrate this, in figure 11(a) we report
the time evolution of the projection π45 of the DB1, obtained
as a continuation of the lower edge mode (k = 45) of the high-
frequency set. The sudden drop of π45 signals the collapse
of the excitation, accompanied by a rapid redistribution of
energy over all the NMs (equipartition). The typical collapse
time increases upon decreasing the initial energy (compare
the three curves in figure 11(a)). This is similar to what was
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demonstrated for one-dimensional chains where the time to
equipartition scales as an inverse power of the energy density
[56, 57].

The effect of the collapse of a DB on the protein structure
can be appreciated by considering the Kabsch distance δK ,
which is a commonly used measure of the structural distance
between two protein configurations [58]. In particular,
figure 11(b) shows how the distance δK of the protein structure
from the NC evolves in time in the presence of a DB of type
DB1. As long as the DB is present, δK fluctuates around a
relatively small value (δK � 0.1), meaning that the protein
structure does not deviate appreciably from the NC. In fact,
the static distortion effect illustrated above only concerns a
small region of the fold. On the other hand, when the DB
collapses, δK starts to fluctuate wildly around a substantially
larger value (δK ≈ 0.35), thus signalling the occurrence of
important conformational rearrangements.

The DB lifetime gets substantially increased by removing
the background vibrations through cooling. Figure 11(c)
clearly illustrates how dissipation renders the DB stable by
quickly eliminating background radiation. The stabilizing role
of the boundary cooling method is well documented [23, 59,
60] and our results confirm that it can be used conveniently
also for such a complex structure.

3.2. Excitation of highest energy edge NMs: long-range
energy transfer

The excitation of NMs at the upper edge of the spectrum gives
rise to quite peculiar phenomena. As a first example, figure 12
depicts the emergence of a DB obtained by exciting the first
two highest-frequency NMs, i.e. �e1, which is localized at sites
10–12 and �e2, which is localized at sites 34–36. In the first
stage, the energy quickly spreads and remains confined in the
vicinity of the perturbed location. After some time, a DB self-
localizes, harvesting energy from the background and pinning
it in the same region. The DBs obtained are again DB1 and
DB3. This is reasonable in view of the similar spatial structure
of �e1, �e2 and DB1, DB3, respectively (see again figure 4).
Moreover, we found that the frequencies of DBs originating
from �e1 lie on the same frequency-energy curve as the breather
originating from NM 45, shown in figure 8.

Remarkably, we have also observed that the excitation of
an edge mode may result in a long-range energy transfer event.
An illustration of this phenomenon is given in figure 13(a), for
the excitation of the third highest-frequency NM. The NM �e3

is localized at sites 22–27. Immediately after the perturbation,
the DB appears localized in the same region, but seems to
collapse rapidly afterwards, spreading its energy evenly across
the structure. However, after a considerable time span, another
DB emerges at a different location, namely at sites 11–13. This
is the region where the lower-edge mode of the high-frequency
set (k = 45) is localized. A substantial part of the initial
energy has been transferred and pinned down irreversibly at
the other end of the structure, covering the distance from a
turn to the following one (see again the sketch depicting the
protein structure).

Such an energy transfer phenomenon can be rationalized
by analysing the projections of the DB velocity field on the
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Figure 14. Evolution of total site energies starting from the
excitation of the bond-stretch modes in the core of the set:
(a) emergence of DB1 from �e5, T = 0.63 and (b) the multibreather
solution localized on the first and third turn starting from �e33 at
T = 0.63; (c) BB following the excitation of mode �e36, T = 0.84
(non-dissipative dynamics).

NMs during the time evolution of the perturbation. From
figure 13(b) one can clearly see that the initially excited mode
is quickly emptied of its initial energy, which gradually flows
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into other two modes. As it shows, asymptotically the two
target modes almost describe the entirety (π44 + π45 ≈ 1)
of the DB, which is in fact localized at the turn opposite to
the excited one, where the two target NMs are also localized.
The reverse process is forbidden since the DB frequency is no
longer resonating with the original mode. We remark that this
phenomenon, although evocative of resonant energy transfer
among a few selected NMs in proteins, is a one-way transfer, as
the DB will retain the transferred energy for times comparable
to its lifetime [61, 62].

3.3. Excitation of inner NMs

NMs in the core of the high-frequency set are generally
characterized by a low level of localization, as one can see
in figures 2(b)–(e). As a result, when one of such modes
is excited, we observe a complex localization pattern, which
alternates site-hopping and energy-pinning stages to phases
where the energy is more evenly distributed. After a certain
time, a stable DB emerges, focusing the energy at one of the
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Figure 16. Transient multibreather-like mode, localized on the protein boundary and on the third turn, obtained following the excitation of
the k = 36 NM at T = 0.42 (non-dissipative dynamics). (a) Spacetime plot of the total site energies. (b) Normalized projections of the DB
velocity field on the NMs as a function of the time.

turns. A typical realization of this scenario is illustrated in
figure 14(a) for the excitation of the fifth highest-frequency
mode.

A different phenomenology is observed when we excite
a mode lying deeper within the set. It may occur that the
excitation energy remains trapped in two DBs localized on
two different turns, realizing a state which is reminiscent of
multibreather states observed in nonlinear disordered systems
[53, 54]. A realization of this phenomenon for NM 33
is reported in figure 14(b). In particular, we note that
starting from NM 33 and changing the initial energy, we
can obtain different solutions. For example, for T = 0.21
we obtain a solution localized on the first and second turn,
while the multibreather localizes on the first and third ones
for T = 0.63.

A very peculiar localized solution develops through the
excitation of NM k = 36, whose pattern is localized in the
protein’s tail. As is shown in figure 14(c), the energy remains
almost entirely confined to the edge sites 44–46, with smaller,
but non-negligible, amounts of energy also involving the turns,
figure 15(a). We term such excitations boundary breathers
(BB). As in the case of DB1, DB2 and DB3, the frequency
of oscillation of the BB also lies in the gap (fBB = 7.739 for
EDB = 34.75). At variance with DB1, DB2, DB3, the energy of
BBs has not only harmonic and angular contributions but also
a sizeable LJ one, resulting from a non-negligible interaction
between the first and last beads, as well as the second turn
region of the chain which are relatively close in the NC. We
note that nonlinear surface states of different kinds are known
and studied in many contexts [18, 63].

Eventually, the BBs hop to one of the three breathers
described above. Figure 16 illustrates an example of this
process, where the BB transfers its energy to DB3, as
confirmed by the time evolution of the NM projections
shown in figure 15(b). Asymptotically, we see that the main
projection is π36, while at t ≈ 2.75 × 103 an abrupt transition
occurs and the leading projection becomes π44, signalling
the energy transfer to DB3 (corresponding to NM k = 44)
localized at the third turn.
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While at high energies, i.e. T = 0.84, 1.05, the lifetime
of BBs before a transition to DB3 takes place is short,
at lower energies, we observe the formation of a transient
multibreather-like state with a progressive transfer of energy
from BB to DB3. One of such examples is depicted in
figure 16. Decreasing the excitation energy further, BBs are
no longer observable.

We note that the end of the protein can be considered as
a defect/discontinuity in the chain, since it is a free end that
interrupts the chain itself. Therefore, BBs can be considered
as akin to localized modes emerging in other contexts close to
point defects. Furthermore, we were unable to excite stable
BBs localized on the first beads of the sequence, despite NMs
with significative components on that terminal do exist. A
possible explanation of this apparently contradictory result
is the fact that the first strand is part of the protein core.
Therefore, it is a much more rigid structure with respect to
the last strand, which instead is exposed to the solvent and can
oscillate more freely.

4. Conclusions

In this paper, we have reported the existence of discrete
breathers (DBs) in an off-lattice model of proteins with realistic
interaction potentials and a three-code amino-acid sequence.
To our knowledge, this is the first time that this class of
peculiar vibrational modes are found in such a complex and
heterogeneous dynamical system. In particular, we have
shown that, due to the softness of the leading nonlinearity,
a necessary condition for DB existence is that the linear
spectrum exhibits a gap (at least one), as it is indeed the case
in all proteins.

For the particular structure analysed in this work, we
have identified three families of DBs, each one localized
on a different turn of the native fold. The largest fraction
of the energy of a DB typically resides on a few sites and
involves essentially harmonic and angular degrees of freedom,
while dihedral and LJ interactions between distant sites are
practically not excited.

We have obtained DBs as continuations of the lower edge
NMs of the bond-stretch set. Quite generically, however, we
have shown that the members of the three different breather
families can be excited by feeding energy to any of the NMs
lying in the high-frequency set. Remarkably, the excitation
of a DB obtained by feeding energy to a given NM is an
extremely efficient process. This means that there is an
extended range of initial energies that can be fed to the system
and immediately channelled almost entirely into a breather,
which is permanently localized at a very specific location.

Our results prove that DBs have a stabilizing effect on
the protein kinetics. In fact, a broad class of perturbations
of the native fold result in the formation of a DB, that is,
a stable and highly localized vibration, while on the other
hand long-range contacts are almost devoid of energy. This
enhances the structural stability of the protein. To this regard, it
would be interesting to connect the structure-dynamics relation
underlying DB formation to the well-conserved patterns of
nucleation sites along folding pathways [64].

We also discovered peculiar DB-assisted long-range
energy transfer phenomena, whereby energy is channelled
to a distant region of the structure away from the excitation
site. At variance with ordinary energy exchange between
resonant NMs [62], this is a one-way process, meaning that
the transferred energy is never released back to the starting
location. In particular, this effect may be of importance in
the functioning of allosteric proteins [6, 65, 66] and surely
deserves further investigation.

Our work has highlighted nontrivial correlations between
structural and dynamical features of protein folds. In a simple
β-barrel, as the one here considered, localization occurs on
loops. Concerning more complex structures, our results
raise the important question whether more complex structural
selection rules exist driving nonlinear energy localization and
long-range targeted transfer.

The model examined in this paper exhibits a few
competing β-barrel minima of the potential energy landscape
[34]. For future work, it could be worth analysing the
emergence of DBs in models without frustration, better suited
to reproduce naturally occurring energy landscapes, such as
native-centric models or modified versions of the present
model containing salt bridges (see [67, 68]).
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Appendix. Single-site energy

Since each potential energy term represents a many-body
interaction, we have estimated the single-site potential energies
V (i) by equally redistributing the energy to each site involved
in the different terms and then by summing up all these
contributions.

In particular, the harmonic term is a two-body potential
involving nearby sites; therefore, the contribution is estimated
as follows:

VH(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i+1∑
k=i

VH (rk−1,k)/2 for i = 2, L − 1

VH(r1,2)/2 for i = 1

VH(rL−1,L)/2 for i = L

.
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The angular term is a three-body interaction involving
three consecutive sites, and therefore

VA(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i+1∑
k=i−1

VA(θk)/3 for i = 3, L − 2

VA(θ2)/3 for i = 1
3∑

k=2

VA(θk)/3 for i = 2

L−1∑
k=L−2

VA(θk)/3 for i = L − 1

VA(θL−1)/3 for i = L

.

The dihedral angle ϕ is the angle between two
nearby planes each containing three consecutive sites, the
corresponding potential term is therefore a four-body term
and the single-site contribution can be evaluated as follows:

VD(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i+1∑
k=i−2

VD(ϕk, θk, θk+1)/4 for i = 4, L − 3

VD(ϕ2, θ2, θ3)/4 for i = 1
3∑

k=2

VD(ϕk, θk, θk+1)/4 for i = 2

4∑
k=2

VD(ϕk, θk, θk+1)/4 for i = 3

L−2∑
k=L−4

VD(ϕk, θk, θk+1)/4 for i = L − 2

L−2∑
k=L−3

VD(ϕk, θk, θk+1)/4 for i = L − 1

VD(ϕL−2, θL−2, θL−1)/4 for i = L

.

The LJ term is a two-body interaction involving sites
separated by more than two bonds along the chain

VLJ(i) =
∑

j

VLJ(rij )/2 for |i − j | > 2 .

The total site potential energies read

V (i) = VH(i) + VA(i) + VD(i) + VLJ(i).
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