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f(x,t) is a concentration

Normal diffusion



7. FREE DIFFUSION – WIENER PROCESS 39

7. Free diffusion – Wiener process

7.1. Definition. The most simple Fokker-Planck equation is obtained for
the case

a1(y) = 0, a2(y) = 2D = const. (II.55)
With this definition for the coefficients ak(y) the Fokker-Planck equation (II.29)
takes the form of the well-known diffusion equation,

⌃P (y, t)

⌃t
= D

⌃2P (y, t)

⌃y2
(II.56)

which is to be solved with the initial condition
P (y, 0) = �(y � y0) (II.57)

The corresponding stochastic equation of motion has the simple form

y(t0 + �t) = y(0) + ⇥ (II.58)

where the displacement ⇥ is Gaussian white noise with

⇥ = 0 and ⇥2 = 2D�t (II.59)

The equations (II.58) and (II.59) define the Wiener process1.

7.2. Solution of the Fokker-Planck equation. A simple way to solve equa-
tion (II.56) is to apply a Fourier transformation with respect to y. With

P̃ (k, t) =

⇧ +⇥

�⇥
dy exp(�iky)P (y, t)

one obtains
⌃P̃ (k, t)

⌃t
= �Dk2P̃ (k, t).

The solution is thus
P̃ (k, t) = P̃ (k, 0) exp(�Dk2t), with P̃ (k, 0) = exp(�iky0),

if one uses the initial condition (II.57). Consequently

P (y, t) =
1

2⇤

⇧ +⇥

�⇥
dk exp(ik[y � y0]) exp(�Dk2t).

This inverse Fourier transform can be easily performed2 and one finds

P (y, t) =
1⇤

4⇤Dt
exp

⇤
�(y � y0)2

4Dt

⌅
(II.60)

1Norbert Wiener, American mathematician, 1894 – 1964.
2One uses that f(x) = 1�

2�⇥
exp

�
� x2

2⇥2

⇥
⇥ f̃(k) = exp

�
�⇥2k2

2

⇥
and that f(x � x0) ⇥

f̃(k) exp(�ikx0).
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white noise

x(t0 + �t) = x(t0) + ⇠

@tP (x, t|x0, 0) = D
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Free diffusion as a stochastic process

W (t) := h(x(t)� x(0))2i = 2Dt

p(x,t|x0,0) is a transition probability
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FIG. 1. Measurement principle in the IM-35 inverted microscope. The
cells are attached to coverslips and illuminated from below. Detection is
performed by placing the objective focal spot to the upper cell membrane
and imaging the fluorescent area to an avalanche photodiode for fluores-
cence correlation spectroscopy (FCS) analysis.

FIG. 3. Fluorescence correlation spectroscopic detection specificity on
the cell membrane. Only labeled membranes (position , 0) contribute to
the signal, which can be verified by loss in autocorrelation and fluorescence
count rate bursts if the focal spot is moved away from the cell surface.

FIG. 2. Confocal images of rat basophilic leukemia cells labeled with
diI-C12 to show the specificity of labeling the plasma membrane only
(equatorial layer, upper panel). For fluorescence correlation spectro-
scopic measurements, 20 times less dye was used. Single molecule
measurements were performed at the upper cell surface (lower panel).
Scale bar " 10 µm.
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Subdiffusion of lipids observed 
by FCS

P. Schwille, J. Korlach, and W. Webb, Cytometry 36, 176 (1999).

W (t) := 2D↵t
↵ ↵ ⇡ 0.74



• 2x137 POPC molecules (10 nm ✕ 10 
nm in the XY-plane)	



• 10471 water molecules (fully hydrated)	



• OPLS force field	



• T=310 K

S. Stachura and G.R. Kneller, Mol Sim. 40, 245 (2013).

MSD for lateral diffusion

ps to ns time scale

J.H. Jeon, H. Monne, M. Javanainen, and R. Metzler, Phys Rev Lett (2012).
 G.R. Kneller, K. Baczynski, and M. Pasenkiewicz-Gierula, J Chem Phys 135, 141105 (2011).See also
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W (t) / t↵, ↵ ⇡ 0.6



Superdiffusion and chemotaxis of E. coli

without changing its position. Then a new run starts, and so
on. We compare the distribution of the run lengths for both
types of bacteria. For type A, the distribution is exponential,
independent of the CheR level. The level of CheR, however,
influences the average run-length—the lower the CheR
concentration, the longer the average run-length (see Fig. 3).

For bacteria of type B, a power-law run-length distribution
is observed at a sufficiently low average CheR concentration
(see Fig. 4). This result is in agreement with the result
observed in Korobkova et al. (8), where a power-law distri-
bution of the CCW events was found in stochastic simula-
tions of CheR binding. Also in these simulations, the
power-law behavior vanished for an increased CheR concen-
tration. We want to stress that the presences of strong low-
frequency modes in the CheR fluctuations is essential to
reproduce the power-law statistics. We introduced the slow
modes by integrating the white noise in Eq. 1. The slow fluc-
tuations are passed through the signaling pathway, influ-
encing the methylation level and therefore the tumbling
probability. If the fluctuations are too fast (for instance, white
noise), the run-length distribution would be, again, exponen-
tial. Additionally, if the average CheR concentration is too
high, the effect of added noise vanishes and the distribution
is again exponential. The power-law run-length distribution
can therefore be observed only at low CheR levels and
low-frequency colored noise. Example trajectories for type
A and type B bacteria are shown in Fig. 5, demonstrating
typical diffusionlike behavior of the individual A with
a constant CheR concentration, and a characteristic Lévy-
walk trajectory for bacteria of type B with CheR fluctuating.

Characteristic for a Lévy-walk is the switching between local
search and long space-covering walks.

This motion often represents an efficient search strategy,
since it gives a very low probability that the random walker
returns to a place where it searched before.

Correlation of run lengths

The low-frequency modes in the CheR fluctuations lead to
slow changes in the concentration levels of the active and
passive form of the receptor, and therefore to slow changes
in the probability of tumbling. In periods where CheR is
decreasing or low, the run lengths are, on average, longer
than at periods in which CheR is increasing or high. Because
the changes in the concentration levels are slow in compar-
ison to the duration of a single run, the length of consecutive
runs is correlated. In Fig. 6, we show a sequence of run
lengths that clearly display characteristic periods of shorter
and longer runs.

The success index

Our next numerical experiment involves bacteria of type A
and B in various types of nutrient environments. For this
we devised a number of simulations with different two-
dimensional chemoattractant landscapes and explored how
well both types of bacteria perform in each of them. To eval-
uate how effective the bacteria of different chemotactic strat-
egies are in different environments, we first define a measure
q for the success index, based on the average ligand concen-
tration that the bacteria in the population sense. We assume
that the bacteria in an optimally fit population will move in
such a way that they will spend most of the time at the posi-
tion with maximum ligand concentration. For each bacteria i
we take its position ~ri ¼ ðxi; yiÞ, and compute the ligand
concentration at this position Lð~riÞ. The success index q of
the whole population is then given as the average,

FIGURE 4 Run-length statistics for fluctuating CheR concentration. The
run-length distribution gets a power-law tail if the CheR concentration is

low and noisy. The inset shows the cumulative of the run-length distribution

on double-logarithmic axes.

FIGURE 5 Trajectories in a two-dimensional domain. Example trajecto-
ries of a bacterium with constant (left, online: blue. print: solid/black) and

with fluctuating CheR concentration (right, online: red. print: shaded/

gray) in a two-dimensional domain.

Biophysical Journal 97(4) 946–957

E. coli Superdiffusion and Chemotaxis 949 F. Matthäus, M. Jagodič, and J. Dobnikar, Biophysical Journal 97, 946 (2009).

Normal diffusion of the E. coli,!
bacteria in absence of chemotaxis

Superdiffusion of the E. coli,!
bacteria in presence of chemotaxis

W (t) / t↵, 1 < ↵ < 2



Here ĥ(s) =
∫

∞

0 dt exp(−st)h(t) (ℜ{s} > 0) denotes the Laplace transform of h(t). Noting

that ĥ(0) =
∫

∞

0 dt h(t), the theorem can be intuitively understood. It states that the diver-

gence of the integral
∫ t

0 dτ h(τ) as t approches infinity is reflected in the divergence of the

Laplace transform of h(t), as s approaches zero. From the asymptotic form (3) of the MSD

and the HLK theorem one can conclude that

Ŵ (s)
s→0
∼ 2DαL(1/s)

Γ(α + 1)

sα+1
. (7)

The relation of this expression to the VACF of the diffusing particle follows from the well

known convolution relation44

W (t) = 2

∫ t

0

dt′ (t − t′)cvv(t
′) (8)

which translates by Laplace transform into

Ŵ (s) =
2 ĉvv(s)

s2
. (9)

Comparison with (7) shows that

ĉvv(s)
s→0
∼ DαΓ(α + 1)L(1/s)s1−α. (10)

From expression (10) one can derive a generalized Kubo relation for the fractional diffusion

constant which holds for both normal and anomalous diffusion processes. The first step

consists in solving (10) for Dα. Using that lims→0 L(1/s) = 1 on account of (4), one obtains

Dα = lim
s→0

sα−1ĉvv(s)/Γ(1 + α). (11)

In a second step one recognizes that sα−1ĉvv(s) is the Laplace transform of the fractional

derivative of order α−1 of cvv(t) with respect to time. Writing ρ = n−β, where n = 0, 1, 2, . . .

is an integer number and β ≥ 0 is real, the fractional Riemann-Liouville derivative of order ρ

of an arbitrary function g is defined through45

0∂
ρ
t g(t) = ∂(−)n

t

∫ t

0

dt′
(t − t′)β−1

Γ(β)
g(t′). (12)

The symbol ∂(−)n
t denotes a normal left derivative of order n and negative values of ρ indicate

fractional integration. The index “0” in the symbol for the fractional derivative on the left-

hand side in Eq. (12) refers to the lower limit in the integral on the right-hand side. Since

5

Fractional Riemann-Liouville 
derivative of order ρ

Write ⇢ = n� �, where n = 0, 1, 2, . . ., � � 0.

W (t) = 2D↵t
↵

See e.g. Metzler and Klafter. Phys Rep (2000) vol. 339 (1) pp. 1-77

⇥tP (x, t|x0, 0) = 0⇥
1��
t

⇢
D�

⇥2

⇥x2

�
P (x, t|x0, 0) (0 < � < 2)

On all time 
scales!

Fractional diffusion equation



Consider a self-similar stochastic processes1

[1]   Kolmogoroff, A. Wienersche Spiralen und einige andere interessante Kurven im Hilbertsche 	


 Raum. C. R. (Dokl.) Acad. Sci. URSS 26 (n. Ser.), 115–118 (1940).	



[2]	

  J. Beran, Statistics for Long-Memory Processes. Chapman and Hall, 1994.	



c�HY (ct) =d Y (t)

such that 

Assume zero mean average and stationary increments:

hY (t)i = 0

h[Y (t) � Y (t � 1)]2i = hY 2(1)i = �2

Y (t) =d tHY (1), (t > 0, 0 < H < 1)

Self-similarity of Brownian motion



and the covariance is

hY (t)Y (s)i =
�2

2
�
t2H � (t � s)2H + s2H

�

Then the MSD is

h[Y (t)� Y (s)]2i = �2(t� s)2H , 0 < s < t

SettingDH = �2/2, one recognizes “normal di↵u-

sion” for H = 1/2, subdi↵usion for 0 < H < 1/2,
and superdi↵usion for 1/2 < H < 1.



W (t) t!0⇠ hv2it2 Ballistic regime

W (t)
t!1⇠ 2D�t

�

224106-2 Gerald R. Kneller J. Chem. Phys. 134, 224106 (2011)

continuous time random walk model,30, 37 and an illustrative
interpretation of the memory kernel in FLEs for the descrip-
tion of subdiffusion in viscoelastic media can be found in
Ref. 38.

In this paper, a theoretical description of anomalous dif-
fusion processes is developed which combines a formally
exact description of single particle dynamics within the
framework of the generalized Langevin equation39, 40 with
an asymptotic analysis of the relevant observables for long
times. Memory effects enter here naturally through the mem-
ory function of the velocity autocorrelation function of the
diffusing particle, which is in turn related to the MSD. The
aim of the paper is to derive generalized Kubo relations for
the relevant transport coefficients, which hold for both normal
and anomalous diffusion, and to formulate general conditions
for anomalous diffusion, enabling a simple physical interpre-
tation without imposing a particular model.

The paper is organized as follows: Section II treats the
derivation of generalized Kubo relations, starting from a the-
orem for asymptotic analysis which is applied to the MSD of
a diffusing particle. In a second step general conditions for
anomalous diffusion are derived, where spatially unconfined
and confined diffusion are distinguished.

In Sec. III, the results are illustrated with semi-analytical
examples and the paper is concluded by a short résumé and
an outlook.

II. THEORY

A. Kubo relation for Dα

Kubo relations establish a connection between macro-
scopic transport coefficients and the microscopic Hamiltonian
dynamics of the system under consideration.41 Each trans-
port coefficient is expressed by an integral over a correspond-
ing time correlation function. In case of diffusion processes
one considers the velocity autocorrelation function (VACF),
cvv (t) = ⟨v(t) · v(0)⟩, and the diffusion coefficient is given by
the well-known relation

D =
∫ ∞

0
dt cvv (t), (2)

if one assumes unconfined normal diffusion.
A generalization of expression (2) covering both normal

and anomalous diffusion can be derived from an appropriate
asymptotic analysis of the MSD. Assuming isotropic diffu-
sion, its asymptotic form may be written as

W (t)
t→∞∼ 2Dα L(t)tα (0 ≤ α < 2), (3)

where L(t) fulfills the conditions

lim
t→∞

L(t) = 1, (4)

lim
t→∞

t
d L(t)

dt
= 0. (5)

For physical reasons L(t) must be positive. The ballistic
asymptotic regime, where α = 2, is not considered in the fol-
lowing. By construction, L(t) belongs to the class of slowly

varying functions,42, 43 which are defined through the weaker
condition limt→∞ L(λt)/L(t) = 1, with λ > 0.

The general asymptotic form (3) of the MSD yields a di-
rect link to a Tauberian theorem due to Hardy, Littlewood, and
Karamata (HLK),42, 43 which establishes a relation between
slowly growing functions and their Laplace transforms,

h(t)
t→∞∼ L(t)tρ ⇔ ĥ(s)

s→0∼ L(1/s)
$(ρ + 1)

sρ+1
(ρ > −1).

(6)
Here ĥ(s) =

∫ ∞
0 dt exp(−st)h(t) (ℜ{s} > 0) denotes the

Laplace transform of h(t). Noting that ĥ(0) =
∫ ∞

0 dt h(t), the
theorem can be intuitively understood. It states that the di-
vergence of the integral

∫ t
0 dτ h(τ ) as t approaches infinity is

reflected in the divergence of the Laplace transform of h(t), as
s approaches zero. From the asymptotic form (3) of the MSD
and the HLK theorem one can conclude that

Ŵ (s)
s→0∼ 2Dα L(1/s)

$(α + 1)
sα+1

. (7)

The relation of this expression to the VACF of the diffusing
particle follows from the convolution relation44

W (t) = 2
∫ t

0
dt ′ (t − t ′)cvv (t ′), (8)

which translates by Laplace transform into

Ŵ (s) = 2 ĉvv (s)
s2

. (9)

Comparison with Eq. (7) shows that

ĉvv (s)
s→0∼ Dα$(α + 1)L(1/s)s1−α. (10)

From expression (10) one can derive a generalized Kubo rela-
tion for the fractional diffusion constant which holds for both
normal and anomalous diffusion processes. The first step con-
sists in solving Eq. (10) for Dα . Using that lims→0 L(1/s) = 1
on account of Eq. (4), one obtains

Dα = lim
s→0

sα−1ĉvv (s)/$(1 + α). (11)

In a second step one recognizes that sα−1ĉvv (s) is the Laplace
transform of the fractional derivative of order α − 1 of
cvv (t) with respect to time. Writing ρ = n − β, where n
= 0, 1, 2, . . . is an integer number and β ≥ 0 is real, the frac-
tional Riemann-Liouville derivative of order ρ of an arbitrary
function g is defined through45

0∂
ρ
t g(t) = ∂

(−)n
t

∫ t

0
dt ′ (t − t ′)β−1

$(β)
g(t ′). (12)

The symbol ∂
(−)n
t denotes a normal left derivative of order n

and negative values of ρ indicate fractional integration. The
index “0” in the symbol for the fractional derivative on the
left-hand side in Eq. (12) refers to the lower limit in the inte-
gral on the right-hand side. Since lims→0 ĝ(s) =

∫ ∞
0 dt g(t),

one finds that the fractional diffusion coefficient is given by
the relation

Dα = 1
$(1 + α)

∫ ∞

0
dt 0∂

α−1
t cvv (t). (13)

For α = 1 the standard Kubo expression (2) for the diffusion
constant is retrieved and for the case α = 0, which describes

Downloaded 14 Jun 2011 to 194.167.30.120. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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aim of the paper is to derive generalized Kubo relations for
the relevant transport coefficients, which hold for both normal
and anomalous diffusion, and to formulate general conditions
for anomalous diffusion, enabling a simple physical interpre-
tation without imposing a particular model.

The paper is organized as follows: Section II treats the
derivation of generalized Kubo relations, starting from a the-
orem for asymptotic analysis which is applied to the MSD of
a diffusing particle. In a second step general conditions for
anomalous diffusion are derived, where spatially unconfined
and confined diffusion are distinguished.

In Sec. III, the results are illustrated with semi-analytical
examples and the paper is concluded by a short résumé and
an outlook.

II. THEORY

A. Kubo relation for Dα

Kubo relations establish a connection between macro-
scopic transport coefficients and the microscopic Hamiltonian
dynamics of the system under consideration.41 Each trans-
port coefficient is expressed by an integral over a correspond-
ing time correlation function. In case of diffusion processes
one considers the velocity autocorrelation function (VACF),
cvv (t) = ⟨v(t) · v(0)⟩, and the diffusion coefficient is given by
the well-known relation

D =
∫ ∞

0
dt cvv (t), (2)

if one assumes unconfined normal diffusion.
A generalization of expression (2) covering both normal

and anomalous diffusion can be derived from an appropriate
asymptotic analysis of the MSD. Assuming isotropic diffu-
sion, its asymptotic form may be written as

W (t)
t→∞∼ 2Dα L(t)tα (0 ≤ α < 2), (3)

where L(t) fulfills the conditions

lim
t→∞

L(t) = 1, (4)

lim
t→∞

t
d L(t)

dt
= 0. (5)

For physical reasons L(t) must be positive. The ballistic
asymptotic regime, where α = 2, is not considered in the fol-
lowing. By construction, L(t) belongs to the class of slowly

varying functions,42, 43 which are defined through the weaker
condition limt→∞ L(λt)/L(t) = 1, with λ > 0.

The general asymptotic form (3) of the MSD yields a di-
rect link to a Tauberian theorem due to Hardy, Littlewood, and
Karamata (HLK),42, 43 which establishes a relation between
slowly growing functions and their Laplace transforms,

h(t)
t→∞∼ L(t)tρ ⇔ ĥ(s)

s→0∼ L(1/s)
$(ρ + 1)

sρ+1
(ρ > −1).

(6)
Here ĥ(s) =

∫ ∞
0 dt exp(−st)h(t) (ℜ{s} > 0) denotes the

Laplace transform of h(t). Noting that ĥ(0) =
∫ ∞

0 dt h(t), the
theorem can be intuitively understood. It states that the di-
vergence of the integral

∫ t
0 dτ h(τ ) as t approaches infinity is

reflected in the divergence of the Laplace transform of h(t), as
s approaches zero. From the asymptotic form (3) of the MSD
and the HLK theorem one can conclude that

Ŵ (s)
s→0∼ 2Dα L(1/s)

$(α + 1)
sα+1

. (7)

The relation of this expression to the VACF of the diffusing
particle follows from the convolution relation44

W (t) = 2
∫ t

0
dt ′ (t − t ′)cvv (t ′), (8)

which translates by Laplace transform into

Ŵ (s) = 2 ĉvv (s)
s2

. (9)

Comparison with Eq. (7) shows that

ĉvv (s)
s→0∼ Dα$(α + 1)L(1/s)s1−α. (10)

From expression (10) one can derive a generalized Kubo rela-
tion for the fractional diffusion constant which holds for both
normal and anomalous diffusion processes. The first step con-
sists in solving Eq. (10) for Dα . Using that lims→0 L(1/s) = 1
on account of Eq. (4), one obtains

Dα = lim
s→0

sα−1ĉvv (s)/$(1 + α). (11)

In a second step one recognizes that sα−1ĉvv (s) is the Laplace
transform of the fractional derivative of order α − 1 of
cvv (t) with respect to time. Writing ρ = n − β, where n
= 0, 1, 2, . . . is an integer number and β ≥ 0 is real, the frac-
tional Riemann-Liouville derivative of order ρ of an arbitrary
function g is defined through45

0∂
ρ
t g(t) = ∂

(−)n
t

∫ t

0
dt ′ (t − t ′)β−1

$(β)
g(t ′). (12)

The symbol ∂
(−)n
t denotes a normal left derivative of order n

and negative values of ρ indicate fractional integration. The
index “0” in the symbol for the fractional derivative on the
left-hand side in Eq. (12) refers to the lower limit in the inte-
gral on the right-hand side. Since lims→0 ĝ(s) =

∫ ∞
0 dt g(t),

one finds that the fractional diffusion coefficient is given by
the relation

Dα = 1
$(1 + α)

∫ ∞

0
dt 0∂

α−1
t cvv (t). (13)

For α = 1 the standard Kubo expression (2) for the diffusion
constant is retrieved and for the case α = 0, which describes
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spatially limited diffusion where limt→∞ W (t) = 2D0, one
obtains

D0 = lim
T →∞

∫ T

0
dt

∫ t

0
dτ cvv (τ )

= lim
T →∞

∫ T

0
dτ (T −τ )cvv (τ ) = lim

T →∞
W (T )/2. (14)

Since limT →∞ W (T ) = 2⟨u2⟩, where ⟨u2⟩ = ⟨x2⟩ − ⟨x⟩2 is
the mean square position fluctuation of the particle, it follows
that

D0 = ⟨u2⟩. (15)

B. Generalized fluctuation-dissipation theorem

In the framework of the generalized Langevin equation
developed by Zwanzig,39, 40 the motion of a tagged particle in
an isotropic solvent is described by an equation of motion of
the form

v̇(t) = −
∫ t

0
dt ′ κ(t − t ′)v(t ′) + f(+)(t), (16)

where v(t) is the velocity of the particle, κ(t) is the corre-
sponding memory function, and f(+)(t) a generalized acceler-
ation fulfilling the orthogonality relation ⟨v(t) · f(+)(t ′)⟩ = 0.
In contrast to a full Hamiltonian description of the system,
the solvent is not described explicitly, but both κ(t) and f(+)(t)
can be, in principle, expressed by the microscopic dynamical
variables describing the full system. They are thus fully de-
terministic quantities. For details the reader is referred to the
monograph by Zwanzig.40 Due to the orthogonality between
v and f(+), the time evolution of the VACF is described by the
integro-differential equation

∂t cvv (t) = −
∫ t

0
dt ′ cvv (t − t ′)κ(t ′). (17)

The Laplace transform of this integral equation can be solved
for the Laplace transformed VACF,

ĉvv (s) = ⟨v2⟩
s + κ̂(s)

, (18)

which may be inserted into Eq. (9) to yield

Ŵ (s)
s→0∼ ⟨v2⟩

s2κ̂(s)
. (19)

Here ⟨v2⟩ = cvv (0) and the assumption s3 ≪ s2κ̂(s) has been
made, which is correct for s → 0 if ballistic diffusion is ex-
cluded. In the latter case one would have W (t)

t→∞∼ t2 and

therefore Ŵ (s)
s→0∼ s−3. Equating expressions (7) and (19)

leads then to

κ̂(s)
s→0∼

〈
v2

〉

Dα%(α + 1)
sα−1

L(1/s)
. (20)

Analogously to a fractional diffusion coefficient one can de-
fine a fractional relaxation constant through

ηα = %(1 + α) lim
s→0

s1−ακ̂(s), (21)

which becomes in the time domain

ηα = %(1 + α)
∫ ∞

0
dt 0∂

1−α
t κ(t), (22)

and leads to the fractional version of the fluctuation-
dissipation theorem,

Dα = ⟨v2⟩
ηα

. (23)

It should be noted that the same relation for phenomenologi-
cal constants Dα and ηα has been found in Ref. 28. For α = 1
one retrieves the standard definition η =

∫ ∞
0 dt κ(t) for the

relaxation constant and for spatially confined diffusion one
obtains

η0 =
∫ ∞

0
dt ∂

(−)
t κ(t) = κ(∞). (24)

Here is has been used that ∂
(−)
t is a left derivative and that

κ(t) = θ (t)κ(t) (θ (t) is the Heaviside function) since the
memory function is causal. On the other hand, it follows from
D0 = ⟨v2⟩/η0 = ⟨u2⟩ that

η0 = κ(∞) = ⟨v2⟩
⟨u2⟩

. (25)

C. Conditions for anomalous diffusion in the time
domain

A further application of the HLK theorem permits the
derivation of conditions for the asymptotic form of the VACF
and its memory function in the time domain. To derive these
conditions we introduce the functions

f (t) =
∫ t

0
dτ cvv (τ ), (26)

g(t) =
∫ t

0
dτ κ(τ ). (27)

One recognizes that f (∞) = D and g(∞) = η in case of nor-
mal unconfined diffusion. Defining the slowly varying func-
tions

L f (t) = αDα L(t), (28)

Lg(t) =
〈
v2

〉

Dα%(2 − α)%(α + 1)L(t)
, (29)

and using that f̂ (s) = ĉvv (s)/s and ĝ(s) = κ̂(s)/s, we obtain
the following equivalences from Eqs. (10) and (20), and from
the HLK theorem (6),

f̂ (s)
s→0∼ L f (1/s)

%(α)
sα

⇔ f (t)
t→∞∼ L f (t)tα−1, (30)

ĝ(s)
s→0∼ Lg(1/s)

%(2 − α)
s2−α

⇔ g(t)
t→∞∼ Lg(t)t1−α. (31)

Note that if L(t) is a slowly varying function, the same is true
for 1/L(t). On account of Eqs. (26) and (27), differentiation of
f (t) and g(t) for large times leads to necessary conditions for
the asymptotic forms of the VACF and its memory function.
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spatially limited diffusion where limt→∞ W (t) = 2D0, one
obtains

D0 = lim
T →∞

∫ T

0
dt

∫ t

0
dτ cvv (τ )

= lim
T →∞

∫ T

0
dτ (T −τ )cvv (τ ) = lim

T →∞
W (T )/2. (14)

Since limT →∞ W (T ) = 2⟨u2⟩, where ⟨u2⟩ = ⟨x2⟩ − ⟨x⟩2 is
the mean square position fluctuation of the particle, it follows
that

D0 = ⟨u2⟩. (15)

B. Generalized fluctuation-dissipation theorem

In the framework of the generalized Langevin equation
developed by Zwanzig,39, 40 the motion of a tagged particle in
an isotropic solvent is described by an equation of motion of
the form

v̇(t) = −
∫ t

0
dt ′ κ(t − t ′)v(t ′) + f(+)(t), (16)

where v(t) is the velocity of the particle, κ(t) is the corre-
sponding memory function, and f(+)(t) a generalized acceler-
ation fulfilling the orthogonality relation ⟨v(t) · f(+)(t ′)⟩ = 0.
In contrast to a full Hamiltonian description of the system,
the solvent is not described explicitly, but both κ(t) and f(+)(t)
can be, in principle, expressed by the microscopic dynamical
variables describing the full system. They are thus fully de-
terministic quantities. For details the reader is referred to the
monograph by Zwanzig.40 Due to the orthogonality between
v and f(+), the time evolution of the VACF is described by the
integro-differential equation

∂t cvv (t) = −
∫ t

0
dt ′ cvv (t − t ′)κ(t ′). (17)

The Laplace transform of this integral equation can be solved
for the Laplace transformed VACF,

ĉvv (s) = ⟨v2⟩
s + κ̂(s)

, (18)

which may be inserted into Eq. (9) to yield

Ŵ (s)
s→0∼ ⟨v2⟩

s2κ̂(s)
. (19)

Here ⟨v2⟩ = cvv (0) and the assumption s3 ≪ s2κ̂(s) has been
made, which is correct for s → 0 if ballistic diffusion is ex-
cluded. In the latter case one would have W (t)

t→∞∼ t2 and

therefore Ŵ (s)
s→0∼ s−3. Equating expressions (7) and (19)

leads then to

κ̂(s)
s→0∼

〈
v2

〉

Dα%(α + 1)
sα−1

L(1/s)
. (20)

Analogously to a fractional diffusion coefficient one can de-
fine a fractional relaxation constant through

ηα = %(1 + α) lim
s→0

s1−ακ̂(s), (21)

which becomes in the time domain

ηα = %(1 + α)
∫ ∞

0
dt 0∂

1−α
t κ(t), (22)

and leads to the fractional version of the fluctuation-
dissipation theorem,

Dα = ⟨v2⟩
ηα

. (23)

It should be noted that the same relation for phenomenologi-
cal constants Dα and ηα has been found in Ref. 28. For α = 1
one retrieves the standard definition η =

∫ ∞
0 dt κ(t) for the

relaxation constant and for spatially confined diffusion one
obtains

η0 =
∫ ∞

0
dt ∂

(−)
t κ(t) = κ(∞). (24)

Here is has been used that ∂
(−)
t is a left derivative and that

κ(t) = θ (t)κ(t) (θ (t) is the Heaviside function) since the
memory function is causal. On the other hand, it follows from
D0 = ⟨v2⟩/η0 = ⟨u2⟩ that

η0 = κ(∞) = ⟨v2⟩
⟨u2⟩

. (25)

C. Conditions for anomalous diffusion in the time
domain

A further application of the HLK theorem permits the
derivation of conditions for the asymptotic form of the VACF
and its memory function in the time domain. To derive these
conditions we introduce the functions

f (t) =
∫ t

0
dτ cvv (τ ), (26)

g(t) =
∫ t

0
dτ κ(τ ). (27)

One recognizes that f (∞) = D and g(∞) = η in case of nor-
mal unconfined diffusion. Defining the slowly varying func-
tions

L f (t) = αDα L(t), (28)

Lg(t) =
〈
v2

〉

Dα%(2 − α)%(α + 1)L(t)
, (29)

and using that f̂ (s) = ĉvv (s)/s and ĝ(s) = κ̂(s)/s, we obtain
the following equivalences from Eqs. (10) and (20), and from
the HLK theorem (6),

f̂ (s)
s→0∼ L f (1/s)

%(α)
sα

⇔ f (t)
t→∞∼ L f (t)tα−1, (30)

ĝ(s)
s→0∼ Lg(1/s)

%(2 − α)
s2−α

⇔ g(t)
t→∞∼ Lg(t)t1−α. (31)

Note that if L(t) is a slowly varying function, the same is true
for 1/L(t). On account of Eqs. (26) and (27), differentiation of
f (t) and g(t) for large times leads to necessary conditions for
the asymptotic forms of the VACF and its memory function.
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continuous time random walk model,30, 37 and an illustrative
interpretation of the memory kernel in FLEs for the descrip-
tion of subdiffusion in viscoelastic media can be found in
Ref. 38.

In this paper, a theoretical description of anomalous dif-
fusion processes is developed which combines a formally
exact description of single particle dynamics within the
framework of the generalized Langevin equation39, 40 with
an asymptotic analysis of the relevant observables for long
times. Memory effects enter here naturally through the mem-
ory function of the velocity autocorrelation function of the
diffusing particle, which is in turn related to the MSD. The
aim of the paper is to derive generalized Kubo relations for
the relevant transport coefficients, which hold for both normal
and anomalous diffusion, and to formulate general conditions
for anomalous diffusion, enabling a simple physical interpre-
tation without imposing a particular model.

The paper is organized as follows: Section II treats the
derivation of generalized Kubo relations, starting from a the-
orem for asymptotic analysis which is applied to the MSD of
a diffusing particle. In a second step general conditions for
anomalous diffusion are derived, where spatially unconfined
and confined diffusion are distinguished.

In Sec. III, the results are illustrated with semi-analytical
examples and the paper is concluded by a short résumé and
an outlook.

II. THEORY

A. Kubo relation for Dα

Kubo relations establish a connection between macro-
scopic transport coefficients and the microscopic Hamiltonian
dynamics of the system under consideration.41 Each trans-
port coefficient is expressed by an integral over a correspond-
ing time correlation function. In case of diffusion processes
one considers the velocity autocorrelation function (VACF),
cvv (t) = ⟨v(t) · v(0)⟩, and the diffusion coefficient is given by
the well-known relation

D =
∫ ∞

0
dt cvv (t), (2)

if one assumes unconfined normal diffusion.
A generalization of expression (2) covering both normal

and anomalous diffusion can be derived from an appropriate
asymptotic analysis of the MSD. Assuming isotropic diffu-
sion, its asymptotic form may be written as

W (t)
t→∞∼ 2Dα L(t)tα (0 ≤ α < 2), (3)

where L(t) fulfills the conditions

lim
t→∞

L(t) = 1, (4)

lim
t→∞

t
d L(t)

dt
= 0. (5)

For physical reasons L(t) must be positive. The ballistic
asymptotic regime, where α = 2, is not considered in the fol-
lowing. By construction, L(t) belongs to the class of slowly

varying functions,42, 43 which are defined through the weaker
condition limt→∞ L(λt)/L(t) = 1, with λ > 0.

The general asymptotic form (3) of the MSD yields a di-
rect link to a Tauberian theorem due to Hardy, Littlewood, and
Karamata (HLK),42, 43 which establishes a relation between
slowly growing functions and their Laplace transforms,

h(t)
t→∞∼ L(t)tρ ⇔ ĥ(s)

s→0∼ L(1/s)
$(ρ + 1)

sρ+1
(ρ > −1).

(6)
Here ĥ(s) =

∫ ∞
0 dt exp(−st)h(t) (ℜ{s} > 0) denotes the

Laplace transform of h(t). Noting that ĥ(0) =
∫ ∞

0 dt h(t), the
theorem can be intuitively understood. It states that the di-
vergence of the integral

∫ t
0 dτ h(τ ) as t approaches infinity is

reflected in the divergence of the Laplace transform of h(t), as
s approaches zero. From the asymptotic form (3) of the MSD
and the HLK theorem one can conclude that

Ŵ (s)
s→0∼ 2Dα L(1/s)

$(α + 1)
sα+1

. (7)

The relation of this expression to the VACF of the diffusing
particle follows from the convolution relation44

W (t) = 2
∫ t

0
dt ′ (t − t ′)cvv (t ′), (8)

which translates by Laplace transform into

Ŵ (s) = 2 ĉvv (s)
s2

. (9)

Comparison with Eq. (7) shows that

ĉvv (s)
s→0∼ Dα$(α + 1)L(1/s)s1−α. (10)

From expression (10) one can derive a generalized Kubo rela-
tion for the fractional diffusion constant which holds for both
normal and anomalous diffusion processes. The first step con-
sists in solving Eq. (10) for Dα . Using that lims→0 L(1/s) = 1
on account of Eq. (4), one obtains

Dα = lim
s→0

sα−1ĉvv (s)/$(1 + α). (11)

In a second step one recognizes that sα−1ĉvv (s) is the Laplace
transform of the fractional derivative of order α − 1 of
cvv (t) with respect to time. Writing ρ = n − β, where n
= 0, 1, 2, . . . is an integer number and β ≥ 0 is real, the frac-
tional Riemann-Liouville derivative of order ρ of an arbitrary
function g is defined through45

0∂
ρ
t g(t) = ∂

(−)n
t

∫ t

0
dt ′ (t − t ′)β−1

$(β)
g(t ′). (12)

The symbol ∂
(−)n
t denotes a normal left derivative of order n

and negative values of ρ indicate fractional integration. The
index “0” in the symbol for the fractional derivative on the
left-hand side in Eq. (12) refers to the lower limit in the inte-
gral on the right-hand side. Since lims→0 ĝ(s) =

∫ ∞
0 dt g(t),

one finds that the fractional diffusion coefficient is given by
the relation

Dα = 1
$(1 + α)

∫ ∞

0
dt 0∂

α−1
t cvv (t). (13)

For α = 1 the standard Kubo expression (2) for the diffusion
constant is retrieved and for the case α = 0, which describes
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continuous time random walk model,30, 37 and an illustrative
interpretation of the memory kernel in FLEs for the descrip-
tion of subdiffusion in viscoelastic media can be found in
Ref. 38.

In this paper, a theoretical description of anomalous dif-
fusion processes is developed which combines a formally
exact description of single particle dynamics within the
framework of the generalized Langevin equation39, 40 with
an asymptotic analysis of the relevant observables for long
times. Memory effects enter here naturally through the mem-
ory function of the velocity autocorrelation function of the
diffusing particle, which is in turn related to the MSD. The
aim of the paper is to derive generalized Kubo relations for
the relevant transport coefficients, which hold for both normal
and anomalous diffusion, and to formulate general conditions
for anomalous diffusion, enabling a simple physical interpre-
tation without imposing a particular model.

The paper is organized as follows: Section II treats the
derivation of generalized Kubo relations, starting from a the-
orem for asymptotic analysis which is applied to the MSD of
a diffusing particle. In a second step general conditions for
anomalous diffusion are derived, where spatially unconfined
and confined diffusion are distinguished.

In Sec. III, the results are illustrated with semi-analytical
examples and the paper is concluded by a short résumé and
an outlook.

II. THEORY

A. Kubo relation for Dα

Kubo relations establish a connection between macro-
scopic transport coefficients and the microscopic Hamiltonian
dynamics of the system under consideration.41 Each trans-
port coefficient is expressed by an integral over a correspond-
ing time correlation function. In case of diffusion processes
one considers the velocity autocorrelation function (VACF),
cvv (t) = ⟨v(t) · v(0)⟩, and the diffusion coefficient is given by
the well-known relation

D =
∫ ∞

0
dt cvv (t), (2)

if one assumes unconfined normal diffusion.
A generalization of expression (2) covering both normal

and anomalous diffusion can be derived from an appropriate
asymptotic analysis of the MSD. Assuming isotropic diffu-
sion, its asymptotic form may be written as

W (t)
t→∞∼ 2Dα L(t)tα (0 ≤ α < 2), (3)

where L(t) fulfills the conditions

lim
t→∞

L(t) = 1, (4)

lim
t→∞

t
d L(t)

dt
= 0. (5)

For physical reasons L(t) must be positive. The ballistic
asymptotic regime, where α = 2, is not considered in the fol-
lowing. By construction, L(t) belongs to the class of slowly

varying functions,42, 43 which are defined through the weaker
condition limt→∞ L(λt)/L(t) = 1, with λ > 0.

The general asymptotic form (3) of the MSD yields a di-
rect link to a Tauberian theorem due to Hardy, Littlewood, and
Karamata (HLK),42, 43 which establishes a relation between
slowly growing functions and their Laplace transforms,

h(t)
t→∞∼ L(t)tρ ⇔ ĥ(s)

s→0∼ L(1/s)
$(ρ + 1)

sρ+1
(ρ > −1).

(6)
Here ĥ(s) =

∫ ∞
0 dt exp(−st)h(t) (ℜ{s} > 0) denotes the

Laplace transform of h(t). Noting that ĥ(0) =
∫ ∞

0 dt h(t), the
theorem can be intuitively understood. It states that the di-
vergence of the integral

∫ t
0 dτ h(τ ) as t approaches infinity is

reflected in the divergence of the Laplace transform of h(t), as
s approaches zero. From the asymptotic form (3) of the MSD
and the HLK theorem one can conclude that

Ŵ (s)
s→0∼ 2Dα L(1/s)

$(α + 1)
sα+1

. (7)

The relation of this expression to the VACF of the diffusing
particle follows from the convolution relation44

W (t) = 2
∫ t

0
dt ′ (t − t ′)cvv (t ′), (8)

which translates by Laplace transform into

Ŵ (s) = 2 ĉvv (s)
s2

. (9)

Comparison with Eq. (7) shows that

ĉvv (s)
s→0∼ Dα$(α + 1)L(1/s)s1−α. (10)

From expression (10) one can derive a generalized Kubo rela-
tion for the fractional diffusion constant which holds for both
normal and anomalous diffusion processes. The first step con-
sists in solving Eq. (10) for Dα . Using that lims→0 L(1/s) = 1
on account of Eq. (4), one obtains

Dα = lim
s→0

sα−1ĉvv (s)/$(1 + α). (11)

In a second step one recognizes that sα−1ĉvv (s) is the Laplace
transform of the fractional derivative of order α − 1 of
cvv (t) with respect to time. Writing ρ = n − β, where n
= 0, 1, 2, . . . is an integer number and β ≥ 0 is real, the frac-
tional Riemann-Liouville derivative of order ρ of an arbitrary
function g is defined through45

0∂
ρ
t g(t) = ∂

(−)n
t

∫ t

0
dt ′ (t − t ′)β−1

$(β)
g(t ′). (12)

The symbol ∂
(−)n
t denotes a normal left derivative of order n

and negative values of ρ indicate fractional integration. The
index “0” in the symbol for the fractional derivative on the
left-hand side in Eq. (12) refers to the lower limit in the inte-
gral on the right-hand side. Since lims→0 ĝ(s) =

∫ ∞
0 dt g(t),

one finds that the fractional diffusion coefficient is given by
the relation

Dα = 1
$(1 + α)

∫ ∞

0
dt 0∂

α−1
t cvv (t). (13)

For α = 1 the standard Kubo expression (2) for the diffusion
constant is retrieved and for the case α = 0, which describes
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continuous time random walk model,30, 37 and an illustrative
interpretation of the memory kernel in FLEs for the descrip-
tion of subdiffusion in viscoelastic media can be found in
Ref. 38.

In this paper, a theoretical description of anomalous dif-
fusion processes is developed which combines a formally
exact description of single particle dynamics within the
framework of the generalized Langevin equation39, 40 with
an asymptotic analysis of the relevant observables for long
times. Memory effects enter here naturally through the mem-
ory function of the velocity autocorrelation function of the
diffusing particle, which is in turn related to the MSD. The
aim of the paper is to derive generalized Kubo relations for
the relevant transport coefficients, which hold for both normal
and anomalous diffusion, and to formulate general conditions
for anomalous diffusion, enabling a simple physical interpre-
tation without imposing a particular model.

The paper is organized as follows: Section II treats the
derivation of generalized Kubo relations, starting from a the-
orem for asymptotic analysis which is applied to the MSD of
a diffusing particle. In a second step general conditions for
anomalous diffusion are derived, where spatially unconfined
and confined diffusion are distinguished.

In Sec. III, the results are illustrated with semi-analytical
examples and the paper is concluded by a short résumé and
an outlook.

II. THEORY

A. Kubo relation for Dα

Kubo relations establish a connection between macro-
scopic transport coefficients and the microscopic Hamiltonian
dynamics of the system under consideration.41 Each trans-
port coefficient is expressed by an integral over a correspond-
ing time correlation function. In case of diffusion processes
one considers the velocity autocorrelation function (VACF),
cvv (t) = ⟨v(t) · v(0)⟩, and the diffusion coefficient is given by
the well-known relation

D =
∫ ∞

0
dt cvv (t), (2)

if one assumes unconfined normal diffusion.
A generalization of expression (2) covering both normal

and anomalous diffusion can be derived from an appropriate
asymptotic analysis of the MSD. Assuming isotropic diffu-
sion, its asymptotic form may be written as

W (t)
t→∞∼ 2Dα L(t)tα (0 ≤ α < 2), (3)

where L(t) fulfills the conditions

lim
t→∞

L(t) = 1, (4)

lim
t→∞

t
d L(t)

dt
= 0. (5)

For physical reasons L(t) must be positive. The ballistic
asymptotic regime, where α = 2, is not considered in the fol-
lowing. By construction, L(t) belongs to the class of slowly

varying functions,42, 43 which are defined through the weaker
condition limt→∞ L(λt)/L(t) = 1, with λ > 0.

The general asymptotic form (3) of the MSD yields a di-
rect link to a Tauberian theorem due to Hardy, Littlewood, and
Karamata (HLK),42, 43 which establishes a relation between
slowly growing functions and their Laplace transforms,

h(t)
t→∞∼ L(t)tρ ⇔ ĥ(s)

s→0∼ L(1/s)
$(ρ + 1)

sρ+1
(ρ > −1).

(6)
Here ĥ(s) =

∫ ∞
0 dt exp(−st)h(t) (ℜ{s} > 0) denotes the

Laplace transform of h(t). Noting that ĥ(0) =
∫ ∞

0 dt h(t), the
theorem can be intuitively understood. It states that the di-
vergence of the integral

∫ t
0 dτ h(τ ) as t approaches infinity is

reflected in the divergence of the Laplace transform of h(t), as
s approaches zero. From the asymptotic form (3) of the MSD
and the HLK theorem one can conclude that

Ŵ (s)
s→0∼ 2Dα L(1/s)

$(α + 1)
sα+1

. (7)

The relation of this expression to the VACF of the diffusing
particle follows from the convolution relation44

W (t) = 2
∫ t

0
dt ′ (t − t ′)cvv (t ′), (8)

which translates by Laplace transform into

Ŵ (s) = 2 ĉvv (s)
s2

. (9)

Comparison with Eq. (7) shows that

ĉvv (s)
s→0∼ Dα$(α + 1)L(1/s)s1−α. (10)

From expression (10) one can derive a generalized Kubo rela-
tion for the fractional diffusion constant which holds for both
normal and anomalous diffusion processes. The first step con-
sists in solving Eq. (10) for Dα . Using that lims→0 L(1/s) = 1
on account of Eq. (4), one obtains

Dα = lim
s→0

sα−1ĉvv (s)/$(1 + α). (11)

In a second step one recognizes that sα−1ĉvv (s) is the Laplace
transform of the fractional derivative of order α − 1 of
cvv (t) with respect to time. Writing ρ = n − β, where n
= 0, 1, 2, . . . is an integer number and β ≥ 0 is real, the frac-
tional Riemann-Liouville derivative of order ρ of an arbitrary
function g is defined through45

0∂
ρ
t g(t) = ∂

(−)n
t

∫ t

0
dt ′ (t − t ′)β−1

$(β)
g(t ′). (12)

The symbol ∂
(−)n
t denotes a normal left derivative of order n

and negative values of ρ indicate fractional integration. The
index “0” in the symbol for the fractional derivative on the
left-hand side in Eq. (12) refers to the lower limit in the inte-
gral on the right-hand side. Since lims→0 ĝ(s) =

∫ ∞
0 dt g(t),

one finds that the fractional diffusion coefficient is given by
the relation

Dα = 1
$(1 + α)

∫ ∞

0
dt 0∂

α−1
t cvv (t). (13)

For α = 1 the standard Kubo expression (2) for the diffusion
constant is retrieved and for the case α = 0, which describes
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continuous time random walk model,30, 37 and an illustrative
interpretation of the memory kernel in FLEs for the descrip-
tion of subdiffusion in viscoelastic media can be found in
Ref. 38.

In this paper, a theoretical description of anomalous dif-
fusion processes is developed which combines a formally
exact description of single particle dynamics within the
framework of the generalized Langevin equation39, 40 with
an asymptotic analysis of the relevant observables for long
times. Memory effects enter here naturally through the mem-
ory function of the velocity autocorrelation function of the
diffusing particle, which is in turn related to the MSD. The
aim of the paper is to derive generalized Kubo relations for
the relevant transport coefficients, which hold for both normal
and anomalous diffusion, and to formulate general conditions
for anomalous diffusion, enabling a simple physical interpre-
tation without imposing a particular model.

The paper is organized as follows: Section II treats the
derivation of generalized Kubo relations, starting from a the-
orem for asymptotic analysis which is applied to the MSD of
a diffusing particle. In a second step general conditions for
anomalous diffusion are derived, where spatially unconfined
and confined diffusion are distinguished.

In Sec. III, the results are illustrated with semi-analytical
examples and the paper is concluded by a short résumé and
an outlook.

II. THEORY

A. Kubo relation for Dα

Kubo relations establish a connection between macro-
scopic transport coefficients and the microscopic Hamiltonian
dynamics of the system under consideration.41 Each trans-
port coefficient is expressed by an integral over a correspond-
ing time correlation function. In case of diffusion processes
one considers the velocity autocorrelation function (VACF),
cvv (t) = ⟨v(t) · v(0)⟩, and the diffusion coefficient is given by
the well-known relation

D =
∫ ∞

0
dt cvv (t), (2)

if one assumes unconfined normal diffusion.
A generalization of expression (2) covering both normal

and anomalous diffusion can be derived from an appropriate
asymptotic analysis of the MSD. Assuming isotropic diffu-
sion, its asymptotic form may be written as

W (t)
t→∞∼ 2Dα L(t)tα (0 ≤ α < 2), (3)

where L(t) fulfills the conditions

lim
t→∞

L(t) = 1, (4)

lim
t→∞

t
d L(t)

dt
= 0. (5)

For physical reasons L(t) must be positive. The ballistic
asymptotic regime, where α = 2, is not considered in the fol-
lowing. By construction, L(t) belongs to the class of slowly

varying functions,42, 43 which are defined through the weaker
condition limt→∞ L(λt)/L(t) = 1, with λ > 0.

The general asymptotic form (3) of the MSD yields a di-
rect link to a Tauberian theorem due to Hardy, Littlewood, and
Karamata (HLK),42, 43 which establishes a relation between
slowly growing functions and their Laplace transforms,

h(t)
t→∞∼ L(t)tρ ⇔ ĥ(s)

s→0∼ L(1/s)
$(ρ + 1)

sρ+1
(ρ > −1).

(6)
Here ĥ(s) =

∫ ∞
0 dt exp(−st)h(t) (ℜ{s} > 0) denotes the

Laplace transform of h(t). Noting that ĥ(0) =
∫ ∞

0 dt h(t), the
theorem can be intuitively understood. It states that the di-
vergence of the integral

∫ t
0 dτ h(τ ) as t approaches infinity is

reflected in the divergence of the Laplace transform of h(t), as
s approaches zero. From the asymptotic form (3) of the MSD
and the HLK theorem one can conclude that

Ŵ (s)
s→0∼ 2Dα L(1/s)

$(α + 1)
sα+1

. (7)

The relation of this expression to the VACF of the diffusing
particle follows from the convolution relation44

W (t) = 2
∫ t

0
dt ′ (t − t ′)cvv (t ′), (8)

which translates by Laplace transform into

Ŵ (s) = 2 ĉvv (s)
s2

. (9)

Comparison with Eq. (7) shows that

ĉvv (s)
s→0∼ Dα$(α + 1)L(1/s)s1−α. (10)

From expression (10) one can derive a generalized Kubo rela-
tion for the fractional diffusion constant which holds for both
normal and anomalous diffusion processes. The first step con-
sists in solving Eq. (10) for Dα . Using that lims→0 L(1/s) = 1
on account of Eq. (4), one obtains

Dα = lim
s→0

sα−1ĉvv (s)/$(1 + α). (11)

In a second step one recognizes that sα−1ĉvv (s) is the Laplace
transform of the fractional derivative of order α − 1 of
cvv (t) with respect to time. Writing ρ = n − β, where n
= 0, 1, 2, . . . is an integer number and β ≥ 0 is real, the frac-
tional Riemann-Liouville derivative of order ρ of an arbitrary
function g is defined through45

0∂
ρ
t g(t) = ∂

(−)n
t

∫ t

0
dt ′ (t − t ′)β−1

$(β)
g(t ′). (12)

The symbol ∂
(−)n
t denotes a normal left derivative of order n

and negative values of ρ indicate fractional integration. The
index “0” in the symbol for the fractional derivative on the
left-hand side in Eq. (12) refers to the lower limit in the inte-
gral on the right-hand side. Since lims→0 ĝ(s) =

∫ ∞
0 dt g(t),

one finds that the fractional diffusion coefficient is given by
the relation

Dα = 1
$(1 + α)

∫ ∞

0
dt 0∂

α−1
t cvv (t). (13)

For α = 1 the standard Kubo expression (2) for the diffusion
constant is retrieved and for the case α = 0, which describes
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continuous time random walk model,30, 37 and an illustrative
interpretation of the memory kernel in FLEs for the descrip-
tion of subdiffusion in viscoelastic media can be found in
Ref. 38.

In this paper, a theoretical description of anomalous dif-
fusion processes is developed which combines a formally
exact description of single particle dynamics within the
framework of the generalized Langevin equation39, 40 with
an asymptotic analysis of the relevant observables for long
times. Memory effects enter here naturally through the mem-
ory function of the velocity autocorrelation function of the
diffusing particle, which is in turn related to the MSD. The
aim of the paper is to derive generalized Kubo relations for
the relevant transport coefficients, which hold for both normal
and anomalous diffusion, and to formulate general conditions
for anomalous diffusion, enabling a simple physical interpre-
tation without imposing a particular model.

The paper is organized as follows: Section II treats the
derivation of generalized Kubo relations, starting from a the-
orem for asymptotic analysis which is applied to the MSD of
a diffusing particle. In a second step general conditions for
anomalous diffusion are derived, where spatially unconfined
and confined diffusion are distinguished.

In Sec. III, the results are illustrated with semi-analytical
examples and the paper is concluded by a short résumé and
an outlook.

II. THEORY

A. Kubo relation for Dα

Kubo relations establish a connection between macro-
scopic transport coefficients and the microscopic Hamiltonian
dynamics of the system under consideration.41 Each trans-
port coefficient is expressed by an integral over a correspond-
ing time correlation function. In case of diffusion processes
one considers the velocity autocorrelation function (VACF),
cvv (t) = ⟨v(t) · v(0)⟩, and the diffusion coefficient is given by
the well-known relation

D =
∫ ∞

0
dt cvv (t), (2)

if one assumes unconfined normal diffusion.
A generalization of expression (2) covering both normal

and anomalous diffusion can be derived from an appropriate
asymptotic analysis of the MSD. Assuming isotropic diffu-
sion, its asymptotic form may be written as

W (t)
t→∞∼ 2Dα L(t)tα (0 ≤ α < 2), (3)

where L(t) fulfills the conditions

lim
t→∞

L(t) = 1, (4)

lim
t→∞

t
d L(t)

dt
= 0. (5)

For physical reasons L(t) must be positive. The ballistic
asymptotic regime, where α = 2, is not considered in the fol-
lowing. By construction, L(t) belongs to the class of slowly

varying functions,42, 43 which are defined through the weaker
condition limt→∞ L(λt)/L(t) = 1, with λ > 0.

The general asymptotic form (3) of the MSD yields a di-
rect link to a Tauberian theorem due to Hardy, Littlewood, and
Karamata (HLK),42, 43 which establishes a relation between
slowly growing functions and their Laplace transforms,

h(t)
t→∞∼ L(t)tρ ⇔ ĥ(s)

s→0∼ L(1/s)
$(ρ + 1)

sρ+1
(ρ > −1).

(6)
Here ĥ(s) =

∫ ∞
0 dt exp(−st)h(t) (ℜ{s} > 0) denotes the

Laplace transform of h(t). Noting that ĥ(0) =
∫ ∞

0 dt h(t), the
theorem can be intuitively understood. It states that the di-
vergence of the integral

∫ t
0 dτ h(τ ) as t approaches infinity is

reflected in the divergence of the Laplace transform of h(t), as
s approaches zero. From the asymptotic form (3) of the MSD
and the HLK theorem one can conclude that

Ŵ (s)
s→0∼ 2Dα L(1/s)

$(α + 1)
sα+1

. (7)

The relation of this expression to the VACF of the diffusing
particle follows from the convolution relation44

W (t) = 2
∫ t

0
dt ′ (t − t ′)cvv (t ′), (8)

which translates by Laplace transform into

Ŵ (s) = 2 ĉvv (s)
s2

. (9)

Comparison with Eq. (7) shows that

ĉvv (s)
s→0∼ Dα$(α + 1)L(1/s)s1−α. (10)

From expression (10) one can derive a generalized Kubo rela-
tion for the fractional diffusion constant which holds for both
normal and anomalous diffusion processes. The first step con-
sists in solving Eq. (10) for Dα . Using that lims→0 L(1/s) = 1
on account of Eq. (4), one obtains

Dα = lim
s→0

sα−1ĉvv (s)/$(1 + α). (11)

In a second step one recognizes that sα−1ĉvv (s) is the Laplace
transform of the fractional derivative of order α − 1 of
cvv (t) with respect to time. Writing ρ = n − β, where n
= 0, 1, 2, . . . is an integer number and β ≥ 0 is real, the frac-
tional Riemann-Liouville derivative of order ρ of an arbitrary
function g is defined through45

0∂
ρ
t g(t) = ∂

(−)n
t

∫ t

0
dt ′ (t − t ′)β−1

$(β)
g(t ′). (12)

The symbol ∂
(−)n
t denotes a normal left derivative of order n

and negative values of ρ indicate fractional integration. The
index “0” in the symbol for the fractional derivative on the
left-hand side in Eq. (12) refers to the lower limit in the inte-
gral on the right-hand side. Since lims→0 ĝ(s) =

∫ ∞
0 dt g(t),

one finds that the fractional diffusion coefficient is given by
the relation

Dα = 1
$(1 + α)

∫ ∞

0
dt 0∂

α−1
t cvv (t). (13)

For α = 1 the standard Kubo expression (2) for the diffusion
constant is retrieved and for the case α = 0, which describes
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continuous time random walk model,30, 37 and an illustrative
interpretation of the memory kernel in FLEs for the descrip-
tion of subdiffusion in viscoelastic media can be found in
Ref. 38.

In this paper, a theoretical description of anomalous dif-
fusion processes is developed which combines a formally
exact description of single particle dynamics within the
framework of the generalized Langevin equation39, 40 with
an asymptotic analysis of the relevant observables for long
times. Memory effects enter here naturally through the mem-
ory function of the velocity autocorrelation function of the
diffusing particle, which is in turn related to the MSD. The
aim of the paper is to derive generalized Kubo relations for
the relevant transport coefficients, which hold for both normal
and anomalous diffusion, and to formulate general conditions
for anomalous diffusion, enabling a simple physical interpre-
tation without imposing a particular model.

The paper is organized as follows: Section II treats the
derivation of generalized Kubo relations, starting from a the-
orem for asymptotic analysis which is applied to the MSD of
a diffusing particle. In a second step general conditions for
anomalous diffusion are derived, where spatially unconfined
and confined diffusion are distinguished.

In Sec. III, the results are illustrated with semi-analytical
examples and the paper is concluded by a short résumé and
an outlook.

II. THEORY

A. Kubo relation for Dα

Kubo relations establish a connection between macro-
scopic transport coefficients and the microscopic Hamiltonian
dynamics of the system under consideration.41 Each trans-
port coefficient is expressed by an integral over a correspond-
ing time correlation function. In case of diffusion processes
one considers the velocity autocorrelation function (VACF),
cvv (t) = ⟨v(t) · v(0)⟩, and the diffusion coefficient is given by
the well-known relation

D =
∫ ∞

0
dt cvv (t), (2)

if one assumes unconfined normal diffusion.
A generalization of expression (2) covering both normal

and anomalous diffusion can be derived from an appropriate
asymptotic analysis of the MSD. Assuming isotropic diffu-
sion, its asymptotic form may be written as

W (t)
t→∞∼ 2Dα L(t)tα (0 ≤ α < 2), (3)

where L(t) fulfills the conditions

lim
t→∞

L(t) = 1, (4)

lim
t→∞

t
d L(t)

dt
= 0. (5)

For physical reasons L(t) must be positive. The ballistic
asymptotic regime, where α = 2, is not considered in the fol-
lowing. By construction, L(t) belongs to the class of slowly

varying functions,42, 43 which are defined through the weaker
condition limt→∞ L(λt)/L(t) = 1, with λ > 0.

The general asymptotic form (3) of the MSD yields a di-
rect link to a Tauberian theorem due to Hardy, Littlewood, and
Karamata (HLK),42, 43 which establishes a relation between
slowly growing functions and their Laplace transforms,

h(t)
t→∞∼ L(t)tρ ⇔ ĥ(s)

s→0∼ L(1/s)
$(ρ + 1)

sρ+1
(ρ > −1).

(6)
Here ĥ(s) =

∫ ∞
0 dt exp(−st)h(t) (ℜ{s} > 0) denotes the

Laplace transform of h(t). Noting that ĥ(0) =
∫ ∞

0 dt h(t), the
theorem can be intuitively understood. It states that the di-
vergence of the integral

∫ t
0 dτ h(τ ) as t approaches infinity is

reflected in the divergence of the Laplace transform of h(t), as
s approaches zero. From the asymptotic form (3) of the MSD
and the HLK theorem one can conclude that

Ŵ (s)
s→0∼ 2Dα L(1/s)

$(α + 1)
sα+1

. (7)

The relation of this expression to the VACF of the diffusing
particle follows from the convolution relation44

W (t) = 2
∫ t

0
dt ′ (t − t ′)cvv (t ′), (8)

which translates by Laplace transform into

Ŵ (s) = 2 ĉvv (s)
s2

. (9)

Comparison with Eq. (7) shows that

ĉvv (s)
s→0∼ Dα$(α + 1)L(1/s)s1−α. (10)

From expression (10) one can derive a generalized Kubo rela-
tion for the fractional diffusion constant which holds for both
normal and anomalous diffusion processes. The first step con-
sists in solving Eq. (10) for Dα . Using that lims→0 L(1/s) = 1
on account of Eq. (4), one obtains

Dα = lim
s→0

sα−1ĉvv (s)/$(1 + α). (11)

In a second step one recognizes that sα−1ĉvv (s) is the Laplace
transform of the fractional derivative of order α − 1 of
cvv (t) with respect to time. Writing ρ = n − β, where n
= 0, 1, 2, . . . is an integer number and β ≥ 0 is real, the frac-
tional Riemann-Liouville derivative of order ρ of an arbitrary
function g is defined through45

0∂
ρ
t g(t) = ∂

(−)n
t

∫ t

0
dt ′ (t − t ′)β−1

$(β)
g(t ′). (12)

The symbol ∂
(−)n
t denotes a normal left derivative of order n

and negative values of ρ indicate fractional integration. The
index “0” in the symbol for the fractional derivative on the
left-hand side in Eq. (12) refers to the lower limit in the inte-
gral on the right-hand side. Since lims→0 ĝ(s) =

∫ ∞
0 dt g(t),

one finds that the fractional diffusion coefficient is given by
the relation

Dα = 1
$(1 + α)

∫ ∞

0
dt 0∂

α−1
t cvv (t). (13)

For α = 1 the standard Kubo expression (2) for the diffusion
constant is retrieved and for the case α = 0, which describes
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continuous time random walk model,30, 37 and an illustrative
interpretation of the memory kernel in FLEs for the descrip-
tion of subdiffusion in viscoelastic media can be found in
Ref. 38.

In this paper, a theoretical description of anomalous dif-
fusion processes is developed which combines a formally
exact description of single particle dynamics within the
framework of the generalized Langevin equation39, 40 with
an asymptotic analysis of the relevant observables for long
times. Memory effects enter here naturally through the mem-
ory function of the velocity autocorrelation function of the
diffusing particle, which is in turn related to the MSD. The
aim of the paper is to derive generalized Kubo relations for
the relevant transport coefficients, which hold for both normal
and anomalous diffusion, and to formulate general conditions
for anomalous diffusion, enabling a simple physical interpre-
tation without imposing a particular model.

The paper is organized as follows: Section II treats the
derivation of generalized Kubo relations, starting from a the-
orem for asymptotic analysis which is applied to the MSD of
a diffusing particle. In a second step general conditions for
anomalous diffusion are derived, where spatially unconfined
and confined diffusion are distinguished.

In Sec. III, the results are illustrated with semi-analytical
examples and the paper is concluded by a short résumé and
an outlook.

II. THEORY

A. Kubo relation for Dα

Kubo relations establish a connection between macro-
scopic transport coefficients and the microscopic Hamiltonian
dynamics of the system under consideration.41 Each trans-
port coefficient is expressed by an integral over a correspond-
ing time correlation function. In case of diffusion processes
one considers the velocity autocorrelation function (VACF),
cvv (t) = ⟨v(t) · v(0)⟩, and the diffusion coefficient is given by
the well-known relation

D =
∫ ∞

0
dt cvv (t), (2)

if one assumes unconfined normal diffusion.
A generalization of expression (2) covering both normal

and anomalous diffusion can be derived from an appropriate
asymptotic analysis of the MSD. Assuming isotropic diffu-
sion, its asymptotic form may be written as

W (t)
t→∞∼ 2Dα L(t)tα (0 ≤ α < 2), (3)

where L(t) fulfills the conditions

lim
t→∞

L(t) = 1, (4)

lim
t→∞

t
d L(t)

dt
= 0. (5)

For physical reasons L(t) must be positive. The ballistic
asymptotic regime, where α = 2, is not considered in the fol-
lowing. By construction, L(t) belongs to the class of slowly

varying functions,42, 43 which are defined through the weaker
condition limt→∞ L(λt)/L(t) = 1, with λ > 0.

The general asymptotic form (3) of the MSD yields a di-
rect link to a Tauberian theorem due to Hardy, Littlewood, and
Karamata (HLK),42, 43 which establishes a relation between
slowly growing functions and their Laplace transforms,

h(t)
t→∞∼ L(t)tρ ⇔ ĥ(s)

s→0∼ L(1/s)
$(ρ + 1)

sρ+1
(ρ > −1).

(6)
Here ĥ(s) =

∫ ∞
0 dt exp(−st)h(t) (ℜ{s} > 0) denotes the

Laplace transform of h(t). Noting that ĥ(0) =
∫ ∞

0 dt h(t), the
theorem can be intuitively understood. It states that the di-
vergence of the integral

∫ t
0 dτ h(τ ) as t approaches infinity is

reflected in the divergence of the Laplace transform of h(t), as
s approaches zero. From the asymptotic form (3) of the MSD
and the HLK theorem one can conclude that

Ŵ (s)
s→0∼ 2Dα L(1/s)

$(α + 1)
sα+1

. (7)

The relation of this expression to the VACF of the diffusing
particle follows from the convolution relation44

W (t) = 2
∫ t

0
dt ′ (t − t ′)cvv (t ′), (8)

which translates by Laplace transform into

Ŵ (s) = 2 ĉvv (s)
s2

. (9)

Comparison with Eq. (7) shows that

ĉvv (s)
s→0∼ Dα$(α + 1)L(1/s)s1−α. (10)

From expression (10) one can derive a generalized Kubo rela-
tion for the fractional diffusion constant which holds for both
normal and anomalous diffusion processes. The first step con-
sists in solving Eq. (10) for Dα . Using that lims→0 L(1/s) = 1
on account of Eq. (4), one obtains

Dα = lim
s→0

sα−1ĉvv (s)/$(1 + α). (11)

In a second step one recognizes that sα−1ĉvv (s) is the Laplace
transform of the fractional derivative of order α − 1 of
cvv (t) with respect to time. Writing ρ = n − β, where n
= 0, 1, 2, . . . is an integer number and β ≥ 0 is real, the frac-
tional Riemann-Liouville derivative of order ρ of an arbitrary
function g is defined through45

0∂
ρ
t g(t) = ∂

(−)n
t

∫ t

0
dt ′ (t − t ′)β−1

$(β)
g(t ′). (12)

The symbol ∂
(−)n
t denotes a normal left derivative of order n

and negative values of ρ indicate fractional integration. The
index “0” in the symbol for the fractional derivative on the
left-hand side in Eq. (12) refers to the lower limit in the inte-
gral on the right-hand side. Since lims→0 ĝ(s) =

∫ ∞
0 dt g(t),

one finds that the fractional diffusion coefficient is given by
the relation

Dα = 1
$(1 + α)

∫ ∞

0
dt 0∂

α−1
t cvv (t). (13)

For α = 1 the standard Kubo expression (2) for the diffusion
constant is retrieved and for the case α = 0, which describes
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continuous time random walk model,30, 37 and an illustrative
interpretation of the memory kernel in FLEs for the descrip-
tion of subdiffusion in viscoelastic media can be found in
Ref. 38.

In this paper, a theoretical description of anomalous dif-
fusion processes is developed which combines a formally
exact description of single particle dynamics within the
framework of the generalized Langevin equation39, 40 with
an asymptotic analysis of the relevant observables for long
times. Memory effects enter here naturally through the mem-
ory function of the velocity autocorrelation function of the
diffusing particle, which is in turn related to the MSD. The
aim of the paper is to derive generalized Kubo relations for
the relevant transport coefficients, which hold for both normal
and anomalous diffusion, and to formulate general conditions
for anomalous diffusion, enabling a simple physical interpre-
tation without imposing a particular model.

The paper is organized as follows: Section II treats the
derivation of generalized Kubo relations, starting from a the-
orem for asymptotic analysis which is applied to the MSD of
a diffusing particle. In a second step general conditions for
anomalous diffusion are derived, where spatially unconfined
and confined diffusion are distinguished.

In Sec. III, the results are illustrated with semi-analytical
examples and the paper is concluded by a short résumé and
an outlook.

II. THEORY

A. Kubo relation for Dα

Kubo relations establish a connection between macro-
scopic transport coefficients and the microscopic Hamiltonian
dynamics of the system under consideration.41 Each trans-
port coefficient is expressed by an integral over a correspond-
ing time correlation function. In case of diffusion processes
one considers the velocity autocorrelation function (VACF),
cvv (t) = ⟨v(t) · v(0)⟩, and the diffusion coefficient is given by
the well-known relation

D =
∫ ∞

0
dt cvv (t), (2)

if one assumes unconfined normal diffusion.
A generalization of expression (2) covering both normal

and anomalous diffusion can be derived from an appropriate
asymptotic analysis of the MSD. Assuming isotropic diffu-
sion, its asymptotic form may be written as

W (t)
t→∞∼ 2Dα L(t)tα (0 ≤ α < 2), (3)

where L(t) fulfills the conditions

lim
t→∞

L(t) = 1, (4)

lim
t→∞

t
d L(t)

dt
= 0. (5)

For physical reasons L(t) must be positive. The ballistic
asymptotic regime, where α = 2, is not considered in the fol-
lowing. By construction, L(t) belongs to the class of slowly

varying functions,42, 43 which are defined through the weaker
condition limt→∞ L(λt)/L(t) = 1, with λ > 0.

The general asymptotic form (3) of the MSD yields a di-
rect link to a Tauberian theorem due to Hardy, Littlewood, and
Karamata (HLK),42, 43 which establishes a relation between
slowly growing functions and their Laplace transforms,

h(t)
t→∞∼ L(t)tρ ⇔ ĥ(s)

s→0∼ L(1/s)
$(ρ + 1)

sρ+1
(ρ > −1).

(6)
Here ĥ(s) =

∫ ∞
0 dt exp(−st)h(t) (ℜ{s} > 0) denotes the

Laplace transform of h(t). Noting that ĥ(0) =
∫ ∞

0 dt h(t), the
theorem can be intuitively understood. It states that the di-
vergence of the integral

∫ t
0 dτ h(τ ) as t approaches infinity is

reflected in the divergence of the Laplace transform of h(t), as
s approaches zero. From the asymptotic form (3) of the MSD
and the HLK theorem one can conclude that

Ŵ (s)
s→0∼ 2Dα L(1/s)

$(α + 1)
sα+1

. (7)

The relation of this expression to the VACF of the diffusing
particle follows from the convolution relation44

W (t) = 2
∫ t

0
dt ′ (t − t ′)cvv (t ′), (8)

which translates by Laplace transform into

Ŵ (s) = 2 ĉvv (s)
s2

. (9)

Comparison with Eq. (7) shows that

ĉvv (s)
s→0∼ Dα$(α + 1)L(1/s)s1−α. (10)

From expression (10) one can derive a generalized Kubo rela-
tion for the fractional diffusion constant which holds for both
normal and anomalous diffusion processes. The first step con-
sists in solving Eq. (10) for Dα . Using that lims→0 L(1/s) = 1
on account of Eq. (4), one obtains

Dα = lim
s→0

sα−1ĉvv (s)/$(1 + α). (11)

In a second step one recognizes that sα−1ĉvv (s) is the Laplace
transform of the fractional derivative of order α − 1 of
cvv (t) with respect to time. Writing ρ = n − β, where n
= 0, 1, 2, . . . is an integer number and β ≥ 0 is real, the frac-
tional Riemann-Liouville derivative of order ρ of an arbitrary
function g is defined through45

0∂
ρ
t g(t) = ∂

(−)n
t

∫ t

0
dt ′ (t − t ′)β−1

$(β)
g(t ′). (12)

The symbol ∂
(−)n
t denotes a normal left derivative of order n

and negative values of ρ indicate fractional integration. The
index “0” in the symbol for the fractional derivative on the
left-hand side in Eq. (12) refers to the lower limit in the inte-
gral on the right-hand side. Since lims→0 ĝ(s) =

∫ ∞
0 dt g(t),

one finds that the fractional diffusion coefficient is given by
the relation

Dα = 1
$(1 + α)

∫ ∞

0
dt 0∂

α−1
t cvv (t). (13)

For α = 1 the standard Kubo expression (2) for the diffusion
constant is retrieved and for the case α = 0, which describes
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spatially limited diffusion where limt→∞ W (t) = 2D0, one
obtains

D0 = lim
T →∞

∫ T

0
dt

∫ t

0
dτ cvv (τ )

= lim
T →∞

∫ T

0
dτ (T −τ )cvv (τ ) = lim

T →∞
W (T )/2. (14)

Since limT →∞ W (T ) = 2⟨u2⟩, where ⟨u2⟩ = ⟨x2⟩ − ⟨x⟩2 is
the mean square position fluctuation of the particle, it follows
that

D0 = ⟨u2⟩. (15)

B. Generalized fluctuation-dissipation theorem

In the framework of the generalized Langevin equation
developed by Zwanzig,39, 40 the motion of a tagged particle in
an isotropic solvent is described by an equation of motion of
the form

v̇(t) = −
∫ t

0
dt ′ κ(t − t ′)v(t ′) + f(+)(t), (16)

where v(t) is the velocity of the particle, κ(t) is the corre-
sponding memory function, and f(+)(t) a generalized acceler-
ation fulfilling the orthogonality relation ⟨v(t) · f(+)(t ′)⟩ = 0.
In contrast to a full Hamiltonian description of the system,
the solvent is not described explicitly, but both κ(t) and f(+)(t)
can be, in principle, expressed by the microscopic dynamical
variables describing the full system. They are thus fully de-
terministic quantities. For details the reader is referred to the
monograph by Zwanzig.40 Due to the orthogonality between
v and f(+), the time evolution of the VACF is described by the
integro-differential equation

∂t cvv (t) = −
∫ t

0
dt ′ cvv (t − t ′)κ(t ′). (17)

The Laplace transform of this integral equation can be solved
for the Laplace transformed VACF,

ĉvv (s) = ⟨v2⟩
s + κ̂(s)

, (18)

which may be inserted into Eq. (9) to yield

Ŵ (s)
s→0∼ ⟨v2⟩

s2κ̂(s)
. (19)

Here ⟨v2⟩ = cvv (0) and the assumption s3 ≪ s2κ̂(s) has been
made, which is correct for s → 0 if ballistic diffusion is ex-
cluded. In the latter case one would have W (t)

t→∞∼ t2 and

therefore Ŵ (s)
s→0∼ s−3. Equating expressions (7) and (19)

leads then to

κ̂(s)
s→0∼

〈
v2

〉

Dα%(α + 1)
sα−1

L(1/s)
. (20)

Analogously to a fractional diffusion coefficient one can de-
fine a fractional relaxation constant through

ηα = %(1 + α) lim
s→0

s1−ακ̂(s), (21)

which becomes in the time domain

ηα = %(1 + α)
∫ ∞

0
dt 0∂

1−α
t κ(t), (22)

and leads to the fractional version of the fluctuation-
dissipation theorem,

Dα = ⟨v2⟩
ηα

. (23)

It should be noted that the same relation for phenomenologi-
cal constants Dα and ηα has been found in Ref. 28. For α = 1
one retrieves the standard definition η =

∫ ∞
0 dt κ(t) for the

relaxation constant and for spatially confined diffusion one
obtains

η0 =
∫ ∞

0
dt ∂

(−)
t κ(t) = κ(∞). (24)

Here is has been used that ∂
(−)
t is a left derivative and that

κ(t) = θ (t)κ(t) (θ (t) is the Heaviside function) since the
memory function is causal. On the other hand, it follows from
D0 = ⟨v2⟩/η0 = ⟨u2⟩ that

η0 = κ(∞) = ⟨v2⟩
⟨u2⟩

. (25)

C. Conditions for anomalous diffusion in the time
domain

A further application of the HLK theorem permits the
derivation of conditions for the asymptotic form of the VACF
and its memory function in the time domain. To derive these
conditions we introduce the functions

f (t) =
∫ t

0
dτ cvv (τ ), (26)

g(t) =
∫ t

0
dτ κ(τ ). (27)

One recognizes that f (∞) = D and g(∞) = η in case of nor-
mal unconfined diffusion. Defining the slowly varying func-
tions

L f (t) = αDα L(t), (28)

Lg(t) =
〈
v2

〉

Dα%(2 − α)%(α + 1)L(t)
, (29)

and using that f̂ (s) = ĉvv (s)/s and ĝ(s) = κ̂(s)/s, we obtain
the following equivalences from Eqs. (10) and (20), and from
the HLK theorem (6),

f̂ (s)
s→0∼ L f (1/s)

%(α)
sα

⇔ f (t)
t→∞∼ L f (t)tα−1, (30)

ĝ(s)
s→0∼ Lg(1/s)

%(2 − α)
s2−α

⇔ g(t)
t→∞∼ Lg(t)t1−α. (31)

Note that if L(t) is a slowly varying function, the same is true
for 1/L(t). On account of Eqs. (26) and (27), differentiation of
f (t) and g(t) for large times leads to necessary conditions for
the asymptotic forms of the VACF and its memory function.
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spatially limited diffusion where limt→∞ W (t) = 2D0, one
obtains

D0 = lim
T →∞

∫ T

0
dt

∫ t

0
dτ cvv (τ )

= lim
T →∞

∫ T

0
dτ (T −τ )cvv (τ ) = lim

T →∞
W (T )/2. (14)

Since limT →∞ W (T ) = 2⟨u2⟩, where ⟨u2⟩ = ⟨x2⟩ − ⟨x⟩2 is
the mean square position fluctuation of the particle, it follows
that

D0 = ⟨u2⟩. (15)

B. Generalized fluctuation-dissipation theorem

In the framework of the generalized Langevin equation
developed by Zwanzig,39, 40 the motion of a tagged particle in
an isotropic solvent is described by an equation of motion of
the form

v̇(t) = −
∫ t

0
dt ′ κ(t − t ′)v(t ′) + f(+)(t), (16)

where v(t) is the velocity of the particle, κ(t) is the corre-
sponding memory function, and f(+)(t) a generalized acceler-
ation fulfilling the orthogonality relation ⟨v(t) · f(+)(t ′)⟩ = 0.
In contrast to a full Hamiltonian description of the system,
the solvent is not described explicitly, but both κ(t) and f(+)(t)
can be, in principle, expressed by the microscopic dynamical
variables describing the full system. They are thus fully de-
terministic quantities. For details the reader is referred to the
monograph by Zwanzig.40 Due to the orthogonality between
v and f(+), the time evolution of the VACF is described by the
integro-differential equation

∂t cvv (t) = −
∫ t

0
dt ′ cvv (t − t ′)κ(t ′). (17)

The Laplace transform of this integral equation can be solved
for the Laplace transformed VACF,

ĉvv (s) = ⟨v2⟩
s + κ̂(s)

, (18)

which may be inserted into Eq. (9) to yield

Ŵ (s)
s→0∼ ⟨v2⟩

s2κ̂(s)
. (19)

Here ⟨v2⟩ = cvv (0) and the assumption s3 ≪ s2κ̂(s) has been
made, which is correct for s → 0 if ballistic diffusion is ex-
cluded. In the latter case one would have W (t)

t→∞∼ t2 and

therefore Ŵ (s)
s→0∼ s−3. Equating expressions (7) and (19)

leads then to

κ̂(s)
s→0∼

〈
v2

〉

Dα%(α + 1)
sα−1

L(1/s)
. (20)

Analogously to a fractional diffusion coefficient one can de-
fine a fractional relaxation constant through

ηα = %(1 + α) lim
s→0

s1−ακ̂(s), (21)

which becomes in the time domain

ηα = %(1 + α)
∫ ∞

0
dt 0∂

1−α
t κ(t), (22)

and leads to the fractional version of the fluctuation-
dissipation theorem,

Dα = ⟨v2⟩
ηα

. (23)

It should be noted that the same relation for phenomenologi-
cal constants Dα and ηα has been found in Ref. 28. For α = 1
one retrieves the standard definition η =

∫ ∞
0 dt κ(t) for the

relaxation constant and for spatially confined diffusion one
obtains

η0 =
∫ ∞

0
dt ∂

(−)
t κ(t) = κ(∞). (24)

Here is has been used that ∂
(−)
t is a left derivative and that

κ(t) = θ (t)κ(t) (θ (t) is the Heaviside function) since the
memory function is causal. On the other hand, it follows from
D0 = ⟨v2⟩/η0 = ⟨u2⟩ that

η0 = κ(∞) = ⟨v2⟩
⟨u2⟩

. (25)

C. Conditions for anomalous diffusion in the time
domain

A further application of the HLK theorem permits the
derivation of conditions for the asymptotic form of the VACF
and its memory function in the time domain. To derive these
conditions we introduce the functions

f (t) =
∫ t

0
dτ cvv (τ ), (26)

g(t) =
∫ t

0
dτ κ(τ ). (27)

One recognizes that f (∞) = D and g(∞) = η in case of nor-
mal unconfined diffusion. Defining the slowly varying func-
tions

L f (t) = αDα L(t), (28)

Lg(t) =
〈
v2

〉

Dα%(2 − α)%(α + 1)L(t)
, (29)

and using that f̂ (s) = ĉvv (s)/s and ĝ(s) = κ̂(s)/s, we obtain
the following equivalences from Eqs. (10) and (20), and from
the HLK theorem (6),

f̂ (s)
s→0∼ L f (1/s)

%(α)
sα

⇔ f (t)
t→∞∼ L f (t)tα−1, (30)

ĝ(s)
s→0∼ Lg(1/s)

%(2 − α)
s2−α

⇔ g(t)
t→∞∼ Lg(t)t1−α. (31)

Note that if L(t) is a slowly varying function, the same is true
for 1/L(t). On account of Eqs. (26) and (27), differentiation of
f (t) and g(t) for large times leads to necessary conditions for
the asymptotic forms of the VACF and its memory function.
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spatially limited diffusion where limt→∞ W (t) = 2D0, one
obtains

D0 = lim
T →∞

∫ T

0
dt

∫ t

0
dτ cvv (τ )

= lim
T →∞

∫ T

0
dτ (T −τ )cvv (τ ) = lim

T →∞
W (T )/2. (14)

Since limT →∞ W (T ) = 2⟨u2⟩, where ⟨u2⟩ = ⟨x2⟩ − ⟨x⟩2 is
the mean square position fluctuation of the particle, it follows
that

D0 = ⟨u2⟩. (15)

B. Generalized fluctuation-dissipation theorem

In the framework of the generalized Langevin equation
developed by Zwanzig,39, 40 the motion of a tagged particle in
an isotropic solvent is described by an equation of motion of
the form

v̇(t) = −
∫ t

0
dt ′ κ(t − t ′)v(t ′) + f(+)(t), (16)

where v(t) is the velocity of the particle, κ(t) is the corre-
sponding memory function, and f(+)(t) a generalized acceler-
ation fulfilling the orthogonality relation ⟨v(t) · f(+)(t ′)⟩ = 0.
In contrast to a full Hamiltonian description of the system,
the solvent is not described explicitly, but both κ(t) and f(+)(t)
can be, in principle, expressed by the microscopic dynamical
variables describing the full system. They are thus fully de-
terministic quantities. For details the reader is referred to the
monograph by Zwanzig.40 Due to the orthogonality between
v and f(+), the time evolution of the VACF is described by the
integro-differential equation

∂t cvv (t) = −
∫ t

0
dt ′ cvv (t − t ′)κ(t ′). (17)

The Laplace transform of this integral equation can be solved
for the Laplace transformed VACF,

ĉvv (s) = ⟨v2⟩
s + κ̂(s)

, (18)

which may be inserted into Eq. (9) to yield

Ŵ (s)
s→0∼ ⟨v2⟩

s2κ̂(s)
. (19)

Here ⟨v2⟩ = cvv (0) and the assumption s3 ≪ s2κ̂(s) has been
made, which is correct for s → 0 if ballistic diffusion is ex-
cluded. In the latter case one would have W (t)

t→∞∼ t2 and

therefore Ŵ (s)
s→0∼ s−3. Equating expressions (7) and (19)

leads then to

κ̂(s)
s→0∼

〈
v2

〉

Dα%(α + 1)
sα−1

L(1/s)
. (20)

Analogously to a fractional diffusion coefficient one can de-
fine a fractional relaxation constant through

ηα = %(1 + α) lim
s→0

s1−ακ̂(s), (21)

which becomes in the time domain

ηα = %(1 + α)
∫ ∞

0
dt 0∂

1−α
t κ(t), (22)

and leads to the fractional version of the fluctuation-
dissipation theorem,

Dα = ⟨v2⟩
ηα

. (23)

It should be noted that the same relation for phenomenologi-
cal constants Dα and ηα has been found in Ref. 28. For α = 1
one retrieves the standard definition η =

∫ ∞
0 dt κ(t) for the

relaxation constant and for spatially confined diffusion one
obtains

η0 =
∫ ∞

0
dt ∂

(−)
t κ(t) = κ(∞). (24)

Here is has been used that ∂
(−)
t is a left derivative and that

κ(t) = θ (t)κ(t) (θ (t) is the Heaviside function) since the
memory function is causal. On the other hand, it follows from
D0 = ⟨v2⟩/η0 = ⟨u2⟩ that

η0 = κ(∞) = ⟨v2⟩
⟨u2⟩

. (25)

C. Conditions for anomalous diffusion in the time
domain

A further application of the HLK theorem permits the
derivation of conditions for the asymptotic form of the VACF
and its memory function in the time domain. To derive these
conditions we introduce the functions

f (t) =
∫ t

0
dτ cvv (τ ), (26)

g(t) =
∫ t

0
dτ κ(τ ). (27)

One recognizes that f (∞) = D and g(∞) = η in case of nor-
mal unconfined diffusion. Defining the slowly varying func-
tions

L f (t) = αDα L(t), (28)

Lg(t) =
〈
v2

〉

Dα%(2 − α)%(α + 1)L(t)
, (29)

and using that f̂ (s) = ĉvv (s)/s and ĝ(s) = κ̂(s)/s, we obtain
the following equivalences from Eqs. (10) and (20), and from
the HLK theorem (6),

f̂ (s)
s→0∼ L f (1/s)

%(α)
sα

⇔ f (t)
t→∞∼ L f (t)tα−1, (30)

ĝ(s)
s→0∼ Lg(1/s)

%(2 − α)
s2−α

⇔ g(t)
t→∞∼ Lg(t)t1−α. (31)

Note that if L(t) is a slowly varying function, the same is true
for 1/L(t). On account of Eqs. (26) and (27), differentiation of
f (t) and g(t) for large times leads to necessary conditions for
the asymptotic forms of the VACF and its memory function.
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spatially limited diffusion where limt→∞ W (t) = 2D0, one
obtains

D0 = lim
T →∞

∫ T

0
dt

∫ t

0
dτ cvv (τ )

= lim
T →∞

∫ T

0
dτ (T −τ )cvv (τ ) = lim

T →∞
W (T )/2. (14)

Since limT →∞ W (T ) = 2⟨u2⟩, where ⟨u2⟩ = ⟨x2⟩ − ⟨x⟩2 is
the mean square position fluctuation of the particle, it follows
that

D0 = ⟨u2⟩. (15)

B. Generalized fluctuation-dissipation theorem

In the framework of the generalized Langevin equation
developed by Zwanzig,39, 40 the motion of a tagged particle in
an isotropic solvent is described by an equation of motion of
the form

v̇(t) = −
∫ t

0
dt ′ κ(t − t ′)v(t ′) + f(+)(t), (16)

where v(t) is the velocity of the particle, κ(t) is the corre-
sponding memory function, and f(+)(t) a generalized acceler-
ation fulfilling the orthogonality relation ⟨v(t) · f(+)(t ′)⟩ = 0.
In contrast to a full Hamiltonian description of the system,
the solvent is not described explicitly, but both κ(t) and f(+)(t)
can be, in principle, expressed by the microscopic dynamical
variables describing the full system. They are thus fully de-
terministic quantities. For details the reader is referred to the
monograph by Zwanzig.40 Due to the orthogonality between
v and f(+), the time evolution of the VACF is described by the
integro-differential equation

∂t cvv (t) = −
∫ t

0
dt ′ cvv (t − t ′)κ(t ′). (17)

The Laplace transform of this integral equation can be solved
for the Laplace transformed VACF,

ĉvv (s) = ⟨v2⟩
s + κ̂(s)

, (18)

which may be inserted into Eq. (9) to yield

Ŵ (s)
s→0∼ ⟨v2⟩

s2κ̂(s)
. (19)

Here ⟨v2⟩ = cvv (0) and the assumption s3 ≪ s2κ̂(s) has been
made, which is correct for s → 0 if ballistic diffusion is ex-
cluded. In the latter case one would have W (t)

t→∞∼ t2 and

therefore Ŵ (s)
s→0∼ s−3. Equating expressions (7) and (19)

leads then to

κ̂(s)
s→0∼

〈
v2

〉

Dα%(α + 1)
sα−1

L(1/s)
. (20)

Analogously to a fractional diffusion coefficient one can de-
fine a fractional relaxation constant through

ηα = %(1 + α) lim
s→0

s1−ακ̂(s), (21)

which becomes in the time domain

ηα = %(1 + α)
∫ ∞

0
dt 0∂

1−α
t κ(t), (22)

and leads to the fractional version of the fluctuation-
dissipation theorem,

Dα = ⟨v2⟩
ηα

. (23)

It should be noted that the same relation for phenomenologi-
cal constants Dα and ηα has been found in Ref. 28. For α = 1
one retrieves the standard definition η =

∫ ∞
0 dt κ(t) for the

relaxation constant and for spatially confined diffusion one
obtains

η0 =
∫ ∞

0
dt ∂

(−)
t κ(t) = κ(∞). (24)

Here is has been used that ∂
(−)
t is a left derivative and that

κ(t) = θ (t)κ(t) (θ (t) is the Heaviside function) since the
memory function is causal. On the other hand, it follows from
D0 = ⟨v2⟩/η0 = ⟨u2⟩ that

η0 = κ(∞) = ⟨v2⟩
⟨u2⟩

. (25)

C. Conditions for anomalous diffusion in the time
domain

A further application of the HLK theorem permits the
derivation of conditions for the asymptotic form of the VACF
and its memory function in the time domain. To derive these
conditions we introduce the functions

f (t) =
∫ t

0
dτ cvv (τ ), (26)

g(t) =
∫ t

0
dτ κ(τ ). (27)

One recognizes that f (∞) = D and g(∞) = η in case of nor-
mal unconfined diffusion. Defining the slowly varying func-
tions

L f (t) = αDα L(t), (28)

Lg(t) =
〈
v2

〉

Dα%(2 − α)%(α + 1)L(t)
, (29)

and using that f̂ (s) = ĉvv (s)/s and ĝ(s) = κ̂(s)/s, we obtain
the following equivalences from Eqs. (10) and (20), and from
the HLK theorem (6),

f̂ (s)
s→0∼ L f (1/s)

%(α)
sα

⇔ f (t)
t→∞∼ L f (t)tα−1, (30)

ĝ(s)
s→0∼ Lg(1/s)

%(2 − α)
s2−α

⇔ g(t)
t→∞∼ Lg(t)t1−α. (31)

Note that if L(t) is a slowly varying function, the same is true
for 1/L(t). On account of Eqs. (26) and (27), differentiation of
f (t) and g(t) for large times leads to necessary conditions for
the asymptotic forms of the VACF and its memory function.
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t→∞

∼ Dαα(α − 1)L(t)tα−2, (32)

κ(t)
t→∞

∼
⟨v2⟩

Dα

sin(πα)

πα

1

L(t)
t−α. (33)

Applying here the HLK theorem again, one can also conclude that (10) follows from (32)

if 1 < α < 2 and that (20) follows from (33) if 0 < α < 1. Therefore (32) and (33)

are also sufficient conditions for superdiffusion and subdiffusion, respectively. The relations

cvv(t)
t→∞

∼ 0 and κ(t)
t→∞

∼ 0, which arise for α = 0, 1 in case of the VACF and for α = 1 in

case of the memory function, indicate the absence of the corresponding algebraic long time

tails.
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spatially limited diffusion where limt→∞ W (t) = 2D0, one
obtains

D0 = lim
T →∞

∫ T

0
dt

∫ t

0
dτ cvv (τ )

= lim
T →∞

∫ T

0
dτ (T −τ )cvv (τ ) = lim

T →∞
W (T )/2. (14)

Since limT →∞ W (T ) = 2⟨u2⟩, where ⟨u2⟩ = ⟨x2⟩ − ⟨x⟩2 is
the mean square position fluctuation of the particle, it follows
that

D0 = ⟨u2⟩. (15)

B. Generalized fluctuation-dissipation theorem

In the framework of the generalized Langevin equation
developed by Zwanzig,39, 40 the motion of a tagged particle in
an isotropic solvent is described by an equation of motion of
the form

v̇(t) = −
∫ t

0
dt ′ κ(t − t ′)v(t ′) + f(+)(t), (16)

where v(t) is the velocity of the particle, κ(t) is the corre-
sponding memory function, and f(+)(t) a generalized acceler-
ation fulfilling the orthogonality relation ⟨v(t) · f(+)(t ′)⟩ = 0.
In contrast to a full Hamiltonian description of the system,
the solvent is not described explicitly, but both κ(t) and f(+)(t)
can be, in principle, expressed by the microscopic dynamical
variables describing the full system. They are thus fully de-
terministic quantities. For details the reader is referred to the
monograph by Zwanzig.40 Due to the orthogonality between
v and f(+), the time evolution of the VACF is described by the
integro-differential equation

∂t cvv (t) = −
∫ t

0
dt ′ cvv (t − t ′)κ(t ′). (17)

The Laplace transform of this integral equation can be solved
for the Laplace transformed VACF,

ĉvv (s) = ⟨v2⟩
s + κ̂(s)

, (18)

which may be inserted into Eq. (9) to yield
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s2κ̂(s)
. (19)
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therefore Ŵ (s)
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. (23)

It should be noted that the same relation for phenomenologi-
cal constants Dα and ηα has been found in Ref. 28. For α = 1
one retrieves the standard definition η =

∫ ∞
0 dt κ(t) for the

relaxation constant and for spatially confined diffusion one
obtains

η0 =
∫ ∞
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⟨u2⟩

. (25)

C. Conditions for anomalous diffusion in the time
domain

A further application of the HLK theorem permits the
derivation of conditions for the asymptotic form of the VACF
and its memory function in the time domain. To derive these
conditions we introduce the functions

f (t) =
∫ t

0
dτ cvv (τ ), (26)

g(t) =
∫ t

0
dτ κ(τ ). (27)

One recognizes that f (∞) = D and g(∞) = η in case of nor-
mal unconfined diffusion. Defining the slowly varying func-
tions

L f (t) = αDα L(t), (28)

Lg(t) =
〈
v2

〉

Dα%(2 − α)%(α + 1)L(t)
, (29)

and using that f̂ (s) = ĉvv (s)/s and ĝ(s) = κ̂(s)/s, we obtain
the following equivalences from Eqs. (10) and (20), and from
the HLK theorem (6),

f̂ (s)
s→0∼ L f (1/s)

%(α)
sα

⇔ f (t)
t→∞∼ L f (t)tα−1, (30)

ĝ(s)
s→0∼ Lg(1/s)

%(2 − α)
s2−α

⇔ g(t)
t→∞∼ Lg(t)t1−α. (31)

Note that if L(t) is a slowly varying function, the same is true
for 1/L(t). On account of Eqs. (26) and (27), differentiation of
f (t) and g(t) for large times leads to necessary conditions for
the asymptotic forms of the VACF and its memory function.
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• 2x137 POPC molecules (10 nm ✕ 10 
nm in the XY-plane)	



• 10471 water molecules (fully hydrated)	



• OPLS force field	



• T=310 K

S. Stachura and G.R. Kneller, Mol Sim. 40, 245 (2013).

MSD for lateral diffusion

ps to ns time scale

J.H. Jeon, H. Monne, M. Javanainen, and R. Metzler, Phys Rev Lett (2012).
 G.R. Kneller, K. Baczynski, and M. Pasenkiewicz-Gierula, J Chem Phys 135, 141105 (2011).See also
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Visualizing the cage effect in a 
POPC bilayer
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!

The pair Distribution Function 
(PDF), g(r), is proportional to the 
probability of finding a particle 
between distances „r+dr”, from a 
tagged central particle in a liquid.!

Time-dependent PDFs (van Hove 
PDFs), GD(r,t), display the 
dynamic structure in a liquid.!
!

(Van Hove) PDFs can be obtained from scattering experiments 
(neutron scttering, inelastic X-ray scattering)

Image: "The structure of the cytoplasm" from Molecular Biology of the Cell. 
Adapted from D.S. Goodsell, Trends Biochem. Sci. 16:203-206, 1991.

Van Hove correlation function and the „cage” of 
nearest neighbours
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Bulk water for comparison....
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FIG. 1. Simulated system consisting of a bilayer of 2 × 64 DOPC lipid
molecules and 3840 water molecules (light-grey).

Here Nmol denotes the number of lipid molecules, Nt is the
number of time steps in the MD trajectory, and x(n) ≡ x(n!t),
with !t being the sampling time step. The results for two dif-
ferent lag time scales (1 ns and 30 ns) are shown in Figs. 2 and
3, respectively, where dots correspond to the simulated MSDs
and solid lines to the fits of expression (1). The fit parame-
ters are α = 0.52, Dα = 0.107 nm2/nsα for the fit in Fig. 2
and α = 0.61, Dα = 0.101 nm2/nsα for the fit in Fig. 3. We
have also performed an analysis for an intermediate lag time
scale of 5 ns (not shown here), which lead to α = 0.56, Dα

= 0.110 nm2/nsα . The insets of Figs. 2 and 3 show the spread
of the MSDs for the individual molecules. The rapid increase
of the latter with the lag time spots the problem of statistical
reliability, if the lag time becomes comparable with the length
of the simulation trajectory. The form of the spread gives
also a hint to appropriate stochastic models describing the
observed subdiffusion, such as (ergodic) fractional Brownian
motion (fBM) and the (non-ergodic) continuous time random
walk.18 Here, one has to make the assumption that the average
over all molecules corresponds to a true ensemble average.
The observed Gaussian shape of the distribution functions
shown in Figs. 2 and 3 supports that the lateral subdiffusion
of the DOPC molecules can be described by fBM. In recent
experimental studies, both models have been used to describe
experimental data for trajectories of diffusing molecules.7–9

We note finally that the fractional diffusion constant found
for the lateral diffusion of lipid molecules in the giant vesi-
cles studied in Ref. 4 is Dα = 0.088 ± 0.007 nm2/nsα for
α = 0.74 ± 0.08. Although the lipid bilayer considered in
this study consisted of different lipid molecules (dilauroyl-sn-
glycero-3-phosphocholine or DLPC), the measured diffusion
coefficient shows that the results for Dα obtained in our sim-
ulation study of DOPC are of the right order of magnitude.

In the following, we further analyze the lateral center-of-
mass dynamics of the DOPC molecules in the framework of
the GLE.12 The velocity autocorrelation function (VACF) of a
tagged molecule, c(t) ≡ ⟨v(0) · v(t)⟩, fulfills then the integro-

FIG. 2. Simulated molecule-averaged MSD for the lateral CM diffusion of
the DOPC molecules (dots) and fit of model (1) (solid line). The fitted frac-
tional diffusion coefficient is Dα = 0.107 nm2/nsα for α = 0.52. The inset
shows the distribution of δW(t) = Wj(t) − W(t) for t = 0.1 ns, t = 0.5 ns,
and t = 1 ns (with increasing width). In the main figure the corresponding
average MSD values are indicated by triangles.

differential equation

∂t c(t) = −
∫ t

0
dt ′ κ(t − t ′)c(t ′), (4)

where κ(t) is the corresponding memory kernel. Formally,
the latter can be derived from the microscopic Hamiltonian
dynamics of the system under consideration (tagged particle
plus the environment). Using that the MSD and the VACF are
related through19

W (t) = 2
∫ t

0
dτ (t − τ )c(τ ), (5)

one can derive characteristic long-time tails for the VACF and
its memory function,20

c(t) t→∞
∼ Dαα(α − 1)tα−2, (6)

κ(t) t→∞
∼

⟨v2⟩
Dα

sin(πα)
πα

t−α, (7)

FIG. 3. As Fig. 2, but for a maximum time lag of 30 ns. Here, the fitted
fractional diffusion coefficient is Dα = 0.101 nm2/nsα for α = 0.61 and the
inset shows the spread of the molecular MSDs at t = 5 ns, t = 15 ns, and
t = 30 ns.
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and α = 0.61, Dα = 0.101 nm2/nsα for the fit in Fig. 3. We
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scale of 5 ns (not shown here), which lead to α = 0.56, Dα

= 0.110 nm2/nsα . The insets of Figs. 2 and 3 show the spread
of the MSDs for the individual molecules. The rapid increase
of the latter with the lag time spots the problem of statistical
reliability, if the lag time becomes comparable with the length
of the simulation trajectory. The form of the spread gives
also a hint to appropriate stochastic models describing the
observed subdiffusion, such as (ergodic) fractional Brownian
motion (fBM) and the (non-ergodic) continuous time random
walk.18 Here, one has to make the assumption that the average
over all molecules corresponds to a true ensemble average.
The observed Gaussian shape of the distribution functions
shown in Figs. 2 and 3 supports that the lateral subdiffusion
of the DOPC molecules can be described by fBM. In recent
experimental studies, both models have been used to describe
experimental data for trajectories of diffusing molecules.7–9

We note finally that the fractional diffusion constant found
for the lateral diffusion of lipid molecules in the giant vesi-
cles studied in Ref. 4 is Dα = 0.088 ± 0.007 nm2/nsα for
α = 0.74 ± 0.08. Although the lipid bilayer considered in
this study consisted of different lipid molecules (dilauroyl-sn-
glycero-3-phosphocholine or DLPC), the measured diffusion
coefficient shows that the results for Dα obtained in our sim-
ulation study of DOPC are of the right order of magnitude.

In the following, we further analyze the lateral center-of-
mass dynamics of the DOPC molecules in the framework of
the GLE.12 The velocity autocorrelation function (VACF) of a
tagged molecule, c(t) ≡ ⟨v(0) · v(t)⟩, fulfills then the integro-
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the DOPC molecules (dots) and fit of model (1) (solid line). The fitted frac-
tional diffusion coefficient is Dα = 0.107 nm2/nsα for α = 0.52. The inset
shows the distribution of δW(t) = Wj(t) − W(t) for t = 0.1 ns, t = 0.5 ns,
and t = 1 ns (with increasing width). In the main figure the corresponding
average MSD values are indicated by triangles.

differential equation

∂t c(t) = −
∫ t

0
dt ′ κ(t − t ′)c(t ′), (4)

where κ(t) is the corresponding memory kernel. Formally,
the latter can be derived from the microscopic Hamiltonian
dynamics of the system under consideration (tagged particle
plus the environment). Using that the MSD and the VACF are
related through19

W (t) = 2
∫ t

0
dτ (t − τ )c(τ ), (5)

one can derive characteristic long-time tails for the VACF and
its memory function,20

c(t) t→∞
∼ Dαα(α − 1)tα−2, (6)

κ(t) t→∞
∼

⟨v2⟩
Dα

sin(πα)
πα

t−α, (7)

FIG. 3. As Fig. 2, but for a maximum time lag of 30 ns. Here, the fitted
fractional diffusion coefficient is Dα = 0.101 nm2/nsα for α = 0.61 and the
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FIG. 4. Normalized simulated VACF for the lateral CM motion of the DOPC
molecules. The inset shows the superposition of the simulated VACF (dots)
with the long-time tail (6) (solid line). Here it is taken into account that c(0)
= 1, and the characteristic time scale defined according to Eq. (11) is τVACF
= 0.35 ps.

which are to be considered as necessary conditions for anoma-
lous diffusion. Expressions (6) and (7) are also sufficient con-
ditions in case of super- and subdiffusion, respectively. For
subdiffusion, the theory predicts thus a negative long-time
tail for the VACF and a positive long-time tail for the mem-
ory function. Negative values of the VACF for large time lags
indicate a persistent tendency of the diffusing molecules to
invert their direction of motion and thus a tendency to stay lo-
calized. In agreement with this interpretation, Eq. (4) shows
that the inversion of the direction of motion is favored by posi-
tive values of the memory function. In this context, it is worth-
while noting that the VACF for fBM, which can be defined for
a coarse-grained velocity, decays asymptotically also as tα − 2,
with c(t) < 0.9

To investigate the existence of a long-time tail in the
VACF, we estimated the contributions of the individual
molecules again through time averages

cj (n) ≈ 1
Nt − n

Nt−n−1∑

k=0

vj (k) · vj (k + n) (8)

and calculated the VACF as an average over the individual
contributions,

c(n) = 1
Nmol

Nmol∑

j=1

cj (n). (9)

The results are shown in Fig. 4, where the VACF has been nor-
malized such that c(0) = 1. The inset shows that the computed
VACF (dots) is in good agreement with the long-time tail (6)
(solid line) if t > 1 ps. In this comparison, the normalization
of the VACF has been taken into account. The asymptotic
regime of the VACF is defined with respect to a correspond-
ing typical time scale, τVACF. For normal diffusion, this time
scale can be obtained via τVACF =

∫ ∞
0 dt c(t)/c(0). To gener-

alize this estimation for arbitrary α we use that the fractional
diffusion constant can be written as20

Dα = 1
#(1 + α)

∫ ∞

0
dt 0∂

α−1
t c(t), (10)

FIG. 5. Memory function associated with the VACF shown in Fig. 4. The
inset shows the superposition of the calculated memory function (dots) with
the corresponding long-time tail (7) (solid line). The characteristic time scale
defined according to Eq. (14) is τmem = 2.4 fs.

where #(.) is the Gamma function21 and 0∂
α−1
t c(t)

= d/dt
∫ t

0 dt ′ #(α)−1(t − t ′)α−1c(t ′) is the fractional Rieman-
Liouville derivative22 of order 1 − α of c(t). Noting that c(0)
= ⟨v2⟩, we define

τVACF =
(

Dα

⟨v2⟩

)1/(2−α)

. (11)

Using α = 0.61, Dα = 0.101 nm2/nsα , and a thermal mean
square velocity of ⟨v2⟩ = kBT /M = 6.55 × 10−3 nm2/ps2 at
T = 310 K, yields τVACF = 0.35 ps. Here kB is the Boltzmann
constant, T is the absolute temperature in Kelvin, and M is
the mass of a single DOPC molecule. What exactly means t

≫ τVACF can be seen from Fig. 4, which shows that the
asymptotic regime starts at t ≈ 1 ps, corresponding to t ≈
3 τVACF. On account of relation Eq. (5), this time scale also
defines the onset of the asymptotic regime of the MSD. Since
τVACF is much smaller than the time scale on which the MSD
varies notably, expression (1) can be in practice fitted for the
whole time scale, 0 ≤ t < ∞. This has been tacitly assumed
in the fits of the MSDs described earlier.

To compute the memory function, we started from the
discretized form of Eq. (4),

c(n + 1) − c(n)
%t

= −
n∑

k=0

%t wkc(n − k)κ(k), (12)

where w0 = wn = 1/2 and wk = 1 for k = 1, . . . , n − 1
(Simpson integration scheme). Equation (12) can be consid-
ered as a linear of system of equations for κ(0), κ(1), κ(2),
etc., which can be solved recursively. The result is shown in
Fig. 5, where the inset shows the long-time tail (dots) together
with the analytical form (7) (solid line). Although the mem-
ory function decays very rapidly to almost zero compared to
its initial value, it is exactly the remaining positive long-time
tail which makes the diffusion process subdiffusive. We note
that the agreement between the long-time tail of the memory
function and the theoretical prediction is less good as for the
VACF. A reason might be that the memory function is not well
resolved for short times and that errors in the VACF are accu-
mulated through the recursive calculation of κ(n). The typical
time scale for the memory function can be defined along the
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FIG. 4. Normalized simulated VACF for the lateral CM motion of the DOPC
molecules. The inset shows the superposition of the simulated VACF (dots)
with the long-time tail (6) (solid line). Here it is taken into account that c(0)
= 1, and the characteristic time scale defined according to Eq. (11) is τVACF
= 0.35 ps.

which are to be considered as necessary conditions for anoma-
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calized. In agreement with this interpretation, Eq. (4) shows
that the inversion of the direction of motion is favored by posi-
tive values of the memory function. In this context, it is worth-
while noting that the VACF for fBM, which can be defined for
a coarse-grained velocity, decays asymptotically also as tα − 2,
with c(t) < 0.9
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and calculated the VACF as an average over the individual
contributions,

c(n) = 1
Nmol

Nmol∑

j=1

cj (n). (9)

The results are shown in Fig. 4, where the VACF has been nor-
malized such that c(0) = 1. The inset shows that the computed
VACF (dots) is in good agreement with the long-time tail (6)
(solid line) if t > 1 ps. In this comparison, the normalization
of the VACF has been taken into account. The asymptotic
regime of the VACF is defined with respect to a correspond-
ing typical time scale, τVACF. For normal diffusion, this time
scale can be obtained via τVACF =
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FIG. 5. Memory function associated with the VACF shown in Fig. 4. The
inset shows the superposition of the calculated memory function (dots) with
the corresponding long-time tail (7) (solid line). The characteristic time scale
defined according to Eq. (14) is τmem = 2.4 fs.

where #(.) is the Gamma function21 and 0∂
α−1
t c(t)

= d/dt
∫ t

0 dt ′ #(α)−1(t − t ′)α−1c(t ′) is the fractional Rieman-
Liouville derivative22 of order 1 − α of c(t). Noting that c(0)
= ⟨v2⟩, we define

τVACF =
(

Dα

⟨v2⟩

)1/(2−α)

. (11)

Using α = 0.61, Dα = 0.101 nm2/nsα , and a thermal mean
square velocity of ⟨v2⟩ = kBT /M = 6.55 × 10−3 nm2/ps2 at
T = 310 K, yields τVACF = 0.35 ps. Here kB is the Boltzmann
constant, T is the absolute temperature in Kelvin, and M is
the mass of a single DOPC molecule. What exactly means t

≫ τVACF can be seen from Fig. 4, which shows that the
asymptotic regime starts at t ≈ 1 ps, corresponding to t ≈
3 τVACF. On account of relation Eq. (5), this time scale also
defines the onset of the asymptotic regime of the MSD. Since
τVACF is much smaller than the time scale on which the MSD
varies notably, expression (1) can be in practice fitted for the
whole time scale, 0 ≤ t < ∞. This has been tacitly assumed
in the fits of the MSDs described earlier.

To compute the memory function, we started from the
discretized form of Eq. (4),

c(n + 1) − c(n)
%t

= −
n∑

k=0

%t wkc(n − k)κ(k), (12)

where w0 = wn = 1/2 and wk = 1 for k = 1, . . . , n − 1
(Simpson integration scheme). Equation (12) can be consid-
ered as a linear of system of equations for κ(0), κ(1), κ(2),
etc., which can be solved recursively. The result is shown in
Fig. 5, where the inset shows the long-time tail (dots) together
with the analytical form (7) (solid line). Although the mem-
ory function decays very rapidly to almost zero compared to
its initial value, it is exactly the remaining positive long-time
tail which makes the diffusion process subdiffusive. We note
that the agreement between the long-time tail of the memory
function and the theoretical prediction is less good as for the
VACF. A reason might be that the memory function is not well
resolved for short times and that errors in the VACF are accu-
mulated through the recursive calculation of κ(n). The typical
time scale for the memory function can be defined along the
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FIG. 1. Simulated system consisting of a bilayer of 2 × 64 DOPC lipid
molecules and 3840 water molecules (light-grey).

Here Nmol denotes the number of lipid molecules, Nt is the
number of time steps in the MD trajectory, and x(n) ≡ x(n!t),
with !t being the sampling time step. The results for two dif-
ferent lag time scales (1 ns and 30 ns) are shown in Figs. 2 and
3, respectively, where dots correspond to the simulated MSDs
and solid lines to the fits of expression (1). The fit parame-
ters are α = 0.52, Dα = 0.107 nm2/nsα for the fit in Fig. 2
and α = 0.61, Dα = 0.101 nm2/nsα for the fit in Fig. 3. We
have also performed an analysis for an intermediate lag time
scale of 5 ns (not shown here), which lead to α = 0.56, Dα

= 0.110 nm2/nsα . The insets of Figs. 2 and 3 show the spread
of the MSDs for the individual molecules. The rapid increase
of the latter with the lag time spots the problem of statistical
reliability, if the lag time becomes comparable with the length
of the simulation trajectory. The form of the spread gives
also a hint to appropriate stochastic models describing the
observed subdiffusion, such as (ergodic) fractional Brownian
motion (fBM) and the (non-ergodic) continuous time random
walk.18 Here, one has to make the assumption that the average
over all molecules corresponds to a true ensemble average.
The observed Gaussian shape of the distribution functions
shown in Figs. 2 and 3 supports that the lateral subdiffusion
of the DOPC molecules can be described by fBM. In recent
experimental studies, both models have been used to describe
experimental data for trajectories of diffusing molecules.7–9

We note finally that the fractional diffusion constant found
for the lateral diffusion of lipid molecules in the giant vesi-
cles studied in Ref. 4 is Dα = 0.088 ± 0.007 nm2/nsα for
α = 0.74 ± 0.08. Although the lipid bilayer considered in
this study consisted of different lipid molecules (dilauroyl-sn-
glycero-3-phosphocholine or DLPC), the measured diffusion
coefficient shows that the results for Dα obtained in our sim-
ulation study of DOPC are of the right order of magnitude.

In the following, we further analyze the lateral center-of-
mass dynamics of the DOPC molecules in the framework of
the GLE.12 The velocity autocorrelation function (VACF) of a
tagged molecule, c(t) ≡ ⟨v(0) · v(t)⟩, fulfills then the integro-

FIG. 2. Simulated molecule-averaged MSD for the lateral CM diffusion of
the DOPC molecules (dots) and fit of model (1) (solid line). The fitted frac-
tional diffusion coefficient is Dα = 0.107 nm2/nsα for α = 0.52. The inset
shows the distribution of δW(t) = Wj(t) − W(t) for t = 0.1 ns, t = 0.5 ns,
and t = 1 ns (with increasing width). In the main figure the corresponding
average MSD values are indicated by triangles.

differential equation

∂t c(t) = −
∫ t

0
dt ′ κ(t − t ′)c(t ′), (4)

where κ(t) is the corresponding memory kernel. Formally,
the latter can be derived from the microscopic Hamiltonian
dynamics of the system under consideration (tagged particle
plus the environment). Using that the MSD and the VACF are
related through19

W (t) = 2
∫ t

0
dτ (t − τ )c(τ ), (5)

one can derive characteristic long-time tails for the VACF and
its memory function,20

c(t) t→∞
∼ Dαα(α − 1)tα−2, (6)

κ(t) t→∞
∼

⟨v2⟩
Dα

sin(πα)
πα

t−α, (7)

FIG. 3. As Fig. 2, but for a maximum time lag of 30 ns. Here, the fitted
fractional diffusion coefficient is Dα = 0.101 nm2/nsα for α = 0.61 and the
inset shows the spread of the molecular MSDs at t = 5 ns, t = 15 ns, and
t = 30 ns.
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III. ILLUSTRATIONS

In the following some examples for spatially unconfined and confined diffusion will be

discussed which illustrate how the various asymptotic forms of the MSD can be generated

from a simple model for the memory function associated to the VACF, i.e. from different

types of “cages”.

A. Free diffusion

The memory function for confined diffusion is assumed to have the form

κf (t) = Ω2M(α, 1,−t/τ), (39)

where M(a, b, z) is Kummer’s hypergeometric function,47 Ω has the dimension of a frequency

and τ > 0 sets the time scale. The Kummer function is regular in the whole complex plane

and it has the properties M(0, b, z) = 1 and M(a, a, z) = exp(z). If α is varied between

0 and 1, the model thus interpolates between a constant and an exponentially decaying

memory function. It is worthwhile noting that the latter model has been proposed long time

ago by Berne et al.48 to qualitatively describe the VACF of simple liquids obtained from

molecular dynamics simulations.49

Due to the analytical properties of the Kummer function the Laplace transform of κf(t)

has a particularly simple form,

κ̂f (s) = Ω2

{

τα

s1−α

1

(sτ + 1)α

}

, (40)

showing that

κ̂f (s)
s→0
∼ Ω2ταsα−1. (41)

From the general form (20) of the Laplace transformed memory function one can thus

conclude that α is the exponent for the asymptotic growth of the MSD with time, W (t) ∼

2Dαtα, and that the fractional diffusion constant for the model is given by

Dα =
⟨v2⟩

Γ(1 + α)Ω2τα
. (42)

It follows, moreover, from the asymptotic form of the Kummer function for large arguments z
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that

κf(t)
t→∞

∼

⎧

⎪

⎨

⎪

⎩

Ω2 (t/τ)−α

Γ(1−α) , α ̸= 1,

Ω2 exp(−t/τ), α = 1.
(43)

These properties are compatible with condition (33), noting that an exponential decay

amounts to saying that κ(t) ∼ 0 for large times. Fig. 1 shows the normalized model memory

function, κf (t)/κf(0), for α = 1/2, 1, 3/2 (dashed, solid, and dotted line, respectively). One

notices the positive log time tail in case of subdiffusion and the negative long time tail in

case of superdiffusion. Here and in the following τ is set to one arbitrary time unit.

The VACFs and the MSDs corresponding to (39) have been computed by inverse Laplace

transform of expressions (18) and (9), respectively, using computer aided symbolic calcu-

lation.50 For this purpose the analytical expression (40) for κ̂(s) was replaced by a Padé

approximation,

κ̂f (s) ≈

∑Ma

k=0 ak(s − s0)k

∑Mb

k=0 bk(s − s0)k
, (44)

in order to obtain rational expressions for ĉvv(s) and Ŵ (s). Choosing s0 = 1 and Ma =

Mb = 7, the relative error of the inverse Laplace transform of (44) compared to the exact

form (39) is smaller than 5 × 10−3 for 0 ≤ t < 50 τ . The calculations were performed with

Ω = 1.5/τ and ⟨v2⟩ = 1/τ 2. Fig. 2 show the results for the VACFs, where the positive long

time tail in the VACF corresponding to superdiffusive motion (dotted line) is well visible.

The corresponding MSDs are displayed in Fig. 3 (solid lines), together with the the limiting

forms, W∞(t) = 2Dαtα and the common ballistic short time form, Wb(t) = ⟨v2⟩t2 (dotted

lines). The above results demonstrate that the model memory function generates all regimes

for unconfined diffusion and that the general conditions (32) and (33) for the asymptotic

forms of the VACF and the memory function, respectively, are fulfilled.

B. Spatially confined diffusion

The memory function for spatially confined diffusion is chosen to be

κc(t) = Ω2 {r + (1 − r)M(β, 1,−t/τ)} , (45)

where 0 < r < 1 and 0 < β ≤ 1. It resembles the one for unconfined subdiffusion, but in

contrast to the latter it decays to a finite plateau value, κc(∞) = Ω2r. Its asymptotic form

12
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is worthwhile mentioning that the underlying assumptions of
different models for subdiffusion maybe quite different. The
stochastic processes described by the generalized Langevin
equations presented in Refs. 18–20 are, for example,
Gaussian, whereas the FFPE (2) describes a non-gaussian pro-
cess. An overview of stochastic models for anomalous diffu-
sion can be found in Refs. 10 and 21.

Any stochastic model for a dynamical system encodes a
separation of time scales corresponding to “slow” and “fast”
dynamical variables, where the latter are modeled as noise.
This is true for normal and anomalous diffusion. Computer
simulation experiments on a simple liquid22 have shown that
the exponentially decaying VACF of a normally diffusing
Rayleigh particle emerges if the mass of a tagged “solute” is
systematically increased, slowing its motions down with re-
spect to those of the solvent molecules. A formal proof for
this observation has been given a posteriori23 in the frame-
work of the generalized Langevin equation (GLE) introduced
by Zwanzig,14, 24–26 turning the mass scaling into an ampli-
tude scaling of the memory function. The aim of the present
paper is to extend the scope of the latter work and to derive
the VACF of an anomalously diffusing heavy particle in a bath
of light solvent molecules from “first principles.” The starting
point is again the GLE

v̇(t) +
∫ t

0
dτ κ(t − τ )v(τ ) = f +(t), (6)

which is an exact, deterministic equation of motion for a
tagged particle in an interacting many-body system. It is not to
be confused with the generalizations of the Langevin equation
mentioned earlier (see, e.g., Refs. 18–20), which are stochas-
tic equations of motion implying a model for the solvent. In
the GLE (6), the memory kernel, κ , and the projected accel-
eration, f+, fully represent the effect of the environment on
the dynamics of the tagged particle. Assuming that the time
evolution of the total system is described by Hamiltonian dy-
namics, the projected acceleration has the form

f +(t) = exp((1 − P)Lt)(1 − P)Lv, (7)

where L is the Liouville operator and P is a projector whose
action on an arbitrary phase function f is defined through
Pf = (⟨vf ⟩/⟨v2⟩)v. In this context, the brackets ⟨. . . ⟩ repre-
sent an ensemble average over the phase space variables. With
the above definitions, the memory kernel can be expressed as
autocorrelation function of f+,

κ(t) = ⟨f +(0)f +(t)⟩
⟨v2⟩

. (8)

Since ⟨v(0)f +(t)⟩ = 0 by construction, it follows from (6)
that the time evolution of the VACF is described by the in-
tegral equation

ċ(t) +
∫ t

0
dτ κ(t − τ )c(τ ) = 0. (9)

The memory kernel is to be considered as a purely formal
quantity, since its calculation is in practice as impossible as
the explicit solution of the equations of motions for the solute
and the solvent molecules. For the following considerations
its exact form is, however, not needed and it only matters that

the VACF verifies an equation of motion of the form (9). The
normalized solution,

ψ(t) = c(t)/c(0), (10)

of this integro-differential equation can be expressed by the
contour integral

ψ(t) = 1
2π i

∮
ds

exp(st)
s + κ̂(s)

, (11)

where κ̂(s) =
∫ ∞

0 dt exp(−st)κ(t) (R{s} > 0) denotes the
Laplace-transformed memory function. Expression (11) is
simply the inverse Laplace transform of the solution of (9)
in Laplace space, setting c(0) = 1.

We consider now the situation that the memory function
is scaled according to

κ(t) → λκ(t), (12)

where λ → 0 and λ > 0. Under the assumptions to be dis-
cussed in the following, the above scaling corresponds to
changing the mass of the tagged particle as

m → m/λ. (13)

In case that t = 0, the equivalence of (12) and (13) is
strictly valid if one assumes that the Hamiltonian of the
full system has the standard form H =

∑n
i=1 p2

i /(2mi)
+ V (x1, . . . , xn), where n is the total number of degrees
of freedom of the system, xi are the particle coordi-
nates, and pi the associated momenta. This is seen by
using that the Liouville operator has the general form,
L =

∑n
i=1{(∂H/∂pi)∂/∂xi − (∂H/∂xi)∂/∂pi}, such that

Lv = −(1/m)∂V/∂x. Since ⟨v2⟩ = kBT /m, it follows then
from relations (7) and (8) that κ(0)∝1/m. Defining k to be the
index of the tagged particle, the Hamiltonian takes the form
H = λ p2

k/(2mk) +
∑

i ̸=k p2
i /(2mi) + V (x1, . . . , xn), which

shows that the dynamics of the tagged particle is frozen out
in the limit λ → 0. If one can assume that the dynamics of
the remaining particles is not affected by this process, as far
as the calculation of ensemble averages is concerned, relation
(13) is also true for t > 0.

Since the Laplace transform is a linear integral transform,
the VACF corresponding to the scaled memory kernel (12) is
given by

ψλ(t) = 1
2π i

∮
ds

exp(st)
s + λκ̂(s)

= 1
2π i

∮
ds

exp(sλt)
s + κ̂(λs)

, (14)

where the variable change s → s/λ has been performed to go
from the first to the second line. In the limit λ → 0 one thus
needs only the asymptotic form of κ̂(s) for small arguments
s. Using a theorem from asymptotic analysis,27 it has been
shown in Ref. 28 that this form is entirely determined by the
MSD for large times. If the latter has the form (1) the Laplace
transformed memory function behaves as

κ̂(s)
s→0∼

〈
v2

〉

Dα((α + 1)
sα−1. (15)
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cess. An overview of stochastic models for anomalous diffu-
sion can be found in Refs. 10 and 21.

Any stochastic model for a dynamical system encodes a
separation of time scales corresponding to “slow” and “fast”
dynamical variables, where the latter are modeled as noise.
This is true for normal and anomalous diffusion. Computer
simulation experiments on a simple liquid22 have shown that
the exponentially decaying VACF of a normally diffusing
Rayleigh particle emerges if the mass of a tagged “solute” is
systematically increased, slowing its motions down with re-
spect to those of the solvent molecules. A formal proof for
this observation has been given a posteriori23 in the frame-
work of the generalized Langevin equation (GLE) introduced
by Zwanzig,14, 24–26 turning the mass scaling into an ampli-
tude scaling of the memory function. The aim of the present
paper is to extend the scope of the latter work and to derive
the VACF of an anomalously diffusing heavy particle in a bath
of light solvent molecules from “first principles.” The starting
point is again the GLE

v̇(t) +
∫ t

0
dτ κ(t − τ )v(τ ) = f +(t), (6)

which is an exact, deterministic equation of motion for a
tagged particle in an interacting many-body system. It is not to
be confused with the generalizations of the Langevin equation
mentioned earlier (see, e.g., Refs. 18–20), which are stochas-
tic equations of motion implying a model for the solvent. In
the GLE (6), the memory kernel, κ , and the projected accel-
eration, f+, fully represent the effect of the environment on
the dynamics of the tagged particle. Assuming that the time
evolution of the total system is described by Hamiltonian dy-
namics, the projected acceleration has the form

f +(t) = exp((1 − P)Lt)(1 − P)Lv, (7)

where L is the Liouville operator and P is a projector whose
action on an arbitrary phase function f is defined through
Pf = (⟨vf ⟩/⟨v2⟩)v. In this context, the brackets ⟨. . . ⟩ repre-
sent an ensemble average over the phase space variables. With
the above definitions, the memory kernel can be expressed as
autocorrelation function of f+,

κ(t) = ⟨f +(0)f +(t)⟩
⟨v2⟩

. (8)

Since ⟨v(0)f +(t)⟩ = 0 by construction, it follows from (6)
that the time evolution of the VACF is described by the in-
tegral equation

ċ(t) +
∫ t

0
dτ κ(t − τ )c(τ ) = 0. (9)

The memory kernel is to be considered as a purely formal
quantity, since its calculation is in practice as impossible as
the explicit solution of the equations of motions for the solute
and the solvent molecules. For the following considerations
its exact form is, however, not needed and it only matters that

the VACF verifies an equation of motion of the form (9). The
normalized solution,

ψ(t) = c(t)/c(0), (10)

of this integro-differential equation can be expressed by the
contour integral

ψ(t) = 1
2π i

∮
ds

exp(st)
s + κ̂(s)

, (11)

where κ̂(s) =
∫ ∞

0 dt exp(−st)κ(t) (R{s} > 0) denotes the
Laplace-transformed memory function. Expression (11) is
simply the inverse Laplace transform of the solution of (9)
in Laplace space, setting c(0) = 1.

We consider now the situation that the memory function
is scaled according to

κ(t) → λκ(t), (12)

where λ → 0 and λ > 0. Under the assumptions to be dis-
cussed in the following, the above scaling corresponds to
changing the mass of the tagged particle as

m → m/λ. (13)

In case that t = 0, the equivalence of (12) and (13) is
strictly valid if one assumes that the Hamiltonian of the
full system has the standard form H =

∑n
i=1 p2

i /(2mi)
+ V (x1, . . . , xn), where n is the total number of degrees
of freedom of the system, xi are the particle coordi-
nates, and pi the associated momenta. This is seen by
using that the Liouville operator has the general form,
L =

∑n
i=1{(∂H/∂pi)∂/∂xi − (∂H/∂xi)∂/∂pi}, such that

Lv = −(1/m)∂V/∂x. Since ⟨v2⟩ = kBT /m, it follows then
from relations (7) and (8) that κ(0)∝1/m. Defining k to be the
index of the tagged particle, the Hamiltonian takes the form
H = λ p2

k/(2mk) +
∑

i ̸=k p2
i /(2mi) + V (x1, . . . , xn), which

shows that the dynamics of the tagged particle is frozen out
in the limit λ → 0. If one can assume that the dynamics of
the remaining particles is not affected by this process, as far
as the calculation of ensemble averages is concerned, relation
(13) is also true for t > 0.

Since the Laplace transform is a linear integral transform,
the VACF corresponding to the scaled memory kernel (12) is
given by

ψλ(t) = 1
2π i

∮
ds

exp(st)
s + λκ̂(s)

= 1
2π i

∮
ds

exp(sλt)
s + κ̂(λs)

, (14)

where the variable change s → s/λ has been performed to go
from the first to the second line. In the limit λ → 0 one thus
needs only the asymptotic form of κ̂(s) for small arguments
s. Using a theorem from asymptotic analysis,27 it has been
shown in Ref. 28 that this form is entirely determined by the
MSD for large times. If the latter has the form (1) the Laplace
transformed memory function behaves as

κ̂(s)
s→0∼

〈
v2

〉

Dα((α + 1)
sα−1. (15)
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FIG. 2. Velocity autocorrelation functions ψλ(t) for different scaling fac-
tors λ (solid lines) and corresponding asymptotic approximations (23)
(dashed lines). From top to bottom α = 1/2, 1, 3/2, from left to right λ =
1, 0.2, 0.02. The amplitude of the memory function (Eq. (24)) is chosen as
$ = 1/τm, such that τ = τm.

counterpart for normal diffusion, and that the model leads to
a nearly perfect approximation of the “real” VACF if the time
scales τλ and τ are separated by about two orders of magni-
tude. Computer simulations of lipid bilayers, where the lipid
molecules exhibit anomalous lateral diffusion, have shown
that τ is of the order of picoseconds,30 which is extremely
short compared to the millisecond time scale on which these
motions are usually studied experimentally.31 In this situa-
tion the anomalously diffusing Rayleigh article is an excel-
lent model, but it should be kept in mind that it cannot be
valid on arbitrarily short time scales, where it becomes even
unphysical since the derivatives c(k)(0) all diverge, although
they represent physical quantities.14, 26

In this Communication, an exact model-free derivation of
the VACF for an anomalously diffusing particle has been pre-
sented for the case that the motions of the particle are much
more slower than those of the molecules in the surrounding
solvent. Here the asymptotic form of its MSD is supposed to
be known. The effect of the time scale separation on the VACF

has been illustrated for a simple model system. At present,
the prediction of anomalous diffusion on the basis of general
physical properties of a solute–solvent system is still a chal-
lenge.
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Example for the analytical example shown before (τ≣τVACF)
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FIGURE IV.9. Left: Harmonic potential driving the OU process.
Right: Sketch of the corresponding “rugged” potential energy
surface leading to fractional Brownian motion.

proposed long time ago by Frauenfelder et al. [56]. It must be emphasised that
such an effective harmonic model can only describe protein dynamics close to
the equilibrium state, which is here characterised by a single global minimum
of the potential.

Using the general considerations concerning FFPEs made in Section 3.1 of
this chapter we can immediately write down the solution of the FFPE describ-
ing the fractional OU process. For this purpose we use expression (IV.57) and
insert the eigenfunctions of the Fokker-Planck operator (II.161) associated with
the standard OU process which are given in Eqs. (II.163) and (II.165). Defining
again the scaled positions ⇤ = x/

⌥
⇧x2⌃ and the scaled relaxation constant

⇥� = ⇧̃ 1��⇥ (IV.65)

one obtains from (IV.57) [49, 50]
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Here E�(·) is the Mittag-Leffler function defined in Eq. (IV.53).

4.2. Autocorrelation function and its spectrum. The autocorrelation func-
tion of the scaled variable ⇤ is obtained from the general expression (IV.59),
using that here y ⌅ ⇤ and

⇧
d⇤ ⇤Pn(⇤) = �n,1. Noting that the autocorrelation

function of ⇤ equals the normalised autocorrelation function of x, ⌃(t) ⇤ c⇥⇥(t),
one obtains

⌃(t) = E� (�⇥�t�) (IV.67)
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Observation of a Power-Law Memory Kernel for Fluctuations
within a Single Protein Molecule
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The fluctuation of the distance between a fluorescein-tyrosine pair within a single protein complex was
directly monitored in real time by photoinduced electron transfer and found to be a stationary, time-
reversible, and non-Markovian Gaussian process. Within the generalized Langevin equation formalism,
we experimentally determine the memory kernel K!t", which is proportional to the autocorrelation
function of the random fluctuating force. K!t" is a power-law decay, t#0:51$0:07 in a broad range of
time scales (10#3–10 s). Such a long-time memory effect could have implications for protein functions.

DOI: 10.1103/PhysRevLett.94.198302 PACS numbers: 82.37.-j, 02.50.-r, 05.40.-a, 87.15.He

Understanding the role of a protein’s dynamic motions
on its function has been a problem of long-standing interest
[1]. Single-molecule experiments provide information
about protein dynamics otherwise hidden in ensemble-
averaged studies. Recent single-molecule investigations
of a flavin oxidoreductase [2] indicate that protein confor-
mational fluctuations occur over a broad range of time
scales. Such conformational motion is closely related to
the fluctuations of enzymatic rate constant [3,4]. Kou and
Xie recently showed that this conformational fluctuation
can be modeled by a generalized Langevin equation (GLE)
[5]. Here we report a new single-molecule experiment
probing equilibrium conformational fluctuation in a pro-
tein via photoinduced electron-transfer (ET). Distance
fluctuations between the ET donor (D) and acceptor (A)
within a protein molecule were observed over a broad
range of times (10#3–100 s), and their stationarity, time
reversibility, and Gaussian property were proved by statis-
tical analysis. In the GLE formalism, the autocorrelation
function of the distance fluctuation was used to determine
the memory kernel which turns out to be a remarkable
power-law decay K!t" / t#0:51$0:07. The broad range of
time scales for conformational fluctuations at which pro-
tein reactions normally occur has implications for its bio-
logical functions, such as catalysis and allostery.

The system under study is a protein complex formed
between fluorescein (FL) and monoclonal antifluorescein
4-4-20 (anti-FL). This complex is highly stable, with a
small dissociation constant Kd % 0:1 nM, allowing long-
time observations at the single-molecule level. Figure 1(a)
shows its crystal structure, adapted from Ref. [6]. In our
room temperature experiment, a single FL and anti-FL
complex was first formed in solution, immobilized onto a
quartz surface via the biotin-streptavidin linkage, and then
repetitively excited by a 490 nm, 76 MHz, 100 fs pulse
train from a frequency doubled Ti:sapphire laser.
Fluorescence lifetime !#1 measurements were carried
out using the time-correlated single photon counting tech-

nique. The detailed experimental setup has been described
previously in Ref. [2].

The fluorescence decay of a single FL molecule is
monoexponential, while that of a single FL and anti-FL
complex is faster and multiexponential [Fig. 1(b)]. The
shorter lifetime results from photoinduced ET from the
closest tyrosine residue (Tyr37, donor) to FL (acceptor)
[7] and is expressed by !#1 & !!0 ' !ET"#1 ( !ET

#1,
where !0 denotes the fluorescence decay rate constant in

FIG. 1 (color). (a) Schematic of the structure of the FL and
anti-FL complex, adapted from Ref. [6]. Tyr37 and FL, ET donor
and acceptor, are highlighted. (b) Monoexponential fluorescence
lifetime decay for a single FL molecule. Multiexponential fluo-
rescence decay for the FL and anti-FL complex at both ensemble
and single-molecule levels. The instrumental response function
with 60 ps FWHM. a.u., arbitrary units.
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ibility holds, we expect

hx3!0"x!t"i # hx3!$t"x!0"i # hx!0"x3!t"i; (2)

where the first equality is due to stationarity, and the
second to reversibility. Figure 3(a) plots the experimentally
determined hx3!0"x!t"i and hx!0"x3!t"i against each other.
The diagonal line proves the time reversal symmetry.

We now examine the Gaussian property of x!t". For a
Gaussian process, all correlation functions higher than
second order can be expressed by the second order corre-
lation function. For example, hx!0"x!t"x!2t"i # 0, and
hx!0"x!t"x!2t"x!3t"i# hx!0"x!3t"ihx!0"x!t"i% hx!0"x!t"i2%
hx!0"x!2t"i2. We calculated both hx!0"x!t"x!2t"i and
hx!0"x!t"x!2t"x!3t"i from the experimental x!t" tra-
jectory and found that hx!0"x!t"x!2t"i vanishes within
experimental error and that hx!0"x!t"x!2t"x!3t"i matches
well with hx!0"x!3t"ihx!0"x!t"i% hx!0"x!t"i2% hx!0"x!2t"i2
[Fig. 3(b)]. These results strongly suggest that x!t" is a
Gaussian process.

By virtue of the stationary and Gaussian properties of
x!t", Cx!t" & hx!t"x!0"i is related to the autocorrelation
function of fluorescence lifetime variations, C!$1!t", by

C!$1!t" & h"!$1!0""!$1!t"i
h!$1i2 # e#

2Cx!t" $ 1; (3)

where "!$1!t" # !$1!t" $ h!$1i. C!$1!t" can be obtained
with a high time resolution comparable to the reciprocal of
the average photon count rate (1–2 ms), using the photon-
by-photon method [11] instead of the conventional bin-
ning. Thus, Cx!t" can be obtained from Eq. (3) with the
same high time resolution. Figure 4 shows the averaged
Cx!t" of 13 molecules, and it clearly has fluctuations over a
wide range of time scales. No noticeable power depen-
dence of Cx!t" in the excitation power range from 0.5 to
5 $W was observed, implying that the distance fluctua-
tions are spontaneous rather than photoinduced.

To investigate the underlying dynamics, the fluctuation
was analyzed in the framework of GLE, which can be
derived from the Liouville equation using projection op-
erators [12]. x!t" is modeled as the coordinate of a fictitious
particle diffusing in a potential of mean force. The GLE
governing its equilibrium dynamics is

m
d2x!t"
dt2

# $%
Z t

0
d&K!t$&"dx!&"

d&
$dU!x"

dx
%F!t"; (4)

where m is the reduced mass of the particle, U!x" #
m!2x2=2 is the harmonic potential with an angular fre-
quency !, % is the friction coefficient, F!t" is the fluctuat-
ing force, and K!t" is the memory kernel related to F!t" by
the fluctuation-dissipation theorem:

K!t$ &" # !1=%kBT"hF!t"F!&"i: (5)

In the overdamped limit where acceleration can be ne-
glected, Eq. (4) can be rewritten as

m!2x!t" # $ %
Z t

0
d&K!t$ &" dx!&"

d&
% F!t": (6)

Equation (6) can be converted to an equation for the time
correlation function Cx!t" by multiplying by x!0" and
averaging over the initial equilibrium condition:

m!2Cx!t"# $%
Z t

0
d&K!t$&"dCx!&"

d!&" % hF!t"x!0"i: (7)

The last term hF!t"x!0"i # 0 because F is orthogonal to x
in the phase space [12,13]. The Laplace transform of
Eq. (7) gives

~K!s" # m!2

%

~Cx!s"
Cx!0" $ s ~Cx!s"

; (8)

where ~K!s" is the Laplace transform of K!t". By taking the
Laplace transform of Cx!t" in Fig. 4 (open circles) numeri-
cally, and plugging the resulting ~Cx!s" into Eq. (8) along
with Cx!0" # kBT=m!2 # ' # 0:22 !A2, one solves
!%=m!2" ~K!s", which is shown in Fig. 5 after normaliza-
tion. Over at least four decades of time, ~K!s" exhibits a
simple power-law decay, ~K!s" / s(, with ( # $ 0:49'
0:07. Inverse Laplace transform of ~K!s" gives the time
domain correspondence K!t" / t$($1 # t$0:51'0:07, which
is remarkably simple.

The above results have implications for the nature of
F!t". First, since x!t" is stationary, the fluctuations of F!t"
must likewise be stationary. Second, since GLE is a linear
equation of x!t", the Gaussianity of x!t" requires F!t" to be
a Gaussian process as well. Third, the long memory be-
havior indicates that F!t" is non-Markovian. Fourth, the
power-law decay of K!t" implies time scaling invariance of
hF!t"F!&"i [Eq. (5)]. Mathematically, the only process that

FIG. 4. Autocorrelation function of distance fluctuation Cx!t"
(open circles, average of 13 molecules under the same experi-
mental condition), determined with high time resolution using
Eq. (3), with Cx!0" # kBT=m!2 # ' # 0:22 !A2. The solid line
is a fit to Cx!t" # Cx!0"et=t0erfc!

!!!!!!!!!!

t=t0"
p

with parameter
%=m!2 # 0:7 s0:5. The error bounds (dashed line) were esti-
mated by the method described in Ref. [17].
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The convolution product (17) for the measured dynam-
ics structure factor can be written in the following form,
using S as the model (14),

Smðq;xÞ ¼ expð$q2hx2iÞ

% ðl & rÞ þ
X1

n¼1

q2nhx2in

n!2p
ðLD

a;sn & rÞðxÞ

( )

: ð21Þ

Here LD
a;snðxÞ ¼ ðLa;sn & lÞðxÞ is the convolution of a gener-

alized Lorentzian with a normal Lorentzian, for which an
analytical form can be given. Defining

~x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðDq2Þ2

q
; / ¼ argðDq2 þ ixÞ; ð22Þ

one obtains [33]

LD
a;sðxÞ ¼

2 ð~xsÞa cos/þ cosð½a$ 1)/Þf g
~x ð~xsÞa þ 2 cos a/þ ð~xsÞ$af g

: ð23Þ

In contrast to La,s, its convolution with a normal Lorentz-
ian stays finite at x = 0 if D > 0. This point is important if
one aims at evaluating the convolutions in (21) by the effi-
cient Fast Fourier Transform technique [34], as we did for
the fits presented in this article. With this method singular
functions cannot be treated and we refer to [33] to handle
the case of D = 0. It is worthwhile mentioning that the lat-
ter method can be easily generalized to include also global
diffusion, but the FFT technique is more efficient.

4.3. Results

We start the presentation of the results with the analysis
of the MD simulations. The most basic quantity to con-
sider is the time-dependent mean-square displacement.
Fig. 3 shows the neutron-weighted average atomic MSD
of lysozyme and the fit of the model function (3). The
atomic weights are chosen to be the squared incoherent

scattering lengths. We note that the MSD computed from
MD is the sum of the MSDs in the x-, y- and z-direction,
and expression (3) must thus be multiplied by 3 for the
fit. In the latter only two of the three parameters of the
model, s and a, were used and the mean square position
fluctuation hx2i has been fixed by a separate analysis of
the MD trajectory. The resulting fit parameters can be read
off from Table 3. It is important to emphasize that the
model parameters are quite strongly correlated, in particu-
lar hx2i and s. Therefore a good estimation of hx2i is crucial
even to estimate tendencies of s with pressure. In this con-
text we found that the direct calculation of hx2i from the
MD trajectories is less reliable than the calculation from
the EISF via expression (13) in the limit q ! 0. For ambi-
ent pressure this procedure gives a very similar result as the
direct calculation, but for p = 300 MPa the direct calcula-
tion yields a value which is about 10% smaller than the
one obtained from the EISF. This small difference leads
even to a slight shortening of s with pressure instead to
the lengthening seen in Table 3, and the fit is clearly less
good. If all parameters are left free in the fit, one also finds
a lengthening of s with pressure, and the resulting para-
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Fig. 3. Average atomic mean-square displacement of lysozyme in solution obtained fromMD simulation at p = 0.1 MPa and at p = 300 MPa (solid lines).
The broken lines correspond to a fit of the model according to expression (3). See Table 3 for the resulting parameters. More explanations are given in the
text.

Table 3
Parameters for the fractional Ornstein–Uhlenbeck process obtained from
fits to the simulated MSDs and to the simulated intermediate scattering
functions

0.1 MPa 300 MPa

hx2i (nm2) a s (ps) hx2i (nm2) a s (ps)

MSD 6.17 · 10$3 0.54 31.75 4.74 · 10$3 0.54 39.08

Finc(6 nm, t) 4.68 · 10$3 0.53 13.48 3.94 · 10$3 0.50 19.43
Finc(10 nm, t) 3.96 · 10$3 0.51 8.86 3.28 · 10$3 0.49 13.58
Finc(20 nm, t) 2.57 · 10$3 0.52 2.53 2.21 · 10$3 0.45 4.39
Finc(22 nm, t) 2.41 · 10$3 0.50 2.3 2.08 · 10$3 0.44 3.64

The value of hx2i is fixed according to Eq. (13).
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ian stays finite at x = 0 if D > 0. This point is important if
one aims at evaluating the convolutions in (21) by the effi-
cient Fast Fourier Transform technique [34], as we did for
the fits presented in this article. With this method singular
functions cannot be treated and we refer to [33] to handle
the case of D = 0. It is worthwhile mentioning that the lat-
ter method can be easily generalized to include also global
diffusion, but the FFT technique is more efficient.

4.3. Results

We start the presentation of the results with the analysis
of the MD simulations. The most basic quantity to con-
sider is the time-dependent mean-square displacement.
Fig. 3 shows the neutron-weighted average atomic MSD
of lysozyme and the fit of the model function (3). The
atomic weights are chosen to be the squared incoherent

scattering lengths. We note that the MSD computed from
MD is the sum of the MSDs in the x-, y- and z-direction,
and expression (3) must thus be multiplied by 3 for the
fit. In the latter only two of the three parameters of the
model, s and a, were used and the mean square position
fluctuation hx2i has been fixed by a separate analysis of
the MD trajectory. The resulting fit parameters can be read
off from Table 3. It is important to emphasize that the
model parameters are quite strongly correlated, in particu-
lar hx2i and s. Therefore a good estimation of hx2i is crucial
even to estimate tendencies of s with pressure. In this con-
text we found that the direct calculation of hx2i from the
MD trajectories is less reliable than the calculation from
the EISF via expression (13) in the limit q! 0. For ambi-
ent pressure this procedure gives a very similar result as the
direct calculation, but for p = 300 MPa the direct calcula-
tion yields a value which is about 10% smaller than the
one obtained from the EISF. This small difference leads
even to a slight shortening of s with pressure instead to
the lengthening seen in Table 3, and the fit is clearly less
good. If all parameters are left free in the fit, one also finds
a lengthening of s with pressure, and the resulting para-
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text.

Table 3
Parameters for the fractional Ornstein–Uhlenbeck process obtained from
fits to the simulated MSDs and to the simulated intermediate scattering
functions

0.1 MPa 300 MPa

hx2i (nm2) a s (ps) hx2i (nm2) a s (ps)

MSD 6.17 · 10$3 0.54 31.75 4.74 · 10$3 0.54 39.08

Finc(6 nm, t) 4.68 · 10$3 0.53 13.48 3.94 · 10$3 0.50 19.43
Finc(10 nm, t) 3.96 · 10$3 0.51 8.86 3.28 · 10$3 0.49 13.58
Finc(20 nm, t) 2.57 · 10$3 0.52 2.53 2.21 · 10$3 0.45 4.39
Finc(22 nm, t) 2.41 · 10$3 0.50 2.3 2.08 · 10$3 0.44 3.64

The value of hx2i is fixed according to Eq. (13).
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The model correlation functions have the experimentally 
observed power law decay, but they are not analytic and thus 
unphysical at t=0.
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cvv(t)
t!1⇠ 0,

(t)
t!1⇠ hv2i

D0

1

L(t)

The memory function 
tends to a plateau value!
if L tends to 1

W (t)
t!1⇠ 2D0L(t), with D0 = h(x� hxi)2i

conditions we introduce the functions

f(t) =

∫ t

0

dτ cvv(τ), (26)

g(t) =

∫ t

0

dτ κ(τ). (27)

One recognizes that f(∞) = D and g(∞) = η in case of normal unconfined diffusion.

Defining the slowly varying functions

Lf (t) = αDαL(t), (28)

Lg(t) =
⟨v2⟩

DαΓ(2 − α)Γ(α + 1)L(t)
, (29)

and using that f̂(s) = ĉvv(s)/s and ĝ(s) = κ̂(s)/s, we obtain the following equivalences from

(10), (20), and from the HLK theorem (6),

f̂(s)
s→0
∼ Lf (1/s)

Γ(α)

sα
⇔ f(t)

t→∞

∼ Lf (t)t
α−1, (30)

ĝ(s)
s→0
∼ Lg(1/s)

Γ(2 − α)

s2−α
⇔ g(t)

t→∞

∼ Lg(t)t
1−α. (31)

Note that if L(t) is a slowly varying function, the same is true for 1/L(t). On account of (26)

and (27), differentiation of f(t) and g(t) for large times leads to necessary conditions for the

asymptotic forms of the VACF and its memory function. Observing that limt→∞ t dL/dt = 0,

one obtains

cvv(t)
t→∞

∼ Dαα(α − 1)L(t)tα−2, (32)

κ(t)
t→∞

∼
⟨v2⟩

Dα

sin(πα)

πα

1

L(t)
t−α. (33)

Applying here the HLK theorem again, one can also conclude that (10) follows from (32)

if 1 < α < 2 and that (20) follows from (33) if 0 < α < 1. Therefore (32) and (33)

are also sufficient conditions for superdiffusion and subdiffusion, respectively. The relations

cvv(t)
t→∞

∼ 0 and κ(t)
t→∞

∼ 0, which arise for α = 0, 1 in case of the VACF and for α = 1 in

case of the memory function, indicate the absence of the corresponding algebraic long time

tails.

D. Spatially confined diffusion

So far, spatially confined diffusion appears as an extreme case of subdiffusion, where

α = 0. The fact that the motions of the diffusing particle take place in a restricted volume

8

α=0 No long 
time tail

Asymptotic analysis

« Constant cage »
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B. Spatially confined diffusion

The memory function for spatially confined diffusion is
chosen to be

κc(t) = "2 {r + (1 − r )M(β, 1,−t/τ )} , (45)

where 0 < r < 1 and 0 < β ≤ 1. It resembles the one for un-
confined subdiffusion, but in contrast to the latter it decays
to a finite plateau value, κc(∞) = "2r . Its asymptotic form is
given by

κc(t) − κc(∞)
t→∞∼

⎧
⎨

⎩
"2(1 − r ) (t/τ )−β

%(1−β) , 0 < β < 1,

"2(1 − r ) exp(−t/τ ), β = 1.

(46)
For 0 < β < 1 we have thus anomalous diffusion, in the
sense that the relaxation constant τc introduced in Eq. (34)
diverges. Figure 4 displays the normalized model memory
function for β = 1 and β = 1/2 (solid and dashed line, re-
spectively), fixing r = 0.3. The corresponding VACFs and
MSDs are shown in Figs. 5 and 6, respectively. They have
been calculated in the same way as for unconfined diffusion,
setting again " = 1.5/τ and ⟨v2⟩ = 1. Figure 6 displays in
addition the fits of two stochastic models for the MSD: the
normal Ornstein-Uhlenbeck (OU) process and the fractional
Ornstein-Uhlenbeck (fOU) process. The first one describes
the normal, markovian diffusion of a particle in a harmonic
potential,51 and the latter is the corresponding generalization
to a non-markovian process.30 The mean square displacement
for both the OU and the fOU process can be expressed by the
formula,

W(f)OU(t) = 2⟨u2⟩(1 − Eb(−[t/t0]b)), 0 < b ≤ 1, (47)

where Eb(z) denotes the Mittag-Leffler (ML) function and t0
is a time scale parameter. The ML function is an entire func-
tion in the complex plane and it can be represented by the
power series

Eb(z) =
∞∑

k=0

zk

%(1 + bk)
, (48)

which shows that Eb(z) = exp(z) for b = 1. The latter choice
for b in Eq. (47) corresponds to the normal Ornstein-

FIG. 4. Normalized memory functions according to model (45) for β = 1/2
and β = 1 (dashed line and solid line). The grey horizontal line shows the
plateau value.

FIG. 5. Normalized VACFs corresponding to the memory functions shown
in Fig. 4.

Uhlenbeck process, where the MSD converges exponentially
to its plateau value. The model (47) has been fitted to the
MSDs displayed in Fig. 6, leading to b = 0.521 ≈ β, t0
= 5.537 τ for the fOU process and to t0 = 2.126 τ for the OU
process. Both fits represent well the long time form of the
MSDs corresponding to model (45) for β = 1/2 and β = 1,
respectively. In this context, it is worthwhile to compare the
L-functions corresponding to the (f)OU process to the one re-
sulting from the memory function (44). It follows from the
asymptotic form of the ML function,

Eb(−tb)
t→∞∼ t−b

%(1 − b)
, (β ̸= 1), (49)

and from W (t)
t→∞∼ 2⟨u2⟩L(t) that the function L fOU(t) is

given by

L fOU(t) =

⎧
⎨

⎩
1 − (t/t0)−b

%(1−b) , if 0 < b < 1,

1 − exp(−t/t0), if b = 1.
(50)

On the other hand, one obtains from Eqs. (35) and (46)

L(t) =

⎧
⎨

⎩
1 −

( 1−r
r

) (t/τ )−β

%(1−β) , if 0 < β < 1,

1 −
( 1−r

r

)
exp(−t/τ ), if β = 1,

(51)

FIG. 6. MSDs derived from the memory functions shown in Fig. 4 (black
dashed line for β = 1/2 and black solid line for β = 1). In addition the
figure displays fits of model (47) for anomalous diffusion (grey dashed
line, βfOU = 0.521, τfOU = 5.537 τ ) and normal diffusion (grey solid line,
τOU = 2.126 τ ). More explanations are given in the text.
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Uhlenbeck process, where the MSD converges exponentially
to its plateau value. The model (47) has been fitted to the
MSDs displayed in Fig. 6, leading to b = 0.521 ≈ β, t0
= 5.537 τ for the fOU process and to t0 = 2.126 τ for the OU
process. Both fits represent well the long time form of the
MSDs corresponding to model (45) for β = 1/2 and β = 1,
respectively. In this context, it is worthwhile to compare the
L-functions corresponding to the (f)OU process to the one re-
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FIG. 6. MSDs derived from the memory functions shown in Fig. 4 (black
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figure displays fits of model (47) for anomalous diffusion (grey dashed
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τOU = 2.126 τ ). More explanations are given in the text.

Downloaded 14 Jun 2011 to 194.167.30.120. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

� = 0.5
� = 1.0

224106-6 Gerald R. Kneller J. Chem. Phys. 134, 224106 (2011)
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B. Spatially confined diffusion

The memory function for spatially confined diffusion is
chosen to be

κc(t) = "2 {r + (1 − r )M(β, 1,−t/τ )} , (45)

where 0 < r < 1 and 0 < β ≤ 1. It resembles the one for un-
confined subdiffusion, but in contrast to the latter it decays
to a finite plateau value, κc(∞) = "2r . Its asymptotic form is
given by

κc(t) − κc(∞)
t→∞∼

⎧
⎨

⎩
"2(1 − r ) (t/τ )−β

%(1−β) , 0 < β < 1,

"2(1 − r ) exp(−t/τ ), β = 1.

(46)
For 0 < β < 1 we have thus anomalous diffusion, in the
sense that the relaxation constant τc introduced in Eq. (34)
diverges. Figure 4 displays the normalized model memory
function for β = 1 and β = 1/2 (solid and dashed line, re-
spectively), fixing r = 0.3. The corresponding VACFs and
MSDs are shown in Figs. 5 and 6, respectively. They have
been calculated in the same way as for unconfined diffusion,
setting again " = 1.5/τ and ⟨v2⟩ = 1. Figure 6 displays in
addition the fits of two stochastic models for the MSD: the
normal Ornstein-Uhlenbeck (OU) process and the fractional
Ornstein-Uhlenbeck (fOU) process. The first one describes
the normal, markovian diffusion of a particle in a harmonic
potential,51 and the latter is the corresponding generalization
to a non-markovian process.30 The mean square displacement
for both the OU and the fOU process can be expressed by the
formula,

W(f)OU(t) = 2⟨u2⟩(1 − Eb(−[t/t0]b)), 0 < b ≤ 1, (47)

where Eb(z) denotes the Mittag-Leffler (ML) function and t0
is a time scale parameter. The ML function is an entire func-
tion in the complex plane and it can be represented by the
power series

Eb(z) =
∞∑

k=0

zk

%(1 + bk)
, (48)

which shows that Eb(z) = exp(z) for b = 1. The latter choice
for b in Eq. (47) corresponds to the normal Ornstein-

FIG. 4. Normalized memory functions according to model (45) for β = 1/2
and β = 1 (dashed line and solid line). The grey horizontal line shows the
plateau value.

FIG. 5. Normalized VACFs corresponding to the memory functions shown
in Fig. 4.

Uhlenbeck process, where the MSD converges exponentially
to its plateau value. The model (47) has been fitted to the
MSDs displayed in Fig. 6, leading to b = 0.521 ≈ β, t0
= 5.537 τ for the fOU process and to t0 = 2.126 τ for the OU
process. Both fits represent well the long time form of the
MSDs corresponding to model (45) for β = 1/2 and β = 1,
respectively. In this context, it is worthwhile to compare the
L-functions corresponding to the (f)OU process to the one re-
sulting from the memory function (44). It follows from the
asymptotic form of the ML function,

Eb(−tb)
t→∞∼ t−b

%(1 − b)
, (β ̸= 1), (49)

and from W (t)
t→∞∼ 2⟨u2⟩L(t) that the function L fOU(t) is

given by

L fOU(t) =

⎧
⎨

⎩
1 − (t/t0)−b

%(1−b) , if 0 < b < 1,

1 − exp(−t/t0), if b = 1.
(50)

On the other hand, one obtains from Eqs. (35) and (46)

L(t) =

⎧
⎨

⎩
1 −

( 1−r
r

) (t/τ )−β

%(1−β) , if 0 < β < 1,

1 −
( 1−r

r

)
exp(−t/τ ), if β = 1,

(51)

FIG. 6. MSDs derived from the memory functions shown in Fig. 4 (black
dashed line for β = 1/2 and black solid line for β = 1). In addition the
figure displays fits of model (47) for anomalous diffusion (grey dashed
line, βfOU = 0.521, τfOU = 5.537 τ ) and normal diffusion (grey solid line,
τOU = 2.126 τ ). More explanations are given in the text.
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asymptotic form of the ML function,

Eb(−tb)
t→∞∼ t−b

%(1 − b)
, (β ̸= 1), (49)

and from W (t)
t→∞∼ 2⟨u2⟩L(t) that the function L fOU(t) is

given by

L fOU(t) =

⎧
⎨

⎩
1 − (t/t0)−b

%(1−b) , if 0 < b < 1,

1 − exp(−t/t0), if b = 1.
(50)

On the other hand, one obtains from Eqs. (35) and (46)

L(t) =

⎧
⎨

⎩
1 −

( 1−r
r

) (t/τ )−β

%(1−β) , if 0 < β < 1,

1 −
( 1−r

r

)
exp(−t/τ ), if β = 1,

(51)

FIG. 6. MSDs derived from the memory functions shown in Fig. 4 (black
dashed line for β = 1/2 and black solid line for β = 1). In addition the
figure displays fits of model (47) for anomalous diffusion (grey dashed
line, βfOU = 0.521, τfOU = 5.537 τ ) and normal diffusion (grey solid line,
τOU = 2.126 τ ). More explanations are given in the text.

Downloaded 14 Jun 2011 to 194.167.30.120. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

GLE versus fractional brownian 
motion

Simple model



Jeon et al. PRL 106, 048103 (2011)

1 2 5 10 20 50
têt

1.00

0.50

2.00

0.30

1.50

0.70

WHtL

WH•LfOU
OU
b=1ê2b=1

Protein dynamics in optical tweezers

Simple analytical model



191101-3 Kneller, Hinsen, and Calligari J. Chem. Phys. 136, 191101 (2012)

FIG. 1. Four selected residues in the lysozyme molecule.

All fits show an excellent agreement with the simulation
data and we show here the results for four selected residues
which have been chosen according to their exposure to sol-
vent (see Fig. 1). Residues Ala 9 and Val 29 are buried in
α-helices, whereas Thr 47 and Gly 104 are located in loop re-
gions. Figure 2 shows the superposition of the simulated nor-
malized PACFs (dots) with the fits of ψ(t/τ ; α, β) (solid lines)
in form of a log-log plot. The fit parameters are given in the
plot. A coherent view of the results is obtained by correlating
the mean relaxation rate,

λ = (1 + α)τ−1, (20)

of all Cα-atoms and its spread,

σλ = (λ2 − λ
2
)1/2 = β−1/2τ−1, (21)

FIG. 2. Log-log plot of the simulated position autocorrelation functions for
the Cα-atoms of the residues shown in Figure 1 (dots) and fits of model (13)
(solid lines). For the simulated PACFs the smallest positive time argument is
t = 0.05 ps.

FIG. 3. Upper panel: Solvent accessible surface for the Cα-atoms in
lysozyme. Middle panel: Mean relaxation rate λ (blue line) and correspond-
ing standard deviation σλ (green line). Lower panel: Mean square position
fluctuation ⟨u2⟩ (blue line) and short time diffusion coefficient Ds (green
line). The additional graphics on top of the figure locates the secondary struc-
ture elements. Black rectangles indicate α-helices, grey rectangles short heli-
coidal motifs, and arrows beta sheets.

with the solvent-accessible surface of the respective residue.
Here, the total solvent-accessible surface of all atoms is con-
sidered. The fitted quantities λ and σλ for our model are, re-
spectively, given in the upper and middle panels of Fig. 3,
combining λ (blue line) and σλ (green line) in the middle
panel. On top of the figure we indicate the location of sec-
ondary structure elements and the vertical lines locate the four
selected residues displayed in Fig. 1. The results show that
the PACFs of Cα-atoms in solvent-exposed loop regions re-
lax one or two orders of magnitude more slowly than those
buried in helices, and the spread of the relaxation rates fol-
lows exactly the same trend, which is not trivial since the
mean relaxation and its spread are not described by the same
parameters. The backbone relaxation dynamics in secondary
structure elements is thus faster than the one in the more
floppy, solvent-exposed loop regions, and has a much stronger
non-exponential character. In this context, it is interesting to
look at the static position fluctuations of the Cα-atoms and at
the corresponding short-time diffusion coefficients, which de-
pend on both the amplitudes of the atomic motions and on the
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We present a model for the local diffusion-relaxation dynamics of the Cα-atoms in proteins describ-
ing both the diffusive short-time dynamics and the asymptotic long-time relaxation of the position
autocorrelation functions. The relaxation rate spectra of the latter are represented by shifted gamma
distributions, where the standard gamma distribution describes anomalous slow relaxation in macro-
molecular systems of infinite size and the shift accounts for a smallest local relaxation rate in macro-
molecules of finite size. The resulting autocorrelation functions are analytic for any time t ≥ 0. Using
results from a molecular dynamics simulation of lysozyme, we demonstrate that the model fits the
position autocorrelation functions of the Cα-atoms exceptionally well and reveals moreover a strong
correlation between the residue’s solvent-accessible surface and the fitted model parameters. © 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4718380]

Over the recent years, the multi-scale aspect of the in-
ternal dynamics of proteins and macromolecular systems in
general has attracted considerable interest on both the ex-
perimental and theoretical sides.1–9 A characteristic feature
of time correlation functions (TCFs) related to internal diffu-
sive motions is their strongly non-exponential decay. A clas-
sical empirical model is the stretched exponential function,
c(t) = c(0) exp (− [t/τ ]β) (0 < β ≤ 1), which has been used
to model, for example, the kinetics of protein folding.10 The
description of internal protein dynamics through a fractional
Ornstein-Uhlenbeck (fOU) process11–13 leads to the stretched
Mittag-Leffler (ML) function, c(t) = c(0)Eβ(− [t/τ ]β) (0 < β

≤ 1), which has proven to be a good model for the TCF
of position and distance fluctuations in proteins.3, 4, 14, 15 The
ML function is an entire function in the complex plane,16, 17

Eβ(z) =
∑∞

n=0 zn/$(1 + βn), and includes the exponential
function as a special case, E1(z) = exp (z). Since the mod-
els cited above capture the essential features of the measured
correlation functions by a few parameters, they have undoubt-
edly their merits as simple models for an ad hoc interpretation
of experimental data. They have, however, also the unpleas-
ant feature of becoming unphysical for short times. Due to
the “stretched” argument ∝tβ the time derivatives c(n)(0+) do
not exist if 0 < β < 1, although they should exist whenever
the time evolution of the dynamical system under consider-
ation is described by equations of motion.18–20 Consider, for
example, the diffusive motion of an atom in a dense molecular
system in thermal equilibrium. Here, the dynamical variable
is the deviation of the atom with respect to its mean position,
u = x − ⟨x⟩, and the relevant TCF is its position autocor-
relation function (PACF), c(t) = ⟨u · exp(Lt)u⟩. The symbol
⟨. . . ⟩ denotes an equilibrium ensemble average and L is the

a)Electronic mail: gerald.kneller@cnrs-orleans.fr.

time evolution operator for the whole system. It follows from
the construction of the PACFs that c(n)(0+) = ⟨u · Lnu⟩ are
well-defined ensemble averages which should exist. For non-
Hamiltonian diffusive dynamics, where L is a many-particle
Smoluchowski operator,21, 22

Ds = 1
2

d⟨[u(t) − u(0)]2⟩
dt

∣∣∣∣
t=0

= −c(1)(0+), (1)

defines in particular the short-time diffusion coefficient.
In this paper, we develop a realistic minimal model for

the backbone dynamics of proteins which leads to regular
PACFs for the Cα-atoms describing both the diffusive short-
time dynamics and the relaxation for long times. We assume
that u(t) is described by a stationary stochastic process and
write its autocorrelation function in the form

c(t) = ⟨u2⟩ψ(t/τ ), (2)

where ψ(.) is the normalized PACF for a dimensionless time
argument, with ψ(0) = 1, and τ > 0 sets the time scale. For
convenience we set τ = 1 in the following. To express the
multi-scale character of protein dynamics we write the PACFs
as a superposition of exponential functions,

ψ(t) =
∫ ∞

0
dλ p(λ) exp(−λt), (3)

where the relaxation rate spectrum p(λ) satisfies the normal-
ization condition

∫ ∞
0 dλ p(λ) = 1, as well as p(λ) ≥ 0. The

moments of the relaxation rate spectrum are given by

λk =
∫ ∞

0
dλ λkp(λ) = (−1)kψ (k)(0), (4)

and their existence depends on the behavior of p(λ) for λ

→ ∞. For λk to exist the relaxation rate spectrum must decay
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at least as fast as p(λ) ∼ λ−(k + 1 + ϵ), with ϵ > 0. In this con-
text it is worthwhile noting that the relaxation rate spectrum
corresponding to the stretched Mittag-Leffler function, ψ(t)
= Eβ(− tβ), which describes the PACF of the fOU process1, 14

behaves for large λ as pfOU(λ) ∼ λ−(β+1). For this reason none
of moments λk with k > 0 exist and ψ(t) is non-analytic at
t = 0.

To construct a model for p(λ), we make the following
assumptions:
(a) For a protein of finite size, the PACF of each Cα-atom is

characterized by a smallest relaxation rate, ηmin. In ther-
mal equilibrium, a protein performs fluctuations about its
equilibrium structure, and to a first approximation pro-
tein dynamics can be described by diffusion in an effec-
tive multidimensional harmonic potential energy.23, 24 If
ωmin is the smallest normal frequency for this harmonic
potential, then ηmin = γ −1ω2

min is the minimal relaxation
rate for the PACF of a given Cα-atom, where γ > 0 is a
positive friction constant which is essentially determined
by the atomic density of the nearest neighbors. With in-
creasing system size ωmin and thus ηmin tend to zero.

(b) In the limit of infinite protein size, the PACF of each
Cα-atom exhibits anomalous relaxation,

ψ(t)
t→∞∼ t−β 0 < β < 1, (5)

which is characteristic for relaxation processes in large
scale polymeric networks.2 Due to the slow decay of
the PACFs, the corresponding average relaxation times,
τ exp =

∫ ∞
0 dt ψ(t), diverge.

(c) The PACFs should be analytical in t = 0, i.e., they should
representable by a Taylor series in this point. Since ψ(t)
is the moment generating function for p(λ), all moments
λk must exist.

In order to fulfill the above requirements, the relaxation
rate spectrum must have the general form

p(λ; α,β) = θ (λ − α)p(λ − α; β), (6)

where θ (.) is the Heaviside unit step function, α is a di-
mensionless minimal relaxation rate (α = ηminτ ), and p(λ; β)
must be constructed such that ψ(t) has the asymptotic form
(5) if α = 0. For this purpose, one can rely on the fact that the
Laplace transform of ψ(t) is the Stieltjes transform of p(λ),

ψ̂(s) =
∫ ∞

0
dµ

p(µ)
s + µ

, (7)

p(λ) = 1
π

lim
ϵ→0

ℑ{ψ̂(−λ − iϵ)}, (8)

where ψ̂(s) =
∫ ∞

0 dt exp(−st)ψ(t) (R{s} > 0), and on a
Tauberian theorem,25, 26 according to which

ψ̂(s)
s→0∼ ,(1 − β)

s1−β
(9)

follows from relation (5) and vice versa. Combining relations
(8) and (9), one can conclude that p(λ; β) must have the gen-
eral form

p(λ; β) = f (λ)
sin(πβ)

π

,(1 − β)
λ1−β

(0 < β < 1), (10)

where f(λ) is a yet undetermined function fulfilling
limλ → 0f(λ) = C. The constant C must be chosen such
that

∫ ∞
0 p(λ; β) = 1. We note that limβ → 1sin (πβ),(1 − β)

= π . Relation (10) is a necessary and sufficient condition for a
slowly decaying PACF with the asymptotic form (5). To con-
struct p(λ) such that the existence of all moments λk and thus
the analyticity of ψ(t) in t = 0 is guaranteed we set

f (λ) = C exp(−βλ). (11)

The properly normalized relaxation rate spectrum then reads

p(λ; β) = λβ−1ββ exp(−βλ)
,(β)

, (12)

and ψ(t) is given by

ψ(t ; α,β) = exp(−αt)
(1 + t/β)β

. (13)

The corresponding cumulants, which are defined through

c
(k)
α,β = (−1)k

dk

dtk
ln(ψ(t ; α,β))

∣∣∣∣
t=0+

(14)

have the particularly simple form

c
(1)
α,β =1 + α, (15)

c
(k)
α,β = (k − 1)!

βk−1
, (k = 2, 3, . . .). (16)

From the form of ψ(t; α, β) and its cumulants, one derives the
consistent limits

lim
β→∞

ψ(t ; α,β) = exp(−[1 + α]t), (17)

lim
β→∞

p(λ; α,β) = δ(λ − [1 + α]), (18)

and we note in this context that ψ(t; 0, 1/(1 − q)) is the “Tsal-
lis q-exponential” which is considered in non-extensive sta-
tistical mechanics.27–29

To test our model, we performed a molecular dynam-
ics simulation of a lysozyme molecule in water for a subse-
quent analysis of the Cα PACFs with our model. The sim-
ulated system was set up by starting with the initial structure
193L of the Protein Data Bank (PDB).30 A total of 6775 water
molecules were added, resulting in a system of 22 295 atoms.
The simulations were performed using the NAMD program31

with the all-atom force field AMBER99SB (Ref. 32) and with
periodic boundary conditions. Electrostatic interactions were
computed using the particle mesh Ewald method.33 The inte-
gration time step was set to 1 fs and coordinates were saved
every 50 fs for further analysis. After a preliminary minimiza-
tion of the PDB structure, the system was first equilibrated at
constant temperature (298 K) and constant pressure (1 bar)
using a Langevin thermostat34 coupled with a Nose-Hoover
barostat.35 The equilibrated system was used for a production
run of 10 ns from which the PACFs of the Cα-atoms were
calculated. The normalized PACFs were fitted according to

c(t)
c(0)

≈ ψ(t/τ ; α,β). (19)
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at least as fast as p(λ) ∼ λ−(k + 1 + ϵ), with ϵ > 0. In this con-
text it is worthwhile noting that the relaxation rate spectrum
corresponding to the stretched Mittag-Leffler function, ψ(t)
= Eβ(− tβ), which describes the PACF of the fOU process1, 14

behaves for large λ as pfOU(λ) ∼ λ−(β+1). For this reason none
of moments λk with k > 0 exist and ψ(t) is non-analytic at
t = 0.

To construct a model for p(λ), we make the following
assumptions:
(a) For a protein of finite size, the PACF of each Cα-atom is

characterized by a smallest relaxation rate, ηmin. In ther-
mal equilibrium, a protein performs fluctuations about its
equilibrium structure, and to a first approximation pro-
tein dynamics can be described by diffusion in an effec-
tive multidimensional harmonic potential energy.23, 24 If
ωmin is the smallest normal frequency for this harmonic
potential, then ηmin = γ −1ω2

min is the minimal relaxation
rate for the PACF of a given Cα-atom, where γ > 0 is a
positive friction constant which is essentially determined
by the atomic density of the nearest neighbors. With in-
creasing system size ωmin and thus ηmin tend to zero.

(b) In the limit of infinite protein size, the PACF of each
Cα-atom exhibits anomalous relaxation,

ψ(t)
t→∞∼ t−β 0 < β < 1, (5)

which is characteristic for relaxation processes in large
scale polymeric networks.2 Due to the slow decay of
the PACFs, the corresponding average relaxation times,
τ exp =

∫ ∞
0 dt ψ(t), diverge.

(c) The PACFs should be analytical in t = 0, i.e., they should
representable by a Taylor series in this point. Since ψ(t)
is the moment generating function for p(λ), all moments
λk must exist.

In order to fulfill the above requirements, the relaxation
rate spectrum must have the general form

p(λ; α,β) = θ (λ − α)p(λ − α; β), (6)

where θ (.) is the Heaviside unit step function, α is a di-
mensionless minimal relaxation rate (α = ηminτ ), and p(λ; β)
must be constructed such that ψ(t) has the asymptotic form
(5) if α = 0. For this purpose, one can rely on the fact that the
Laplace transform of ψ(t) is the Stieltjes transform of p(λ),

ψ̂(s) =
∫ ∞

0
dµ

p(µ)
s + µ

, (7)

p(λ) = 1
π

lim
ϵ→0

ℑ{ψ̂(−λ − iϵ)}, (8)

where ψ̂(s) =
∫ ∞

0 dt exp(−st)ψ(t) (R{s} > 0), and on a
Tauberian theorem,25, 26 according to which

ψ̂(s)
s→0∼ ,(1 − β)

s1−β
(9)

follows from relation (5) and vice versa. Combining relations
(8) and (9), one can conclude that p(λ; β) must have the gen-
eral form

p(λ; β) = f (λ)
sin(πβ)

π

,(1 − β)
λ1−β

(0 < β < 1), (10)

where f(λ) is a yet undetermined function fulfilling
limλ → 0f(λ) = C. The constant C must be chosen such
that

∫ ∞
0 p(λ; β) = 1. We note that limβ → 1sin (πβ),(1 − β)

= π . Relation (10) is a necessary and sufficient condition for a
slowly decaying PACF with the asymptotic form (5). To con-
struct p(λ) such that the existence of all moments λk and thus
the analyticity of ψ(t) in t = 0 is guaranteed we set

f (λ) = C exp(−βλ). (11)

The properly normalized relaxation rate spectrum then reads

p(λ; β) = λβ−1ββ exp(−βλ)
,(β)

, (12)

and ψ(t) is given by

ψ(t ; α,β) = exp(−αt)
(1 + t/β)β

. (13)

The corresponding cumulants, which are defined through

c
(k)
α,β = (−1)k

dk

dtk
ln(ψ(t ; α,β))

∣∣∣∣
t=0+

(14)

have the particularly simple form

c
(1)
α,β =1 + α, (15)

c
(k)
α,β = (k − 1)!

βk−1
, (k = 2, 3, . . .). (16)

From the form of ψ(t; α, β) and its cumulants, one derives the
consistent limits

lim
β→∞

ψ(t ; α,β) = exp(−[1 + α]t), (17)

lim
β→∞

p(λ; α,β) = δ(λ − [1 + α]), (18)

and we note in this context that ψ(t; 0, 1/(1 − q)) is the “Tsal-
lis q-exponential” which is considered in non-extensive sta-
tistical mechanics.27–29

To test our model, we performed a molecular dynam-
ics simulation of a lysozyme molecule in water for a subse-
quent analysis of the Cα PACFs with our model. The sim-
ulated system was set up by starting with the initial structure
193L of the Protein Data Bank (PDB).30 A total of 6775 water
molecules were added, resulting in a system of 22 295 atoms.
The simulations were performed using the NAMD program31

with the all-atom force field AMBER99SB (Ref. 32) and with
periodic boundary conditions. Electrostatic interactions were
computed using the particle mesh Ewald method.33 The inte-
gration time step was set to 1 fs and coordinates were saved
every 50 fs for further analysis. After a preliminary minimiza-
tion of the PDB structure, the system was first equilibrated at
constant temperature (298 K) and constant pressure (1 bar)
using a Langevin thermostat34 coupled with a Nose-Hoover
barostat.35 The equilibrated system was used for a production
run of 10 ns from which the PACFs of the Cα-atoms were
calculated. The normalized PACFs were fitted according to

c(t)
c(0)

≈ ψ(t/τ ; α,β). (19)
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at least as fast as p(λ) ∼ λ−(k + 1 + ϵ), with ϵ > 0. In this con-
text it is worthwhile noting that the relaxation rate spectrum
corresponding to the stretched Mittag-Leffler function, ψ(t)
= Eβ(− tβ), which describes the PACF of the fOU process1, 14

behaves for large λ as pfOU(λ) ∼ λ−(β+1). For this reason none
of moments λk with k > 0 exist and ψ(t) is non-analytic at
t = 0.

To construct a model for p(λ), we make the following
assumptions:
(a) For a protein of finite size, the PACF of each Cα-atom is

characterized by a smallest relaxation rate, ηmin. In ther-
mal equilibrium, a protein performs fluctuations about its
equilibrium structure, and to a first approximation pro-
tein dynamics can be described by diffusion in an effec-
tive multidimensional harmonic potential energy.23, 24 If
ωmin is the smallest normal frequency for this harmonic
potential, then ηmin = γ −1ω2

min is the minimal relaxation
rate for the PACF of a given Cα-atom, where γ > 0 is a
positive friction constant which is essentially determined
by the atomic density of the nearest neighbors. With in-
creasing system size ωmin and thus ηmin tend to zero.

(b) In the limit of infinite protein size, the PACF of each
Cα-atom exhibits anomalous relaxation,

ψ(t)
t→∞∼ t−β 0 < β < 1, (5)

which is characteristic for relaxation processes in large
scale polymeric networks.2 Due to the slow decay of
the PACFs, the corresponding average relaxation times,
τ exp =

∫ ∞
0 dt ψ(t), diverge.

(c) The PACFs should be analytical in t = 0, i.e., they should
representable by a Taylor series in this point. Since ψ(t)
is the moment generating function for p(λ), all moments
λk must exist.

In order to fulfill the above requirements, the relaxation
rate spectrum must have the general form

p(λ; α,β) = θ (λ − α)p(λ − α; β), (6)

where θ (.) is the Heaviside unit step function, α is a di-
mensionless minimal relaxation rate (α = ηminτ ), and p(λ; β)
must be constructed such that ψ(t) has the asymptotic form
(5) if α = 0. For this purpose, one can rely on the fact that the
Laplace transform of ψ(t) is the Stieltjes transform of p(λ),

ψ̂(s) =
∫ ∞

0
dµ

p(µ)
s + µ

, (7)

p(λ) = 1
π

lim
ϵ→0

ℑ{ψ̂(−λ − iϵ)}, (8)

where ψ̂(s) =
∫ ∞

0 dt exp(−st)ψ(t) (R{s} > 0), and on a
Tauberian theorem,25, 26 according to which

ψ̂(s)
s→0∼ ,(1 − β)

s1−β
(9)

follows from relation (5) and vice versa. Combining relations
(8) and (9), one can conclude that p(λ; β) must have the gen-
eral form

p(λ; β) = f (λ)
sin(πβ)

π

,(1 − β)
λ1−β

(0 < β < 1), (10)

where f(λ) is a yet undetermined function fulfilling
limλ → 0f(λ) = C. The constant C must be chosen such
that

∫ ∞
0 p(λ; β) = 1. We note that limβ → 1sin (πβ),(1 − β)

= π . Relation (10) is a necessary and sufficient condition for a
slowly decaying PACF with the asymptotic form (5). To con-
struct p(λ) such that the existence of all moments λk and thus
the analyticity of ψ(t) in t = 0 is guaranteed we set

f (λ) = C exp(−βλ). (11)

The properly normalized relaxation rate spectrum then reads

p(λ; β) = λβ−1ββ exp(−βλ)
,(β)

, (12)

and ψ(t) is given by

ψ(t ; α,β) = exp(−αt)
(1 + t/β)β

. (13)

The corresponding cumulants, which are defined through

c
(k)
α,β = (−1)k

dk

dtk
ln(ψ(t ; α,β))

∣∣∣∣
t=0+

(14)

have the particularly simple form

c
(1)
α,β =1 + α, (15)

c
(k)
α,β = (k − 1)!

βk−1
, (k = 2, 3, . . .). (16)

From the form of ψ(t; α, β) and its cumulants, one derives the
consistent limits

lim
β→∞

ψ(t ; α,β) = exp(−[1 + α]t), (17)

lim
β→∞

p(λ; α,β) = δ(λ − [1 + α]), (18)

and we note in this context that ψ(t; 0, 1/(1 − q)) is the “Tsal-
lis q-exponential” which is considered in non-extensive sta-
tistical mechanics.27–29

To test our model, we performed a molecular dynam-
ics simulation of a lysozyme molecule in water for a subse-
quent analysis of the Cα PACFs with our model. The sim-
ulated system was set up by starting with the initial structure
193L of the Protein Data Bank (PDB).30 A total of 6775 water
molecules were added, resulting in a system of 22 295 atoms.
The simulations were performed using the NAMD program31

with the all-atom force field AMBER99SB (Ref. 32) and with
periodic boundary conditions. Electrostatic interactions were
computed using the particle mesh Ewald method.33 The inte-
gration time step was set to 1 fs and coordinates were saved
every 50 fs for further analysis. After a preliminary minimiza-
tion of the PDB structure, the system was first equilibrated at
constant temperature (298 K) and constant pressure (1 bar)
using a Langevin thermostat34 coupled with a Nose-Hoover
barostat.35 The equilibrated system was used for a production
run of 10 ns from which the PACFs of the Cα-atoms were
calculated. The normalized PACFs were fitted according to

c(t)
c(0)

≈ ψ(t/τ ; α,β). (19)
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at least as fast as p(λ) ∼ λ−(k + 1 + ϵ), with ϵ > 0. In this con-
text it is worthwhile noting that the relaxation rate spectrum
corresponding to the stretched Mittag-Leffler function, ψ(t)
= Eβ(− tβ), which describes the PACF of the fOU process1, 14

behaves for large λ as pfOU(λ) ∼ λ−(β+1). For this reason none
of moments λk with k > 0 exist and ψ(t) is non-analytic at
t = 0.

To construct a model for p(λ), we make the following
assumptions:
(a) For a protein of finite size, the PACF of each Cα-atom is

characterized by a smallest relaxation rate, ηmin. In ther-
mal equilibrium, a protein performs fluctuations about its
equilibrium structure, and to a first approximation pro-
tein dynamics can be described by diffusion in an effec-
tive multidimensional harmonic potential energy.23, 24 If
ωmin is the smallest normal frequency for this harmonic
potential, then ηmin = γ −1ω2

min is the minimal relaxation
rate for the PACF of a given Cα-atom, where γ > 0 is a
positive friction constant which is essentially determined
by the atomic density of the nearest neighbors. With in-
creasing system size ωmin and thus ηmin tend to zero.

(b) In the limit of infinite protein size, the PACF of each
Cα-atom exhibits anomalous relaxation,

ψ(t)
t→∞∼ t−β 0 < β < 1, (5)

which is characteristic for relaxation processes in large
scale polymeric networks.2 Due to the slow decay of
the PACFs, the corresponding average relaxation times,
τ exp =

∫ ∞
0 dt ψ(t), diverge.

(c) The PACFs should be analytical in t = 0, i.e., they should
representable by a Taylor series in this point. Since ψ(t)
is the moment generating function for p(λ), all moments
λk must exist.

In order to fulfill the above requirements, the relaxation
rate spectrum must have the general form

p(λ; α,β) = θ (λ − α)p(λ − α; β), (6)

where θ (.) is the Heaviside unit step function, α is a di-
mensionless minimal relaxation rate (α = ηminτ ), and p(λ; β)
must be constructed such that ψ(t) has the asymptotic form
(5) if α = 0. For this purpose, one can rely on the fact that the
Laplace transform of ψ(t) is the Stieltjes transform of p(λ),

ψ̂(s) =
∫ ∞

0
dµ

p(µ)
s + µ

, (7)

p(λ) = 1
π

lim
ϵ→0

ℑ{ψ̂(−λ − iϵ)}, (8)

where ψ̂(s) =
∫ ∞

0 dt exp(−st)ψ(t) (R{s} > 0), and on a
Tauberian theorem,25, 26 according to which

ψ̂(s)
s→0∼ ,(1 − β)

s1−β
(9)

follows from relation (5) and vice versa. Combining relations
(8) and (9), one can conclude that p(λ; β) must have the gen-
eral form

p(λ; β) = f (λ)
sin(πβ)

π

,(1 − β)
λ1−β

(0 < β < 1), (10)

where f(λ) is a yet undetermined function fulfilling
limλ → 0f(λ) = C. The constant C must be chosen such
that

∫ ∞
0 p(λ; β) = 1. We note that limβ → 1sin (πβ),(1 − β)

= π . Relation (10) is a necessary and sufficient condition for a
slowly decaying PACF with the asymptotic form (5). To con-
struct p(λ) such that the existence of all moments λk and thus
the analyticity of ψ(t) in t = 0 is guaranteed we set

f (λ) = C exp(−βλ). (11)

The properly normalized relaxation rate spectrum then reads

p(λ; β) = λβ−1ββ exp(−βλ)
,(β)

, (12)

and ψ(t) is given by

ψ(t ; α,β) = exp(−αt)
(1 + t/β)β

. (13)

The corresponding cumulants, which are defined through

c
(k)
α,β = (−1)k

dk

dtk
ln(ψ(t ; α,β))

∣∣∣∣
t=0+

(14)

have the particularly simple form

c
(1)
α,β =1 + α, (15)

c
(k)
α,β = (k − 1)!

βk−1
, (k = 2, 3, . . .). (16)

From the form of ψ(t; α, β) and its cumulants, one derives the
consistent limits

lim
β→∞

ψ(t ; α,β) = exp(−[1 + α]t), (17)

lim
β→∞

p(λ; α,β) = δ(λ − [1 + α]), (18)

and we note in this context that ψ(t; 0, 1/(1 − q)) is the “Tsal-
lis q-exponential” which is considered in non-extensive sta-
tistical mechanics.27–29

To test our model, we performed a molecular dynam-
ics simulation of a lysozyme molecule in water for a subse-
quent analysis of the Cα PACFs with our model. The sim-
ulated system was set up by starting with the initial structure
193L of the Protein Data Bank (PDB).30 A total of 6775 water
molecules were added, resulting in a system of 22 295 atoms.
The simulations were performed using the NAMD program31

with the all-atom force field AMBER99SB (Ref. 32) and with
periodic boundary conditions. Electrostatic interactions were
computed using the particle mesh Ewald method.33 The inte-
gration time step was set to 1 fs and coordinates were saved
every 50 fs for further analysis. After a preliminary minimiza-
tion of the PDB structure, the system was first equilibrated at
constant temperature (298 K) and constant pressure (1 bar)
using a Langevin thermostat34 coupled with a Nose-Hoover
barostat.35 The equilibrated system was used for a production
run of 10 ns from which the PACFs of the Cα-atoms were
calculated. The normalized PACFs were fitted according to

c(t)
c(0)

≈ ψ(t/τ ; α,β). (19)
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at least as fast as p(λ) ∼ λ−(k + 1 + ϵ), with ϵ > 0. In this con-
text it is worthwhile noting that the relaxation rate spectrum
corresponding to the stretched Mittag-Leffler function, ψ(t)
= Eβ(− tβ), which describes the PACF of the fOU process1, 14

behaves for large λ as pfOU(λ) ∼ λ−(β+1). For this reason none
of moments λk with k > 0 exist and ψ(t) is non-analytic at
t = 0.

To construct a model for p(λ), we make the following
assumptions:
(a) For a protein of finite size, the PACF of each Cα-atom is

characterized by a smallest relaxation rate, ηmin. In ther-
mal equilibrium, a protein performs fluctuations about its
equilibrium structure, and to a first approximation pro-
tein dynamics can be described by diffusion in an effec-
tive multidimensional harmonic potential energy.23, 24 If
ωmin is the smallest normal frequency for this harmonic
potential, then ηmin = γ −1ω2

min is the minimal relaxation
rate for the PACF of a given Cα-atom, where γ > 0 is a
positive friction constant which is essentially determined
by the atomic density of the nearest neighbors. With in-
creasing system size ωmin and thus ηmin tend to zero.

(b) In the limit of infinite protein size, the PACF of each
Cα-atom exhibits anomalous relaxation,

ψ(t)
t→∞∼ t−β 0 < β < 1, (5)

which is characteristic for relaxation processes in large
scale polymeric networks.2 Due to the slow decay of
the PACFs, the corresponding average relaxation times,
τ exp =

∫ ∞
0 dt ψ(t), diverge.

(c) The PACFs should be analytical in t = 0, i.e., they should
representable by a Taylor series in this point. Since ψ(t)
is the moment generating function for p(λ), all moments
λk must exist.

In order to fulfill the above requirements, the relaxation
rate spectrum must have the general form

p(λ; α,β) = θ (λ − α)p(λ − α; β), (6)

where θ (.) is the Heaviside unit step function, α is a di-
mensionless minimal relaxation rate (α = ηminτ ), and p(λ; β)
must be constructed such that ψ(t) has the asymptotic form
(5) if α = 0. For this purpose, one can rely on the fact that the
Laplace transform of ψ(t) is the Stieltjes transform of p(λ),

ψ̂(s) =
∫ ∞

0
dµ

p(µ)
s + µ

, (7)

p(λ) = 1
π

lim
ϵ→0

ℑ{ψ̂(−λ − iϵ)}, (8)

where ψ̂(s) =
∫ ∞

0 dt exp(−st)ψ(t) (R{s} > 0), and on a
Tauberian theorem,25, 26 according to which

ψ̂(s)
s→0∼ ,(1 − β)

s1−β
(9)

follows from relation (5) and vice versa. Combining relations
(8) and (9), one can conclude that p(λ; β) must have the gen-
eral form

p(λ; β) = f (λ)
sin(πβ)

π

,(1 − β)
λ1−β

(0 < β < 1), (10)

where f(λ) is a yet undetermined function fulfilling
limλ → 0f(λ) = C. The constant C must be chosen such
that

∫ ∞
0 p(λ; β) = 1. We note that limβ → 1sin (πβ),(1 − β)

= π . Relation (10) is a necessary and sufficient condition for a
slowly decaying PACF with the asymptotic form (5). To con-
struct p(λ) such that the existence of all moments λk and thus
the analyticity of ψ(t) in t = 0 is guaranteed we set

f (λ) = C exp(−βλ). (11)

The properly normalized relaxation rate spectrum then reads

p(λ; β) = λβ−1ββ exp(−βλ)
,(β)

, (12)

and ψ(t) is given by

ψ(t ; α,β) = exp(−αt)
(1 + t/β)β

. (13)

The corresponding cumulants, which are defined through

c
(k)
α,β = (−1)k

dk

dtk
ln(ψ(t ; α,β))

∣∣∣∣
t=0+

(14)

have the particularly simple form

c
(1)
α,β =1 + α, (15)

c
(k)
α,β = (k − 1)!

βk−1
, (k = 2, 3, . . .). (16)

From the form of ψ(t; α, β) and its cumulants, one derives the
consistent limits

lim
β→∞

ψ(t ; α,β) = exp(−[1 + α]t), (17)

lim
β→∞

p(λ; α,β) = δ(λ − [1 + α]), (18)

and we note in this context that ψ(t; 0, 1/(1 − q)) is the “Tsal-
lis q-exponential” which is considered in non-extensive sta-
tistical mechanics.27–29

To test our model, we performed a molecular dynam-
ics simulation of a lysozyme molecule in water for a subse-
quent analysis of the Cα PACFs with our model. The sim-
ulated system was set up by starting with the initial structure
193L of the Protein Data Bank (PDB).30 A total of 6775 water
molecules were added, resulting in a system of 22 295 atoms.
The simulations were performed using the NAMD program31

with the all-atom force field AMBER99SB (Ref. 32) and with
periodic boundary conditions. Electrostatic interactions were
computed using the particle mesh Ewald method.33 The inte-
gration time step was set to 1 fs and coordinates were saved
every 50 fs for further analysis. After a preliminary minimiza-
tion of the PDB structure, the system was first equilibrated at
constant temperature (298 K) and constant pressure (1 bar)
using a Langevin thermostat34 coupled with a Nose-Hoover
barostat.35 The equilibrated system was used for a production
run of 10 ns from which the PACFs of the Cα-atoms were
calculated. The normalized PACFs were fitted according to

c(t)
c(0)

≈ ψ(t/τ ; α,β). (19)
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at least as fast as p(λ) ∼ λ−(k + 1 + ϵ), with ϵ > 0. In this con-
text it is worthwhile noting that the relaxation rate spectrum
corresponding to the stretched Mittag-Leffler function, ψ(t)
= Eβ(− tβ), which describes the PACF of the fOU process1, 14

behaves for large λ as pfOU(λ) ∼ λ−(β+1). For this reason none
of moments λk with k > 0 exist and ψ(t) is non-analytic at
t = 0.

To construct a model for p(λ), we make the following
assumptions:
(a) For a protein of finite size, the PACF of each Cα-atom is

characterized by a smallest relaxation rate, ηmin. In ther-
mal equilibrium, a protein performs fluctuations about its
equilibrium structure, and to a first approximation pro-
tein dynamics can be described by diffusion in an effec-
tive multidimensional harmonic potential energy.23, 24 If
ωmin is the smallest normal frequency for this harmonic
potential, then ηmin = γ −1ω2

min is the minimal relaxation
rate for the PACF of a given Cα-atom, where γ > 0 is a
positive friction constant which is essentially determined
by the atomic density of the nearest neighbors. With in-
creasing system size ωmin and thus ηmin tend to zero.

(b) In the limit of infinite protein size, the PACF of each
Cα-atom exhibits anomalous relaxation,

ψ(t)
t→∞∼ t−β 0 < β < 1, (5)

which is characteristic for relaxation processes in large
scale polymeric networks.2 Due to the slow decay of
the PACFs, the corresponding average relaxation times,
τ exp =

∫ ∞
0 dt ψ(t), diverge.

(c) The PACFs should be analytical in t = 0, i.e., they should
representable by a Taylor series in this point. Since ψ(t)
is the moment generating function for p(λ), all moments
λk must exist.

In order to fulfill the above requirements, the relaxation
rate spectrum must have the general form

p(λ; α,β) = θ (λ − α)p(λ − α; β), (6)

where θ (.) is the Heaviside unit step function, α is a di-
mensionless minimal relaxation rate (α = ηminτ ), and p(λ; β)
must be constructed such that ψ(t) has the asymptotic form
(5) if α = 0. For this purpose, one can rely on the fact that the
Laplace transform of ψ(t) is the Stieltjes transform of p(λ),

ψ̂(s) =
∫ ∞

0
dµ

p(µ)
s + µ

, (7)

p(λ) = 1
π

lim
ϵ→0

ℑ{ψ̂(−λ − iϵ)}, (8)

where ψ̂(s) =
∫ ∞

0 dt exp(−st)ψ(t) (R{s} > 0), and on a
Tauberian theorem,25, 26 according to which

ψ̂(s)
s→0∼ ,(1 − β)

s1−β
(9)

follows from relation (5) and vice versa. Combining relations
(8) and (9), one can conclude that p(λ; β) must have the gen-
eral form

p(λ; β) = f (λ)
sin(πβ)

π

,(1 − β)
λ1−β

(0 < β < 1), (10)

where f(λ) is a yet undetermined function fulfilling
limλ → 0f(λ) = C. The constant C must be chosen such
that

∫ ∞
0 p(λ; β) = 1. We note that limβ → 1sin (πβ),(1 − β)

= π . Relation (10) is a necessary and sufficient condition for a
slowly decaying PACF with the asymptotic form (5). To con-
struct p(λ) such that the existence of all moments λk and thus
the analyticity of ψ(t) in t = 0 is guaranteed we set

f (λ) = C exp(−βλ). (11)

The properly normalized relaxation rate spectrum then reads

p(λ; β) = λβ−1ββ exp(−βλ)
,(β)

, (12)

and ψ(t) is given by

ψ(t ; α,β) = exp(−αt)
(1 + t/β)β

. (13)

The corresponding cumulants, which are defined through

c
(k)
α,β = (−1)k

dk

dtk
ln(ψ(t ; α,β))

∣∣∣∣
t=0+

(14)

have the particularly simple form

c
(1)
α,β =1 + α, (15)

c
(k)
α,β = (k − 1)!

βk−1
, (k = 2, 3, . . .). (16)

From the form of ψ(t; α, β) and its cumulants, one derives the
consistent limits

lim
β→∞

ψ(t ; α,β) = exp(−[1 + α]t), (17)

lim
β→∞

p(λ; α,β) = δ(λ − [1 + α]), (18)

and we note in this context that ψ(t; 0, 1/(1 − q)) is the “Tsal-
lis q-exponential” which is considered in non-extensive sta-
tistical mechanics.27–29

To test our model, we performed a molecular dynam-
ics simulation of a lysozyme molecule in water for a subse-
quent analysis of the Cα PACFs with our model. The sim-
ulated system was set up by starting with the initial structure
193L of the Protein Data Bank (PDB).30 A total of 6775 water
molecules were added, resulting in a system of 22 295 atoms.
The simulations were performed using the NAMD program31

with the all-atom force field AMBER99SB (Ref. 32) and with
periodic boundary conditions. Electrostatic interactions were
computed using the particle mesh Ewald method.33 The inte-
gration time step was set to 1 fs and coordinates were saved
every 50 fs for further analysis. After a preliminary minimiza-
tion of the PDB structure, the system was first equilibrated at
constant temperature (298 K) and constant pressure (1 bar)
using a Langevin thermostat34 coupled with a Nose-Hoover
barostat.35 The equilibrated system was used for a production
run of 10 ns from which the PACFs of the Cα-atoms were
calculated. The normalized PACFs were fitted according to

c(t)
c(0)

≈ ψ(t/τ ; α,β). (19)
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at least as fast as p(λ) ∼ λ−(k + 1 + ϵ), with ϵ > 0. In this con-
text it is worthwhile noting that the relaxation rate spectrum
corresponding to the stretched Mittag-Leffler function, ψ(t)
= Eβ(− tβ), which describes the PACF of the fOU process1, 14

behaves for large λ as pfOU(λ) ∼ λ−(β+1). For this reason none
of moments λk with k > 0 exist and ψ(t) is non-analytic at
t = 0.

To construct a model for p(λ), we make the following
assumptions:
(a) For a protein of finite size, the PACF of each Cα-atom is

characterized by a smallest relaxation rate, ηmin. In ther-
mal equilibrium, a protein performs fluctuations about its
equilibrium structure, and to a first approximation pro-
tein dynamics can be described by diffusion in an effec-
tive multidimensional harmonic potential energy.23, 24 If
ωmin is the smallest normal frequency for this harmonic
potential, then ηmin = γ −1ω2

min is the minimal relaxation
rate for the PACF of a given Cα-atom, where γ > 0 is a
positive friction constant which is essentially determined
by the atomic density of the nearest neighbors. With in-
creasing system size ωmin and thus ηmin tend to zero.

(b) In the limit of infinite protein size, the PACF of each
Cα-atom exhibits anomalous relaxation,

ψ(t)
t→∞∼ t−β 0 < β < 1, (5)

which is characteristic for relaxation processes in large
scale polymeric networks.2 Due to the slow decay of
the PACFs, the corresponding average relaxation times,
τ exp =

∫ ∞
0 dt ψ(t), diverge.

(c) The PACFs should be analytical in t = 0, i.e., they should
representable by a Taylor series in this point. Since ψ(t)
is the moment generating function for p(λ), all moments
λk must exist.

In order to fulfill the above requirements, the relaxation
rate spectrum must have the general form

p(λ; α,β) = θ (λ − α)p(λ − α; β), (6)

where θ (.) is the Heaviside unit step function, α is a di-
mensionless minimal relaxation rate (α = ηminτ ), and p(λ; β)
must be constructed such that ψ(t) has the asymptotic form
(5) if α = 0. For this purpose, one can rely on the fact that the
Laplace transform of ψ(t) is the Stieltjes transform of p(λ),

ψ̂(s) =
∫ ∞

0
dµ

p(µ)
s + µ

, (7)

p(λ) = 1
π

lim
ϵ→0

ℑ{ψ̂(−λ − iϵ)}, (8)

where ψ̂(s) =
∫ ∞

0 dt exp(−st)ψ(t) (R{s} > 0), and on a
Tauberian theorem,25, 26 according to which

ψ̂(s)
s→0∼ ,(1 − β)

s1−β
(9)

follows from relation (5) and vice versa. Combining relations
(8) and (9), one can conclude that p(λ; β) must have the gen-
eral form

p(λ; β) = f (λ)
sin(πβ)

π

,(1 − β)
λ1−β

(0 < β < 1), (10)

where f(λ) is a yet undetermined function fulfilling
limλ → 0f(λ) = C. The constant C must be chosen such
that

∫ ∞
0 p(λ; β) = 1. We note that limβ → 1sin (πβ),(1 − β)

= π . Relation (10) is a necessary and sufficient condition for a
slowly decaying PACF with the asymptotic form (5). To con-
struct p(λ) such that the existence of all moments λk and thus
the analyticity of ψ(t) in t = 0 is guaranteed we set

f (λ) = C exp(−βλ). (11)

The properly normalized relaxation rate spectrum then reads

p(λ; β) = λβ−1ββ exp(−βλ)
,(β)

, (12)

and ψ(t) is given by

ψ(t ; α,β) = exp(−αt)
(1 + t/β)β

. (13)

The corresponding cumulants, which are defined through

c
(k)
α,β = (−1)k

dk

dtk
ln(ψ(t ; α,β))

∣∣∣∣
t=0+

(14)

have the particularly simple form

c
(1)
α,β =1 + α, (15)

c
(k)
α,β = (k − 1)!

βk−1
, (k = 2, 3, . . .). (16)

From the form of ψ(t; α, β) and its cumulants, one derives the
consistent limits

lim
β→∞

ψ(t ; α,β) = exp(−[1 + α]t), (17)

lim
β→∞

p(λ; α,β) = δ(λ − [1 + α]), (18)

and we note in this context that ψ(t; 0, 1/(1 − q)) is the “Tsal-
lis q-exponential” which is considered in non-extensive sta-
tistical mechanics.27–29

To test our model, we performed a molecular dynam-
ics simulation of a lysozyme molecule in water for a subse-
quent analysis of the Cα PACFs with our model. The sim-
ulated system was set up by starting with the initial structure
193L of the Protein Data Bank (PDB).30 A total of 6775 water
molecules were added, resulting in a system of 22 295 atoms.
The simulations were performed using the NAMD program31

with the all-atom force field AMBER99SB (Ref. 32) and with
periodic boundary conditions. Electrostatic interactions were
computed using the particle mesh Ewald method.33 The inte-
gration time step was set to 1 fs and coordinates were saved
every 50 fs for further analysis. After a preliminary minimiza-
tion of the PDB structure, the system was first equilibrated at
constant temperature (298 K) and constant pressure (1 bar)
using a Langevin thermostat34 coupled with a Nose-Hoover
barostat.35 The equilibrated system was used for a production
run of 10 ns from which the PACFs of the Cα-atoms were
calculated. The normalized PACFs were fitted according to

c(t)
c(0)

≈ ψ(t/τ ; α,β). (19)
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and we note in this context that ψ(t; 0, 1/(1 − q)) is the “Tsal-
lis q-exponential” which is considered in non-extensive sta-
tistical mechanics.27–29

To test our model, we performed a molecular dynam-
ics simulation of a lysozyme molecule in water for a subse-
quent analysis of the Cα PACFs with our model. The sim-
ulated system was set up by starting with the initial structure
193L of the Protein Data Bank (PDB).30 A total of 6775 water
molecules were added, resulting in a system of 22 295 atoms.
The simulations were performed using the NAMD program31

with the all-atom force field AMBER99SB (Ref. 32) and with
periodic boundary conditions. Electrostatic interactions were
computed using the particle mesh Ewald method.33 The inte-
gration time step was set to 1 fs and coordinates were saved
every 50 fs for further analysis. After a preliminary minimiza-
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FIG. 1. Four selected residues in the lysozyme molecule.

All fits show an excellent agreement with the simulation
data and we show here the results for four selected residues
which have been chosen according to their exposure to sol-
vent (see Fig. 1). Residues Ala 9 and Val 29 are buried in
α-helices, whereas Thr 47 and Gly 104 are located in loop re-
gions. Figure 2 shows the superposition of the simulated nor-
malized PACFs (dots) with the fits of ψ(t/τ ; α, β) (solid lines)
in form of a log-log plot. The fit parameters are given in the
plot. A coherent view of the results is obtained by correlating
the mean relaxation rate,

λ = (1 + α)τ−1, (20)

of all Cα-atoms and its spread,

σλ = (λ2 − λ
2
)1/2 = β−1/2τ−1, (21)

FIG. 2. Log-log plot of the simulated position autocorrelation functions for
the Cα-atoms of the residues shown in Figure 1 (dots) and fits of model (13)
(solid lines). For the simulated PACFs the smallest positive time argument is
t = 0.05 ps.

FIG. 3. Upper panel: Solvent accessible surface for the Cα-atoms in
lysozyme. Middle panel: Mean relaxation rate λ (blue line) and correspond-
ing standard deviation σλ (green line). Lower panel: Mean square position
fluctuation ⟨u2⟩ (blue line) and short time diffusion coefficient Ds (green
line). The additional graphics on top of the figure locates the secondary struc-
ture elements. Black rectangles indicate α-helices, grey rectangles short heli-
coidal motifs, and arrows beta sheets.

with the solvent-accessible surface of the respective residue.
Here, the total solvent-accessible surface of all atoms is con-
sidered. The fitted quantities λ and σλ for our model are, re-
spectively, given in the upper and middle panels of Fig. 3,
combining λ (blue line) and σλ (green line) in the middle
panel. On top of the figure we indicate the location of sec-
ondary structure elements and the vertical lines locate the four
selected residues displayed in Fig. 1. The results show that
the PACFs of Cα-atoms in solvent-exposed loop regions re-
lax one or two orders of magnitude more slowly than those
buried in helices, and the spread of the relaxation rates fol-
lows exactly the same trend, which is not trivial since the
mean relaxation and its spread are not described by the same
parameters. The backbone relaxation dynamics in secondary
structure elements is thus faster than the one in the more
floppy, solvent-exposed loop regions, and has a much stronger
non-exponential character. In this context, it is interesting to
look at the static position fluctuations of the Cα-atoms and at
the corresponding short-time diffusion coefficients, which de-
pend on both the amplitudes of the atomic motions and on the
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CONCLUSIONS

• The combination of physical models (GLE) and asymptotic 
analysis yields insight into the origin anomalous diffusion : The 
decay of the local cage of  neighbors represented by a memory 
function defines the type of diffusion.	



• Free and confined diffusion can be handled	



• Develop simple models to interpolate between the (known) 
short time and the long time regime of time correlation 
functions.
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