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Dynamics of antibodies from cryo-electron tomography
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Abstract

The issue of protein dynamics and its implications in the biological function of proteins are arousing greater and greater interest in

molecular biology. In cryo-electron tomography experiments one takes several snapshots of a given biological macromolecule. In principle, a

large enough collection of snapshots may then be used to calculate its equilibrium configuration in terms of the experimentally accessible

degrees of freedom, and hence estimate its potential energy. Consequently, one could analyze the biological functions of biomolecules by

directly accessing their dynamics.

In this work, we analyze the results of cryo-electron tomography experiments on monoclonal murine IgG2a antibodies. With the aid of a

novel software for image processing, we measure the equilibrium distribution of the angles which describe the configuration of the molecule.

This helps us shed some critical light on recent results from X-ray crystallography. We then build a model of the antibody dynamics, which

enables us to use the measured angular distribution in order to derive an explicit expression of the IgG potential energy.

Finally, as a preliminary application of our results, we investigate the dynamical effects in the rate of formation of the antigen–antibody

encounter complex. In particular, we suggest that the dynamics of antibodies operates in the direction of decreasing anticooperativity of the

two antigen binding arms.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

It is now recognized that proteins are flexible dynamical

systems, and exist in populations of different structures,

rather then in a single rigid conformation. In fact, collective

motions of domains greatly enhance proteins’ ability to bind

other molecules [1].

Antibodies link antigens and immunological effectors via

highly mobile linkers that connect the hyper-variable

antigen-binding sites to the effector domain (Fc). Remark-

ably, antibodies possess the structural flexibility to adapt to

a huge variety of antigen shapes and sizes, while sharing
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similar conserved Fc regions that interact with a limited

number of effector systems, such as Fc receptors and

complement [2,3].

The antibody immunoglobulin G (IgG) is a glycoprotein

with a molecular weight of 150 kDa, which binds to foreign

agents, such as proteins on viruses’ capsids, by subunits

named fragment antigen binding arms (known as bFabsQ
arms). Hinges connect two Fab arms to a stem that

crystallizes easily (bFcQ stem), so that each antibody can

bind to two antigens or to a single antigen with increased

strength. It is known that the arms of the uncomplexed IgGs

are highly flexible, with a wide range of variability of the

reported values of Fab–Fab and Fab–Fc angles [4].

AFM spectroscopy, two-dimensional electron micro-

scopy (EM) and physiochemical experiments also support

a hypothesis of inherent flexibility of the IgG molecules

[5,4,6]. However, there exists a great variability in the
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literature as to the average values of crucial structural

parameters such as Fab–Fab and Fab–Fc angles [7]. Large-

scale conformational differences have also been detected

among three complete structures of intact and functional

antibodies (subclasses human IgG1, murine IgG1 and

murine IgG2a) solved by X-ray crystallography [8,7]. This

is partly due to the high fragility of the IgG molecules and

more generally to the limitations intrinsic to experimental

techniques such as electron microscopy and X-ray analysis.

As a matter of fact, electron micrographs are two-dimen-

sional representations and necessarily present projected

images, making interpretation in three dimensions very

difficult. On the other hand, X-ray crystallography suffers

from the inherent ambiguities associated with unpredict-

ability of differential packing environments within the

crystals.

Electron tomography (ET) is a general method for three-

dimensional reconstruction of individual objects from a tilt

series of electron microscope images of a sample quenched

to the temperature of liquid nitrogen [9–12]. As a result, one

gets a gallery of instantaneous snapshots of the system. The

ET technique can be applied to any transparent object [13–

15] and it is not restricted to symmetrical or regularly

arranged systems [16–18] or to objects with a preferred

orientation on a support grid [19,20].

Recently, data from Cryo-ET of individual IgG molecules

in solution have been analyzed with the aid of the powerful

de-noising algorithm COMET, and confirmed that the

position of the Fab arms relative to the Fc stem may greatly

differ from one molecule to another [10]. Remarkably, it has

been shown how the equilibrium statistics of the principal

structural parameters of an IgG molecule may be recon-

structed from the same set of experiments, and used as the

starting point for studying the dynamics of an individual

immunoglobulin in solution [21].

In this paper, we review the results presented in [21].

Additionally, we present a first application of those results

to the study of the formation of an antigen–antibody

encounter complex. The presentation of our work is

organized as follows. In Section 2 we introduce the

mechanical model and briefly review the statistical analysis

of the experimental tomograms which led us to an explicit

expression of the IgG internal potential energy. In Section 3

we study the antigen–antibody encounter by incorporating

the IgG dynamics into a simple model of diffusion-driven

reaction. In Section 4 we briefly summarize our findings.
2. A mechanical model of antibodies: from a collection of

tomograms to the dynamics

The phase space of a system with n degrees of freedom

can be parameterized by a vector (q, p) of n generalized

coordinates ( q1,. . .,qn) and n conjugate momenta ( p1,. . .,pn),

containing the information about the system configuration

and velocity, respectively. When the system is in equili-
brium with a thermal bath at temperature T any point in the

phase space can be occupied with a probability density

q q; pð Þ ¼ 1

Z Tð Þ exp � K q; pð Þ þ V qð Þ
kBT

�
;

�
ð1Þ

where K is the kinetic energy, V the system potential, kB the

Boltzmann constant and Z(T) a temperature dependent

normalization factor.

If the equilibrium probability density of a system is

made accessible experimentally, it is in principle possible

to invert Eq. (1) in order to extract information regarding

the dynamical properties of the system. This is the case

in Cryo-ET experiments, where a direct measure of the

equilibrium distribution in the configuration space can be

performed through a statistical analysis of an ensemble

of different snapshots of the system. The equilibrium

probability distribution in the configuration space results

from the integration of Eq. (1) over the conjugate

momenta pi:

q qð Þ ¼ 1

Z Tð Þ exp � V qð Þ
kBT

�
S qð Þ;

�
ð2Þ

where

S qð Þ ¼
Z

exp � K q; pð Þ
kBT

�
dp1N dpn:

�
ð3Þ

The function S(q) is the kinetic contribution to the

equilibrium probability density and must be computed

analytically. Once this is done, we can calculate the

potential V as:

V qð Þ ¼ � kBT ln
q qð Þ
S qð Þ

�
þ V0 Tð Þ:

�
ð4Þ

where V0(T) is a constant, which only depends on

temperature. The temperature T in Eq. (4) characterizes

the thermal equilibrium which describes the ensemble of

individual snapshots. For any purpose, it is safe to

assume 228 KbTb300 K [21].

In our model, we consider the immunoglobulin

molecule to be composed of three rigid rods freely

jointed together in a common point (Fig. 1): two (Fab)

arms of equal mass M and length L and the (Fc) stem

(pictorially, it may be visualized as a lobster). We choose

to parameterize the configurational space of the system

with the angles (/1,/2,h). In this case, the mathematical

derivation of the Hamiltonian is straightforward and we

get [21]:

V /1;/2; hð Þ ¼ � kBT ln
q /1;/2; hð Þ
sin/1sin/2

�
;

�
ð5Þ

where we have dropped the temperature-dependent

additive constant.

The statistical distribution of the internal coordinates

may be obtained directly from the three-dimensional

reconstructions of individual molecules in solution. A
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Fig. 1. Coarse-grained model of an immunoglobulin molecule. The two Fab

arms and the Fc are replaced by rigid rods, freely jointed in the hinge

region. The relative position of the Fab1,2–Fc arms is described by the two

angles /i and h i (i=1,2), in the Fabi–Fc planes and in the plane

perpendicular to Fc, respectively. The angle n measures the Fab–Fab

separation in the Fab–Fab plane. Copyright (2004) National Academy of

Sciences, USA.
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typical gallery of individual, COMET-refined IgG struc-

tures is shown in Fig. 2 (for the details of the experiment

and of the reconstruction technique see [10]).

The analysis of the reconstructed volumes allowed us to

isolate 42 reliable structures of individual molecules. For

each molecule, we measured the Fab–Fab angle n and the

two Fab–Fc angles /1, /2, by approximating the three

domains with ellipsoidal envelopes and measuring the

angles formed by their major axes. The angle h may then

be obtained by straightforward trigonometry. Unfortunately,

we have enough statistics to only access the coordinate

space /1, /2, h one angle at a time. Furthermore, we are
Fig. 2. Gallery of individual IgG molecules, visualized by volume rendering

in three dimensions. Three different views of each tomograms are

displayed. The box is 50�40�50 pixels (1 pixel=5.24 A). Copyright

(2004) National Academy of Sciences, USA.
not able to distinguish between the two Fab domains.

Consequently, each molecule contributes two values to

the population of the Fab–Fc / angles. Accordingly, we

assume that the density q (/1,/2,h) can be factorized as

the product of three one-dimensional normalized func-

tions, namely q(/1,/2,h)=q1(/1)q1(/2)q2(h).
We show in Fig. 3 the normalized histogram of the

experimental data q1(/) with /1=/2=/(upper panel), and

the normalized experimental histogram q2(h) (lower panel).
We find that the histogram of the Fab–Fc angles can be

satisfactorily fitted with a uniform distribution in the

interval [/min, /max], with /minc158 and /maxc127:68,
namely

q1 /ð Þ ¼
1

/max�/min
/minb/b/max

0 otherwise
:

�
ð6Þ

The h angles are measured in the interval [0, 1808], since we
cannot systematically identify the front and back broad sides

of the Fc domain in the reconstructed data. Therefore, in

order to extend the distribution domain to the interval [1808,
3608], we perform a reflection of the data around h=1808.
The experimental data show then clearly a symmetric bell-

shaped function, peaked at h=1808. This means that the

configurations with both Fabs lying in the plane passing

through the Fc stem are the most probable ones. We find

that a simple Lorentzian profile truncated in [0, 3608] fits
the data extremely well:

q2 hð Þ ¼ 1

2rhatan h0=rhð Þ

�
1þ

�
h � h0

rh

�2 ��1

ð7Þ

where h0=1808, and rh is the only floating parameter. From

the fit we find rhc91.68.
We are now able to compute the effective potential

energy V (/1, /2, h). By using the factorization hypothesis,
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Fig. 3. Upper panel: normalized histogram of the experimental / angles and

plot of the square function (6) with /minc158 and /maxc127.68. Lower
panel: normalized histogram of the experimental h angles and plot of the

truncated Lorentzian (7) with rhc91.68.
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and expressions (6) and (7), Eq. (5) can be written as a sum

of three terms, V(/1, /2, h)=V1(/1)+V1(/2)+V2(h), where

V1 /ð Þ ¼ kBT ln sin/ð Þ½ �

V2 hð Þ ¼ kBT ln

"
1þ

�
h � h0

rh

�2
#
: ð8Þ

The interested reader can find an extensive discussion of

the above potential energy in [21], along with a critical view

on the difficult task of determining the value of the

temperature T. Here, we shall rather focus on the implica-

tions of the potential energies (Eq. (8)) on the average

conformations of an immunoglobulin, with emphasis on the

peculiar interconnections among dynamics, conformation

and encounter efficiency.

We have found that the two Fab arms most likely lie

within the same plane as the Fc, although with substantial

statistical weight assigned to off-plane configurations.

The statistical bias toward planar Y-like configurations

introduced by the potential energies (Eq. (8)), albeit small, is

enough to determine an average Fab–Fab angular separation

10% greater than in the unbiased case, i.e. when

V1(/)=V2(h)=constant. The latter scenario would describe

a pair of free Fabs, and we take it here as reference to

investigate the role of the potential energies V1(/) and

V2(h). In this case one would have q2(h)=constant,
q1(/)~sin/ (see Eq. (5) and (8)). This effect is represented

in Fig. 4, where we show the experimental histogram

q3(n) of the Fab–Fab angles n, along with numerical

predictions of the biased and unbiased scenarios. That is,

histograms from populations of random n angles gen-

erated from the corresponding distributions q1(/) and

q2(h). It is obvious that the unbiased scenario does not

capture the statistics of Fab–Fab angles, while the one-

dimensional distributions (6) and (7) seem to nicely

reconstruct the experimental histogram q3(n). Incidentally,
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Fig. 4. Statistical distribution of the Fab–Fab angles. Thin solid line with

symbols: experimental histogram. Thick solid line: simulation according to

the experimental distributions of the h and k angles. Thick dashed line:

unbiased scenario (see text).
we observe that the latter conclusion can be considered

an a posteriori validation of our factorization hypothesis

q(/1, /2, h)=q1(/1)q1(/2)q2(h). From the experiments

we gethnic1048F68. Conversely, free motion of the

Fabs results in hnic91.78.
3. Anticooperativity in the encounter of antigens and

antibodies: a dynamical view

As a first application of our results, we wish to study the

rate of encounter between an antibody and an antigen of

given size.

Nature has provided antigen seekers with two binding

arms. This means that immunoglobulins will bind more than

single-Fab analogs. However, the two chasers will interact

against each other, thus diminishing the overall rate with

respect to what pure additivity would predict. How relevant

is, if any, this anticooperative effect?

We argue that antigens which are smaller in size with

respect to the Fab arms will see antibodies in a first

approximation as pairs of active centers separated by a fixed

distance d. In particular, they will see a static distribution of

such distances P(d), which will depend on the antibody

internal dynamics. Accordingly, we expect the anticooper-

ative effects to depend on the distribution P(d).

We wish to construct a simple model of diffusion driven

encounter between the immunoglobulin and a small

antigen, in order to investigate the effects of the internal

dynamics on the anticooperativity. To this end, we model

the antigen as a sphere of radius R1, and the IgG as a pair

of spheres SF of radius R2, fixed at a distance d. Let r

indicate the position vector of the antigen with respect to

the center of mass of the two spheres. If we neglect

rotation and time-dependent effects, our problem reduces

to finding the stationary solution of the following Laplace

problem for the concentration of antigens c(r)

j2c rð Þ ¼ 0

cjSþ ¼ cjS� ¼ 0

lim
r Yl

c rð Þ ¼ cl ð9Þ

where cl is the antigen bulk concentration and we impose

absorbing boundary conditions on the surface of the

system S++S-. Let D1 and D2 be the antigen and IgG

diffusion coefficients, respectively. The encounter rate

constant can be calculated by evaluating the flux of

antigens across any closed surface X enclosing the sinks

k ¼ D4U cð Þ ¼ D4

Z
X

j
Y
cd n̂n dS ð10Þ

where D*=D1+D2/2.



0 50 100 150

d

0

0.005

0.01

0.015

P
(d

 )

(a)

0 10 20 30

R1

-0.5

-0.4

-0.3

-0.2

<
 A

 >
0 10 20 30

R1

0

2

4

6

8

∆
A

(b)

Fig. 5. (a) Numerical histograms of Fab–Fab distances. Solid curve,

distribution generated according to the experimental distributions q1(/) and

q2(/) (biased case). Dashed curve, unbiased case [V1(/)=V2(h)=constant].
The cutoff dN2R2 has been introduced in the computation of the

histograms. The parameter R2 has been fixed at R2=16.5 2, which is the

value that reproduces the observed domain of Fab–Fc angles [/min, /max],

for an IgG of radius L=80 2 with a spherical Fc of radius 34.4 2. (b) Plot of
the average anticooperativity (12) as a function of the antigen radius. The

solid curve is calculated by averaging over the distribution P(d) in the

biased case. The dashed curve is the average anticooperativity in the

unbiased case. Inset: relative difference of the two anticooperativities (14)

(percent). Distances are measured in 2.
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The problem (9) may be solved by adopting the

bispherical coordinate set. The details of the calculations

are reported in a more complete paper [22]. We obtain

j ¼ 2jS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � 1

p Xl
n¼0

2

1þ
h
v þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � 1

p i2nþ1
ð11Þ

where v=d/2de N1, de=R1+R2 is the encounter distance and

jS=4pD*(R1+R2). At this point, a quantitative measure of

anticooperativity may be introduced through the following

simple indicator

A d;R1ð Þ ¼ j
2j1

� 1 ð12Þ

where we have explicitly indicated the dependence on the

Fab–Fab distance d and antigen radius R1. The quantity

j1=4p(D1+D2)(R1+R2) is the Smoluchowski rate constant

describing the encounter of the antigen with a single,

isolated Fab sphere.

The function A(d, R1) is a monotonously decreasing

function of the antigen radius R1 for fixed Fab–Fab

separation d, and a monotonously increasing function of d

at fixed R1. This means that the configurations of the IgG

with the largest Fab–Fab distances will produce the smallest

contributions to the average anticooperativity. In the formal

limit of infinite separation between active centers dYl,

it is not difficult to realize that limdYlj=2jS. Conse-

quently, additivity is nearly recovered for small antigens in

that limit, as

lim
dYl

A d;R1ð Þ ¼ � D2

2 D1 þ D2ð Þc� R1

2R2

b1

where we have used the Einstein rule Di~1/Ri, i=1, 2. In

the opposite limit dY2de (or equivalently vY1), anticoo-

perativity attains its maximum. In this case limvY1j=2jS

log(2) [22], and hence

lim
dY2de

A d;R1ð Þ ¼ 2R2 þ R1

2 R2 þ R1ð Þ log 2ð Þ � 1clog 2ð Þ � 1:

The average anticooperativity in the limit of small

antigens may be obtained by averaging over the static

distribution of distances, which may be easily obtained

numerically in the same fashion as the distributions of the n
angles

hA R1ð Þi ¼
Z 2L

2de

A x;R1ð ÞP xð Þdx: ð13Þ

It is clear that the two Fabs have a marked tendency to

stay farther apart in the biased scenario with respect to

the free, unbiased case (Fig. 5a). We may then speculate

that the presence of the potential energies (8) reflects the

effort of keeping the two Fabs away from each other.

This inference is supported by the analysis of the average

anticooperativity.
Our results indicate that for small antigens the anti-

cooperative effect may decrease the encounter rate of as

much as 30% (Fig. 5b). We recall that we expect our

assumptions to be less accurate for antigens of size

comparable to that of the two Fabs. However, we see that

the absence of a bias in the Fab–Fab relative orientation due

to the presence of the potential energies may increase the

anticooperativity effect up to 5–6%. This tendency is shown

quantitatively in the inset of Fig. 5b, where we plot the

relative difference

DA ¼ 1� hApoti
hAfreei

: ð14Þ

The two pedices refer to the average anticooperativity in the

biased (pot) and unbiased (free) scenarios.
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Summarizing, we speculate that the potentials would

reduce negative interference between the two binding arms

in the diffusion-controlled encounter with antigens by

favoring large values of the Fab–Fab separation.
4. Conclusions

In this paper we have shown that high-resolution

tomographic reconstructions of individual immunoglobulins

in solution may be analyzed to investigate the equilibrium

conformations of the molecules. Our results clearly show

that, especially for large, flexible macromolecules, the

number of different conformations adopted may dramati-

cally differ from the results of X-ray crystallography or of

other techniques based on structural averaging such as

single-particle tomography.

Importantly, the results of an accurate statistical

analysis of individual structures may be used to compute

an effective internal potential energy of the molecule

through standard tools of equilibrium statistical mechan-

ics. This, in turn, may open the way to a direct

dynamical investigation of different biological functions

of the molecule. For example by means of Langevin

simulations.

As a first application, we have shown that the bias in the

relative orientation of the two Fab arms introduced by the

experimental potential energies increases on average the

statistical weight assigned to large Fab–Fab separations.

Consequently, it operates in the direction of reducing the

anticooperative effects in the diffusion-driven encounter of

the Fabs with antigens of small size.
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