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We present a detailed analysis of the modulational instability of the zone-boundary mode for one
and higher-dimensional Fermi—Pasta—UI&RPU) lattices. Following this instability, a process of
relaxation to equipartition takes place, which we have calledAthé-FPU problembecause the
energy is initially fed into the highest frequency part of the spectrum, at variance with the original
FPU problem(low frequency excitations of the latticeThis process leads to the formation of
chaotic breathersn both one and two dimensions. Finally, the system relaxes to energy equiparti-
tion on time scales which increase as the energy density is decreased. We show that breathers
formed when cooling the lattice at the edges, starting from a random initial state, bear strong
qualitative similarities with chaotic breathers. 2005 American Institute of Physics

[DOI: 10.1063/1.1854273

Several nonlinear physical systems exhibit modulational clarified. In most cases, the evolution towards ene¥gyi-
instability, which is a self-induced modulation of the partition among linear modes has been checked considering
steady state resulting from a balance between nonlinear an initial condition where all the energy of the system is
and dispersive effects. This phenomenon has been studied concentrated in a small packet of modes centered around
in a large variety of physical contexts: fluid dynamics, gsome low frequency.

nonlinear optics and plasma physics. The Fermi—Pasta— Beginning with the pioneering paper of Zabusky and
Ulam (FPU) lattice is an extremely well-suited model sys- Deem® the opposite case in which the energy is put into a

tem to study this process. Both the triggering of the in- high frequency mode has been also analyzed. In this early

stability and its further evolution can be studied in detail, h bound q ited with dded
exciting initially high-frequency modes. The original FPU paper, the zone-boundary mode was excited with an adde
spatial modulation for the one-dimensionaiFPU model

problem was casted instead in the context of long wave- : 3 e ) h
lengths. This is why we call the process we analyze in this (duadratic nonlinearity in the equations of motioHere, we

paper, the anti-FPU problem because of the analogy with ~ Will study the time-evolution of this mode without any spa-
the seminal FPU numerical simulation. At variance with  tial modulation for theg-FPU model(cubic nonlinearity in
the appearance of (m)KdV-solitons in the FPU original the equations of motignand some higher-order nonlineari-
problem, in this process the pathway to equipartition ties. Moreover, we will extend the study to higher dimen-
leads to the creation of localized objects that arehaotic  sional lattices. Since the energy is fed into the opposite side
breathers Similar localized structures emerge when cool-  of the linear spectrum, we call this problem thati-FPU
ing the lattice at the edges, starting from thermalized ini-  problem
tial states. In a paper by Bundinsky and Bounfisthe zone-
boundary mode solution of the one-dimensional FPU lattice
was found to be unstable above an energy thresdgplghich
scales like 1N, whereN is the number of oscillators. This

In 1955, reporting about one of the first numerical simu-result was later and independently confirmed by Flaid
lations, Fermi, Pasta, and UlaiPU) (Ref. 1) remarked that Poggiet al,” who also obtained the correct factor in the large
it was ... very hard to observe the rate of “thermalization” N-limit. These results were obtained by a direct linear stabil-
or mixing ... in a nonlinear one-dimensional lattice in which ity analysis around the periodic orbit corresponding to the
the energy was initially fed into the lowest frequency mode.zone-boundary mode. Similar methods have been recently
Even if the understanding of this problem advanced signifiapplied to other modes and other FPU-like potentials by
cantly afterward$;® several issues are still far from being Chechinet al®° and Rink°

I. INTRODUCTION
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A formula for E, valid for all N, has been obtained in 1. MODULATIONAL INSTABILITY
Refs. 11-14 in the rotating wave approximation, and will bep The one-dimensional case
also discussed in this paper. Associated with this instability is o o i ) ) -
the calculation of the growth rates of mode amplitudes. The We will discuss in this section modulational instability

appropriate approach for Klein-Gordon lattices was first in_for the one-dimensional FPU lattice, where the linear cou-

o ot am o loars n ey S SUESES ) o ety i
with the Benjamin—Feir instability in fluid mechanit. P ger. g O¥n P

: _ . of the nth particle from its equilibrium position, the equa-
Previously, a completly different approach to descrlbetions of motion are

this instability was introduced by Zakharov and Shdbat,

studying the associated nonlinear Schrodinger equation in (i, = Up.q + Uy_g — 2U, + (Uneg — Uy) 2P = (U, — U, ) 2PL

the continuum limit. A value for the energy threshold was (1)

obtained in Ref. 18 in the continuum limit. The full deriva-

tion starting from the FPU equation of motions was then'Ve adopt a lattice oN particles and we choose periodic

independently obtained by Berman and Kolovkkin the boundary cond|t|on§. For the .sake of simplicity, we first re-

so-called “narrow-packet” approximation. port on the ana!y3|s fop=1 (i.e., the 8-FPU model and
Only very recently the study of what happens afterthen we generghz'e the results to a@yalue.

modulational instability develops has been performed for Dge o per;]odll.c boundaryfcond|t|ons|, the normal :cnck)‘des

Klein—-Gordorf® and FPU-lattice$>?* From these analyses it at)srsn?mated to the linear part of Hg) are plane waves of the

turned out that these high-frequency initial conditions lead to

a completely new dynamical behavior in the transient time

preceeding the final energy equipartition. In particular, the

main discovery has been the presence on the lattice of sharp

localized mode&2! These latter papers were the first to WNeredn(t)=an-wtandq=2zk/N (k=-N/2, ... N/2). The

make the connection between energy relaxation and intrinsig'SperS.Ion r_ela3t|o_n of n;)nhnear phon_ons in the rotating wave

localized mode$? or breatheré*2° Later on, a careful nu- approximation” is - w*(a)=4(1+)sirf(g/2), where a

) . ) =3a’sin?(q/2) takes into account the nonlinearity. Modula-
merical and theoretical study of the dynamics OB@PQ tional instability of such a plane wave is investigated by
model was performe%f. It has been shown that moving

) ) ' studying the linearized equation associated with the envelope
breathers play a relevant role in the transient dynamics angk the carrier wave2). Therefore, one introduces infinitesi-

that, contrary to exact breathers, which are periodic solumg| perturbations in the amplitude and phase and looks for
tions, these have a chaotic evolution. This is why they havegiutions of the form

been callecchaotic breathersFollowing these studies, Lepri
and Kosevich® and Lichtenberg and co-workérs® have
further characterized the scaling laws of relaxation times us-
ing also continuum limit equations. _ _

On the other hand, studies of the asymptotic state of the =all+bycogan-ot+ g, @
FPU lattice dynamics when energy is extracted from thevhereb, and , are reals and assumed to be small in com-
boundaries have revealed the persistence of localizeBarison with the parameters of the carrier wave. Substituting
modes’° Already some of these authd?$* have dis- Eq._(3) .into the equgtions of motion anq kegping the second
cussed the similarities of these modes with chaotic breatherderivative, we O_btta'” for the real and imaginary part of the
In this paper, we will further study this connection. secular terme@™ " the following equations:

Most of the previous studies are for one-dimensional lat-
tices. Here, we will derive modulational instability thresh- -

() = S (e + €70, 2

a ; a :
Un(t) = 5[1 +by(t) ]l O+nO] 4 E[1 +by(t) ] [0+ ¥n(0]

w2, + 20, + b, = (1 + 2a)[cosq(Dne + byq) = 20,]

olds also for higher dimensional lattices and we will report - a(b,.1 +b,_; — 2b, cosq)
on a study of chaotic breathers formation in two-dimensional — (1 + 20)SiNQ(hey — 1) )
FPU lattices. e Pl

We have organized the paper in the following way. In ) S
Sec. II, the modulational instability of zone-boundary modes™ @“¥n = 2wby + = (1 + 22)[COSA(Yine1 + Yn-1) = 24/ ]

on the lattice is discussed, beginning with the one- +(1 + 2a)sinq(by.g = byq)
dimensional case, followed by the two-dimensional and . . 5 5
higher dimensional cases and finishing with the continuum (Y1 + Y1~ 24 COSQ). (5)

nonlinear Schrodinger approach. Section Il deals with the  Further assuming b,=be @™ +cc. and 4,
mechanisms of creation of chaotic breathers in one and tws e @™ +c.c. we obtain the two following equations for
dimensions. Finally, in Sec. IV, we discuss the relation withthe secular terng (Q™®V

numerical experiments performed when the lattice is cooled 5 o
at the edges. Some final remarks and conclusions are re- bl 2%+ ™+ 2(1 + 2a)(cosq cosQ - 1) ~ 2a(cosQ
ported in Sec. V. - cosq)] - 2i [ wQ + (1 + 2a)singsinQ] =0, (6)
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Yol Q2 + w? + 2(1 + 2a)(cosq cosQ — 1) 250
+ 2a(cosQ - cosq) ] + 2iby w2
+ (1 + 2a)singsinQ] = 0. (7) .
In the case of Klein—Gordon-type equatidlﬁ§f)one neglects ¢ 17T

the second order derivatives in Eg4) and(5). This can be

justified by the existence of a gap in the dispersion relation

for q=0, which allows to neglecf)? with respect tow?. In

the FPU case, this approximation is worse, especially for 1.00 e

long wavelengths, because there is no gap. 0 20 40 60 80 100
Non trivial solutions of Eqs(6) and (7) can be found N

only if the Cramer’s determinant vanishes, i.e. if the follow- FIG. 1. Modulational instability threshold amplitude for themode versus
ing equation is fulfilled: the number of particles in the one-dimensional FPU lattice. The solid line
corresponds to the analytical formu(da0), the dashed line to its large
N-estimate(11) and the diamonds are obtained from numerical simulations.

[(Q r o241+ 2a)sin2<¥)}

. -Q . :
X [(Q - w)?-4(1+ 2a)5ln2(q7 the Mathieu equation analysisee Ref. 7, p. 265
It is also interesting to express this result in terms of the
= 4a?(cosQ - cosq)?. (8)  total energy to compare with what has been obtained using

other methods:"*"*Since for them-mode the energy is

This equation admits four different solutions when thegiven by E=N(2a2+4a%), we obtain the critical energy

wavevectorgy of the unperturbed wave ar@ of the pertur-
bation are fixed. If one of the solutions is complex, an insta-

bility of one of the modegq+Q) is present, with a growth ! 'n2<7—7) 7 cod(m/N) - 1 2
rate given by the imaginary part of the solution. Using this tT 9 s N/[3 cod(m/N) - 1]*

method, one can derive the instability threshold amplitude

for any wavenumber. A trivial example is tlig=0 case, for ~ For largeN, we get

which we obtain()=£sin(Q/2), which proves that the zero

mode solution is stable. This mode is present due to the 2 1

invariance of the equations of motigh) with respect to the E.= N O(@) (13

translationu, — u,+constand, as expected, is completely de-

coupled from the others. _ This asymptotic behavior is the same as the one obtained
A first interesting case ig=. One can easily see that ysing the narrow packet approximation in the context of the
Eqg. (8) admits two real and two complex conjugate imagi- nonlinear Schrédinger equation by Berman and Kolovskii

nary solutions if and only if [Eq.(4.1) in Ref. 19. The correct scaling behavior witth of
Q 1+a the critical energy has been also obtained by Bundinsky and
00525 > 1+3a" (90 Bountis [Eg. (2.22 in Ref. 5] by a direct linear stability

analysis of ther-mode. The correct formula, using this latter
This formula was first obtained by Sandusky and Pagge ~ method, has been independently obtained by FIEED.
(22) in Ref. 13 using the rotating wave approximation. The (3.20 in Ref. 6 and Poggi and Ruffdp. 267 of Ref. 7.
first mode to become unstable when increasing the amplitudBecently, theN™*-scaling of formula(13) has been confirmed
a corresponds to the wave numb@r 27/ N. Therefore, the using a different numerical method and, interestingly, it
critical amplitudea, above which they=-mode looses sta- holds also for the 2/3 and /2 modes®®

bility is This critical energy is also very close to the Chirikov
“stochasticity threshold” energy obtained by the resonance
_ ( sin?(ar/N) >1/2 (10) overlap criterion for the zone boundary modd.he stochas-
3[3 cog(mIN) - 1] ticity threshold phenomenon has been thoroughly studied for
. . . . long wavelength initial conditions, and it has been clarified
This formula is valid for all even values & and its large . . .
N-limit i that it corresponds to a changelln the ;calmg law of the
largest Lyapunov exponefﬁ&[.We will show in Sec. Il that
T 1 above the modulational instability critical energy for the
a= @ +O(@>- (12) m-mode one reaches asymptotically a chaotic state with a

positive Lyapunov exponent, consistently with Chirikov’s re-
In Fig. 1, we show its extremely good agreement with thesult.
critical amplitude determined from numerical simulations. It ~ The above results can be generalized to nonlinearities of
is interesting to emphasize that the analytical formil@) 2p+1 order in the equations of motiofi). We limit the
diverges folN=2, predicting that ther-mode is stable for all analysis to ther-mode, for which the instability condition
amplitudes in this smallest lattice. This is in agreement with(9) takes the form
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Q l+a z-direction. Already with a harmonic potential, if the spring
cos 571 +(2p+ a’ (14) length at equilibrium is not unitary, the series expansion in
un,m Of the potential contains all even powers. We retain only
where the first two terms of this series expansion. After an appro-
priate rescaling of time and displacements to eliminate mass
2p+ 1! i X .
=———a. , -
' | 2p (15 and spring constant values, one gets the following adimen
p!(p+1)! sionalized equations of motions:
Hence the critical amplitude above which tlremode is un- )
stable is Unm= Unezm* Un-1m* Unmes + Unm-1 = 4Un m
p! (p +1)! Sinz(W/N) 1/2p) ) + (un+1,m - un,m)3 + (un—l,m - un,m)3
= , 16
7| @p+ 1! [2p+ Deco(mN) - 1 ( + (Ut = U+ (U = Uy 19
leading to the larg& scaling Considering periodic boundary conditions, plane waves so-
iy lutions have the form
a;~ NP, (17)
Unm = & CogqyxN + gym— wt). (20)
E.~ NL2P, (18) o o

In the rotating wave approximatidi,one immediately ob-
This scaling also corresponds to the one found in Ref. 39ains the dispersion relation

when discussing tangent bifurcations of band edge plane

waves in relation with energy thresholds for discrete breath- ., q ., q e . q

ers. Their “detuning exponent’has a direct connection with =4 sirf EX +4sir? _2x +12a° sirt! EX + sirf _2¥ ,

the nonlinearity exponenp=z/2. We will see in Sec. |1 B

that this analogy extends also to higher dimensions. (21)

For fixed N, ac is an increasing function of the power of which becomes exact for the Zone_boundary m(lqi(eqy)
the coupling potential with the asymptotic limit ljn.a.  =(7, ),
=0.5. Therefore, in the hard potential limit the critical energy
for the m-mode increases proportionally . The fact that w2 =8(1+3a7). (22
we find a higher energy region where the system is chaotic is ' .
not in contradiction with the integrability of the one- I order to study the stability of the zone-boundary mode, we
dimensional system of hard rodspecause in the present adopt a slightly_ diffe_rent approach. Namely, we consider the
case we have also a harmonic contribution at small distanceBerturbed relative displacement field of the form

For the FPUa model (quadratic nonlinearity in the
equations of motiop the 7-mode is also an exact solution Uy = (i‘ +b, m>ei<ﬁn+ﬁnmmt) +cc., (23)
which becomes unstable at some critical amplitude which, ' '
contrary to the case of the FP8- model, is
N-independen?;13 which means that the critical energy is
proportional toN and then thatm-mode can be stable in
some low energy density limit also in the thermodynamic
limit.

whereb, , is complex. This approach turns out to be equiva-
lent to the one of Sec. Il A in the linear limit.

Substituting this perturbed displacement field in Eq.
(19), we obtain

It has also been realiz&8'%**~*3that group of modes
form sets which are invariant under the dynamics. The sta- 2+ 2a][Bys1m* D1+ Do + -1 + 400l
bility analysis™** of pair of modes has shown a complex — of0r 1+ Bro1m* Py mes + O mes + 403 ]
dependence on their relative amplitudes. The existence of . ) . 5
such invariant manifolds has also allowed to construct =~ Bom* 207 by * @07 20w, (24)

Birkhoff-Gustavson normal forms for the FPU model, pav-where «=3a2. Looking for solutions of the form
ing the way to KAM theor;?‘.4
bn = Aé(an+Qym—Qt) + Be—i(an+Qym—Qt), (2 5)

B. Higher dimensions . . . . .
g we arrive at the following set of linear algebraic equations

In this section, we will first discuss modulational insta- for the complex constants and B
bility of the two-dimensional FPU model. The method pre-
sented in Sec. Il A can be easily extended and the global [(Q+ wqm)z— 8(1 + 2a)AJA+8aAB=0, (26)
physical scenario is preserved. However, the scaling With
of. fche critical amplitude phanges in such a way to make 8aAA+[(Q - w, )2~ 8(1+2a)A]B=0, 27
critical energy constant, in agreement with the analysis of :
Ref. 39. where  2A=cos(Q,/2)+cos(Q,/2). As for the one-
The masses lie on a two-dimensional square lattice witldimensional case, we require that the determinant of this
unitary spacing in théx,y) plane. We consider a small rela- linear system irA andB vanishes, which leads to the follow-
tive displacementu,, (n,me[1,N]) in the vertical ing condition:
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1.25[ T T 71,2
E.= ?Nd"z +O(N%4). (34)

This means that the critical energy density=E_./N for de-
stabilizing the zone boundary mode vanishes as?linde-

= 1.00}
Co pendently of dimension.

C. Large N limit using the nonlinear Schrédinger
equation

0.75

The largeN limit expressiong33) and (34) can be de-
N rived also by continuum limit considerations. We will derive
the general expression for any dimensi@nThe displace-
FIG. 2. Modulation instability threshold for ttfer, ) mode versus number — pant field can be factorized into a complex envelope part
of oscillators in two-dimensional array. The solid line is given by the cor-

responds to the estimate obtained from the nonlinear Schrédinger equaticmump"ed by the zone boundary mode pattemdirdimen'

in largeN limit [see formulg43)] and the diamonds are results of numerical SIONS,
simulations.

o)
1Ny - 2 "

U, ~.A+cc., (35

[(Q+ @)= 8A(L +20)][(Q - 0 ;)* — BA(L + 2a)] where
- 272 —_—
BaA”. (8 .= N4+ YD), (36
This equation admits two real and two complex conjugate

imaginary solutions irf if cgubstltutlng Eq(35) into the FPU lattice equations it di-

mensions, a standard procedtir¥ leads to the followingd
dimensional nonlinear SchrodingéMLS) equation:

0
which is the analogous for two dimensions of conditi@h a
One can achieve the minimal nonzero value of the r.h.s. ofvhereA is thed dimensional Laplacian. The paramet&rs

the above expression choosir@ =0, Q,=27/N, which  andQ are derived from the nonlinear dispersion relation
leads to the following result for the critical amplitude

l+a

A> ,
1+3a

(29 b
+ S Ag- Quiy*=0, (37)

d

2_ o i 2t Gi
:< sir?(ar/N) )1/2 0 W= 21 4 sirf > + 1242 sin? 5 | (39
3[3 cod(mIN) + 1]
as
Its largeN limit is 5

Fw 1
™ 1 P=?(q1=w,...,qd:w,|¢|:0):2—6, (39

.= = +o(—3>. (31) G \’

VI2N N

This prediction is compared with numerical data in Fig. 2. Q=- a—wz(q1= . Qe=m|Y=0)=- 3vd. (40)
The agreement is good for all values éf 9yl
Since the relation between energy and amplitude is now  Assuming that, at the first stage, modulational instability
E=2N?(2a*+4a"), we obtain the critical energy in the large develops along a single directioarand that the field remains
N-limit as constant along all other directions, one gets the one-
2 L dimensional NLS equation
EC:—+O<—2>. (32 oy PPy 5
3TN o~ Quluf =0, (4
This shows that the critical energy is now constant in the

thermodynamic limit, which agrees with the remark of Ref. Following the results of the inverse scattering approdch,

39 about the existence of a minimal energy for breather@n initial distribution of amplitudg| and length\ alongx,

formation?® and constant along all other directions, produces a final lo-
The results of this section can be easily extended to ang@lized distribution it

dimensiond. Repeating the same argument, we arrive at the

following estimates for the critical amplitude and energy in  (|#{\)?> 72

the largeN limit

P
—1. 42
] .

This means that if the initial state is taken with constant
_m1, (i) (33) amplitude|| =a on thed-dimensional lattice wittNY oscil-
% Jed N N3/’ lators, the modulational instability threshold is
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(aN)?= g—j (43) ‘ t,=10® (d)

which coincides with the leading order in E®3).

Ill. CHAOTIC BREATHERS 2"}

In this section, we will discuss what happens when the {
modulational energy threshold is overcome. The first thor- S n
ough study of this problem can be found in Ref. 21, many e
years after the early pioneering work of Zabusky and Déem. ——

Already in Ref. 21, it has been remarked that an energy ¢ 15
localization process takes place, which leads to the formation %

of breathers® This process has been further characterized in =

terms of time scales to reach energy equipartition and of 4 0.5 ]
quantitative localization properties in Ref. 27. The localized =t i N
structure which emerges after modulational instability has S T 1 64 128
been here called “chaotic breatheiCB). The connection T n
between CB formation and continuum equations has been S =
discussed in Refs. 28 and 30, while the relation with the
process of relaxation to energy equipartition has been further ; :
studied in Ref. 29. We will briefly recall some features of the .

localization process in one dimension and present new re- wf 0.04

sults for two dimensions. 0.02

For long time simulations, we use appropriate symplec- tl 0.00
tic integration schemes in order to preserve as far as possible L 1 64 128
the Hamiltonian structure. For the one-dimensional FPU, we "
adopt a 6th-order Yoshida's algoritfwith a time stepdt ~ FIG. 3. Time evolution of the local enerdg4). In panel(a), the horizontal
=0.01; this choice allows us to obtain an energy conservatiofis indicates lattice sites and the vertical axis is time. The grey scale goes
with a relative accurachE/E ranging from 101010 1072 "o S0 0 e nxnEsvaliebach The e st
For two dimensions, we use instead the 5th order symplecti); and (d) show the instantaneous local enefgyalong theN=128 chain
Runge—Kutta—Nystrém algorithm of Ref. 48, which gives aat three different times. Remark the difference in vertical amplitude in panel
similar quality of energy conservation. (c), when the chaotic breather is present. The initralnode amplitude is

o . . a=0.15>a,=0.01.

We report in Fig. 8) a generic evolution of the one-

dimensionalkr-mode above the modulation instability critical

amplitude(a>a.). The grey scale refers to the energy resid-
ing on siten, In order to obtain a quantitative characterization of en-

ergy localization, we introduce the “participation ratio”

1.0

t,=500 (b)

0.08

N

En =302+ 2V(Upey — Up) + 3V(Uy = Upg), (44)
where the FPU-potential isV(x)=3x2+3x* Figures ElNzl EZ
3(b)-3(d) are three successive snapshots of the local energy Cy(t) =N7—=x—3. (45)
E, along the chain. At short time, a slight modulation of the (Eizl i)

energy in the system appedsee Fig. 8)] and them-mode

is destabilized® Later on, as shown in Fig.(8), only a few which is of order one i;=E/N at each site of the chain and

localized energy packets emerge: they are breaffiénelas- of order.N if the energy is Iocglized on only.qne site. In Fig.
tic collisions of breathers have a systematic tendency t§(@: Cois reported as afunction of time. Initiall, grows,
favour the growth of the big breathers at the expense of smalftdicating that the energy, evenly distributed on the lattice at
ones*®® Hence, in the course of time, the breather numbet=0 Iocall_zes over a fgw sites. This localized state survives
decreases and only one, of very large amplitude, survivelor some time. At later time<;, starts to decrease and finally
[see Fig. &)]: this is the localized excitation we have called reaches an asymptotic val@ which is associated with the
chaotic breathe(CB). The CB moves along the lattice with disappearance of the JBn estimate o€, has been derived
an almost ballistic motion: sometimes it stops or reflectsin Ref. 27 taking into account energy fluctuations and is
During its motion the CB collects energy and its amplitudereported with a dashed line in Fig(a}]. At this stage, the
increases. It is important to note that the CB is never at restnergy distribution in Fourier space is flat, i.e. a state of
and that it propagates with a given subsonic spéédnally,  energy equipartition is reached.

the CB decays and the system reaches energy equipartition, As explained in Ref. 27, the destruction of the breathers
as illustrated in Fig. @l). The final CB decay is present in all is related to its interaction with low frequency modes which
the simulations we have performed, but one cannot excludare dominant in the chain after the initial stage. A full study
the existence of examples where the final breather does nof the scattering of plane waves by FPU-breathers would be
disappear. necessary to quantify this explanation either as anticipated in
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1D 2D
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Ref. 27 or, even better., as recently performed by Flach and Enm= %Uﬁ,m"' Zl;V(Un+1,m‘ Unm) + ZI;V(Un, me1— Unm)
collaborators for the discrete NLS equation, Klein—Gordon 1 1
or FPU chaing®>* + 3V(Un-1m = Unm) + V(U m-1 = Unm) (46)

In Fig. 4(b), we show the finite time largest Lyapunov s ghserved for the two-dimensional casee Fig. 5. In this
exponenty(t) for the same orbit as in Fig(&). We observe  figire, we just show the initial evolution which leads to
a growth ofA4(t) when the CB emerges on the lattice and apeathers formation. As for the one-dimensional case, bigger
decrease when it begins to dissolve. The peakiiit) per-  preathers eat up smaller ones, and finally only one breather
fectly coincides with the one i€,. Due to this increase of gyrvives. However, note that, depending on the initial condi-
chaos associated with localization, we have called thgjons, the simulations do not always lead to the coalescence
breather chaoti¢although chaos increase could be the resulinto a single breather, because collisions are more rare in two
of a more complicated process of interaction with the backgimensions than in one. After the formation of a few local-
ground. ized structures, one also observes the final relaxation to eq-

In Ref. 27, the time scale for the relaxation to equiparti-ipartition, which is not shown in Fig. 5. This latter is instead
tion has been found to increase @/ N)~2 in the small en-  evident from the time evolution o€(t), the localization
ergy limit. This has been confirmed by the followers of this parameter, shown in Fig(d): its behavior is very similar to
study?®*° Such power law scalings are found also for thethe one-dimensional case. Indeed, also the largest finite time
FPU relaxation starting from long wavelengﬁ%sthe SO-  Lyapunov exponent behaves similaflsee Fig. 4d)].
called FPUproblem We have termed the relaxation process
which starts from short wavelengths thati-FPU problem
just because of the similarities in the scaling laws. The maiqvl SPONTANEOUS LOCALIZATION
feature of the latter problem is that relaxation to equipartitiongy epGE COOLING
goes through a complex process of localized structures for-
mation well described by breathers or, in the low-amplitude  Breathers play an important role in the nonequilibrium
limit, by solitons of the nonlinear Schrodinger equation. Ondynamics of the FPU model. The relaxation to equipartition
the contrary, for the original FPU problem, an initial long of the zone-boundary mode, analyzed thus far in this paper,
wavelength excitation breaks up into a train of mKdV-is one example. Another interesting case in which breathers
solitons. The final relaxation to equipartition is however dueemerge spontaneously is when the lattice is cooled at its
to an energy diffusion process which has similar features foboundarie$>°This process may be thought of as modeling
both the FPU and the anti-FPU probléﬁw. a nonequilibrium process where energy exchange in the bulk

A similar evolution of the local energy is much slower than at the surface. Although in this case the
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t=28.5 t=533.7

FIG. 5. Local energy(46) surface plots for the two-
dimensional FPU lattice with 220 oscillators, initial-
ized on the(w,)-mode with an amplituden=0.225
>a.,=0.045. Snapshots at four different timéesare

shown. Breathers form after a coalescence process simi-
t=23101 t = 10000. larly to the one-dimensional case. The mobility of the
breathers is evident and one also observes in the last
panel the final decrease.

dynamics is dissipative, it turns out that there is a deep coneounterpar{see Fig. 6. In particular, a perturbative calcula-
nection with the original Hamiltonian model. tion to first order iny confirms that*
Specifically, when modeling this process, we add a dis-

sipative term U, in the r.h.s. of Eq(1) whenn=1 andn e ln fort<
=N. Similarly, in two dimensions, the same term is intro- & :J —2y(w)t ~

. =|e g(w)dw =
duced at all edge sites. The paramejarontrols the strength E(0) 3
of the coupling with the external reservoirs at zero tempera- V2mt/ T
ture. Since we are interested in the exchange of energy be- (47)

tween a finite system and the environment, we shall consider . . . .
either free-ends or fixed-ends boundary conditions. where the density of stategte) is derived from the disper-

In a typical simulation, first an equilibrium micro-state is sion relationw(q)=2 sir(@/2), with g=mk/N for free-ends

generated by letting the Hamiltonian systém=0) evolve Eoun:ary cong}tt_lonsi,(_agq:wl(\lk:rll)/(N+1) for fixed-ends
for a sufficiently long transient. Then, the dissipative dynam- oughan;_con itiong _ﬁ th ): incid th th
ics (7>0) is started. The initial condition for the Hamil- € ime range after the crossover coincioes with the

tonian transient is assigned by setting all relative displace(—)nset of localization. Now the dynamics is significantly af-

ments to zero and by drawing velocities at random from a{;tited b%/_é_r:e spontaneiqstapp?_arance of kt)rr]eathe:s. As tge
Gaussian distribution. The velocities are then rescaled by er exhibit a very weak interaction among themselves an

suitable factor to fix the desired value of the initial energyWlth the boundar!es, the energy -release u.nde.rgoes a sloyvmg
down, thus freezing the system in a quasistationary configu-

E(0) (see Ref. 33 for the detajls tion far f th | libri
The one-dimensional numerical simulations reveal thaf@!"n 1ar from thermat equilibrium.

the dissipation rate of the energy is dominated by two se-
guential effects, that characterize the pathway to localization.
In the first stage of the energy release process, the relaxation 10 ' ' ' ' '
law undergoes a crossover from the exponential €Xpy]
to the power law(t/ 7)) ", wherer,=N/(27) sets the short-
est time scale of the systefsee Fig. 63* Asymptotically,
energy reaches a plateau and, correspondingly, the localiza-
tion parametelCy(t) also saturateésee the inset of Fig.)6
The crossover aty is a signature of the hierarchical

nature of the early stages of the process. In the harmonic
approximation, if one adds a small dissipation, the frequency
w of each linear mode acquires an imaginary paib),
which represents its damping rate. Initially, it is only the
fastest mode which determines the energy relaxation rate. ASG. 6. Log-log plot of —lo§E(t)/E(0)] versus time for an FPU chain with
time goes on, past= 7, it is the full spectrum of decay free-ends boundary conditions. In this representation, an exponential is a
times of the linear modes that sets the rules of energy re|a>f_traight line with slope one. Symbols are the results of numerical simula-

. . . ions averaged over 20 initial conditions. The dashed line is a plot of the
ation. Actually, it turns out that at this stage, for small Non-ineoretical result47) (Ref. 33 for a harmonic chain. The arrow indicates
linearities, the system behaves approximately as its lineane crossover time,,. Parameters arsd=100 andy=0.1.

fort> 7y

~In[E()/E(0)]
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FIG. 7. Space—time contour plot of the site energ#8. Time flows up and  FIG. 8. Surface plot of the time-dependent spatial spectrum of particle ve-

the horizontal axis is the site index. Parameters N#el00, »=0.1, and locities for the one-dimensional FPU lattide) Fixed-ends boundary con-
E(0)/N=1. ditions. (b) Free-ends boundary conditions. Parameterd\ar&00, =0.1,

andE(0)/N=1.

Such residual state is characterized by the presence of |t is possible to get a quantitative confirmation of the
one, highly energetic localized objegiossibly accompanied above hypothesis by calculating the exact relaxation spec-
by a few much smaller ongswhich is mobile and alternates trum y(w) of the linearized system. In the harmonic approxi-
periods of rest and erratic motion, as shown in Fig. 7. Thisnation, the equations of motion may be written in matrix
behaviour is reminiscent of the chaotic breathers whichorm as
emerge in the Hamiltonian system from modulational insta-
g;llty of band-edge modes, discussed in Sec(déle also Fig. U=AU, (49)

But what do we know of the mechanisms leading towhere U=(u,, ...,uy,Uq,...,Uy)" is @ 2N column vector,
spontaneous localization in the presence of dissipation? Aand A is the matrix
noticed above, there is evidence that it is the modulation
instability of short lattice waves that triggers the formation of 0 Iy
localized structures. This hypothesis is supported by the ob- A= (K _ B>'
servation that the emergence of spatial patterns in the early 7
stages of the relaxation is intimately related to how dissipaThe tridiagonal matrix of force constanks,,, also contains
tion acts on vibrational modes of different wavelength. Inthe information on the type of boundary conditions, whereas
particular, if the system is swiftly enough depleted of long-the matrix B,,,= S+ dnn) describes the coupling with
wavelength modes, the instability associated with the bandthe environment. The spectrum of damping rates can be cal-
edge waves may effectively trigger the process of localizaculated by straight diagonalization of matrix In Fig. 9 we
tion. A key test for the above hypothesis is offered by theplot y(w), where y is the opposite of the real part of an
nature of the boundary conditions. In the case of free-endsigenvalue of\ andw its imaginary part. This representation
the modes of small wave number indeed disappear very fastf the relaxation spectrum is preferable with respect to the
in conjunction with the onset of spontaneous localization. Orone in terms of wave numbers, since the vibration frequen-
the contrary, in the presence of fixed boundaries the formecies are shifted as a consequence of the damping.
turn out to be as long-lived as the modes with large wave  This calculation confirms that the free-ends and fixed-
numbers. The corresponding numerical evidence is thatnds systems display considerably different behaviors. In the
hardly no localization is observed in this case. Rather, théormer case, the least damped modes are the short-
energy decays following exactly the behavior of the har-wavelength ones(w=2, the band-edge frequengythe
monic chain(47).>® This scenario can be observed directly, smallest damping constant beingR) = 727,/ 2N3, while the
by computing the time-dependent spatial power spectrunmost damped modes are the ones in the vicinity «of
S(q,t) during the relaxatiorisee Fig. 8. ~1/N. On the contrary, for fixed ends, the most damped

(49)
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scribed the hierarchy of relaxation times underlying &9)).
In particular, a crossover is observed from the exponential
exd -2t/ 7,] to the power law(t/ 7o)

V. CONCLUSIONS

In this paper, we have presented a detailed analysis of
the zone-boundary mode modulational instability for the
FPU lattice in both one and higher dimensions. Formulas for
the critical amplitude have been derived analytically and
compare very well with numerics for all system sizes. We
have extended to two dimensions the study of the process
FIG. 9. Damping ratesy(w) for an harmonic chain wittN=100 and»  which leads to the formation of chaotic breathers. The physi-
=0.1. Free-ends boundary conditiofstars and fixed-ends boundary con- o) nictyre is similar to the one-dimensional case. Besides
ditions (diamonds. .

that, we make the bridge between breathers created by modu-
lational instability of plane waves and the ones formed when
extracting energy from the boundaries: similarities and dif-
ferences are highlighted.

modes are those around the band cefter \s“E) while both
short- and long-wavelength waves dissipate very wegily All results on modulational instability of zone-boundary

~1IN°). . . modes can be straightforwardly extended to other initial
The gboye e_malyS|s he.Ips. u_nderstand|ng why spontangs , jaq and, correspondingly, instability rates can be derived.
ous localization is strongly inhibited if the system is trapped-l-his has already partially been done in Ref. 14 and compares
between rigid_ walls_,.thgs in parallel unveiling the role of very well with the numerical results by YoshimutaThis
modulational instability in the Process. . . . author has recently reanalyzed the protﬁ%m determine
We have also performed similar numerical 5|mulat|onsthe growth rates for generic nonlinearities in the high energy

for the two-dimensional FPU modgL9), with dissip_a_tion region, obtaining exact results based on Mathieu’s equation.
added at the edges and free-ends boundary conditions. Re- Going to many-modes initial excitations, it has been re-

markably, the asymptotic scenario changes. The quasistatiogs o that instability thresholds depend on relative ampli-
ary state is now a static collection of tightly-packed local'zedtudes and not only on the total enePge(lthough this makes

objects, a”.anged in a sort of random latt(@e? F!g. 1@ the study of the problem extremely involved, we believe that
Moreover, it turns out that spontaneous localization in two, detailed study of some selected group of modes, which
dimensions i; a thermally-activated phenomenon, _describ ay some special role in FPU dynamics, could be ir;terest-
by an Arrhenius law for the average breather density, wher g. The method discussed in this paper could be adapted to
the pgrame.te.r. that controls the S”e”gth of thermal ﬂl_JCtuat'reat this problem. Historically, the first study is in the paper
tions is the initial energy densi(0)/N.”" The origin of this by Bivins, Metropolis, and Pasta himséTf,Where the au-

behavior is that, in the twojdlmens,lonal FPU systgm, dls'thors tackle the problem by studying numerically the insta-
crete breathers may be excited only above a certain energyjiioc of coupled Mathieu's equations

9 . . . .
threshold®® as discussed in Sec. Il B. Despite the different The study we have presented in this paper of the two-

nature of the asympt_otlc state, the ons_et of I_oca||zat|on fOI'dimensional FPU lattice is extremely preliminary and further
lows the same path in one and two dimensidheell de- analyses are needed. In particular, the full process of relax-
ation to energy equipartion and the associated time scales
have not been studied at all. Preliminary results on the relax-
ation process in two dimensions from low frequency initial
states seem to indicate a faster evolution to equipartifién.
similar analysis for high frequencies remains to be per-
formed.

In one-dimensional studies, a connection between the
average modulation instability rates and the Lyapunov expo-
nents has been suggestéd? Recently’® high frequency ex-
act solutions have been used in the context of a differential
geometric approa@ﬂ to obtain accurate estimates of the
largest Lyapunov exponent. Similar studies could be per-
formed for the two-dimensional FPU lattice and the corre-
sponding scaling laws with respect to energy density could
be obtained.

The study we have reported in the last section about
lattices that are cooled at the boundaries points out the simi-

FIG. 10. 2D FPU lattice, site energies in the residual state state. Paramete'@_rity of th? localized objects Obtain?d in the long time limit
are:N=80, »=0.1, E(0)/N=1. with chaotic breathers. However, this resemblance, although
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convincing, is only qualitative. Quantitative studies on the23S Aubry, Physica D103 201 (1997.

comparison of these breathers with the chaotic ones obtain

from modulational instability should be performed.
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