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Elastic neutron scattering from proteins reflects the motional amplitudes resulting from their in-
ternal collective and single-atom dynamics and is observable if the global di�usion of whole molecules
is either blocked or cannot be resolved by the spectrometer under consideration. Due to finite instru-
mental resolution the measured elastic scattering amplitude always contains contaminations from
quasielastic neutron scattering and some model must be assumed to extract the resolution-corrected
counterpart from corresponding experimental spectra. Here we derive a quasi-analytical method for
that purpose, assuming hat the intermediate scattering function relaxes with a “stretched” Mittag-
Le�er function, E–(≠(t/·)–) (0 < – < 1), towards the elastic amplitude and that the instrumental
resolution function has Gaussian form. The corresponding function can be integrated into into a
fitting procedure and allows for eliminating the elastic intensity as a fit parameter. We illustrate
the method for the analysis of two proteins in solution, the intrinsically disordered Myelin Basic
Protein, confirming recently published results [J. Chem. Phys. 156(2):025102 (2022)], and the well-
folded globular protein myoglobin. We also briefly discuss the consequences of our findings for the
extraction of mean square position fluctuations from elastic scans.

I. INTRODUCTION

Thermal neutron scattering is a powerful and versatile
spectroscopic method to probe the structural dynamics
of condensed matter systems.1 An important application
concerns quasielastic neutron scattering (QENS) from
proteins, which gives information about the di�usion and
the relaxation dynamics of these macromolecules.2–6 To
probe the internal non-exponential multiscale relaxation
dynamics, which is crucial for their function and typical
for complex systems in general,7–10 one can either use
hydrated powder samples, where global di�usional mo-
tions are simply blocked, or probe a protein solution with
a spectrometer that will not resolve these motions. In
both cases, information about the motional amplitudes
of internal protein dynamics is contained in the elastic
amplitude and elastic scans are thus in principle su�-
cient to obtain this information. One must, however, be
aware that the extracted motional amplitudes are under-
estimated due to the unavoidable contamination of the
elastic amplitude by contributions from quasielastic scat-
tering, and this correction can be particularly important
for slowly relaxing systems.11 Noting that the “true” elas-
tic amplitude defines the asymptotic form of the neutron
intermediate scattering function at infinite time, it can
only be obtained by assuming some model for that func-
tion. A corresponding “minimalistic” model has been re-
cently proposed and motivated in Ref. [12] and was then
applied in a few subsequent QENS studies of protein dy-
namics,13–15 as well as for confined water molecules in
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clays.16 In all these studies the elastic amplitude was a
fit parameter, which left some ambiguity about the phys-
ical significance of the resulting fits, in particular since
the fit parameters are quite interdependent. The goal of
this paper is to replace the elastic intensity as a fit param-
eter by an estimation on the basis of its experimentally
measured counter part, the assumed model for the re-
laxation function, and the resolution of the instrument
under consideration. Computational e�ciency is here a
fundamental aspect since it enables the integration of the
corresponding function into the fitting procedure for the
remaining parameters of the relaxation function.

The paper is organized as follows: The core of the
paper is contained in the following Section II, which de-
scribes the theoretical background and the method, fol-
lowed by Section IV showing some applications, and the
Conclusions in Section V.

II. THEORETICAL BACKGROUND

A. Scattering functions

In standard neutron scattering experiments one mea-
sures the dynamic structure factor,

F̃ (q, Ê) = 1
2fi

⁄ +Œ

≠Œ
dt e

≠iÊt
F (q, t), (1)

which is the time Fourier transform of the intermediate
scattering function containing the information about the
structural dynamics of the system under consideration,

F (q, t) = 1
N

ÿ

j,k

�jk

e
e

≠iq·R̂j(0)
e

iq·R̂k(t)
f

. (2)
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Usually the dynamic structure factor is denoted by
S(q, Ê), but we use the symbol F̃ (q, Ê) to label Fourier
transforms in a uniform way. The scattering-related
quantities are, respectively, the momentum and energy
transfer from the neutron to the sample, q and Ê, in units
of ~, N is the total number of atoms in the scattering
system and for each pair {j, k} of them, {R̂j(t), R̂k(t)}
denote the associated time-dependent position operators.
The symbol È. . .Í stands for a quantum ensemble average
and the weighting factors �jk have the form

�jk = bj
ú
bk + ”jk|bj ≠ bj |2, (3)

where bj and bk are the (complex) scattering lengths1,17

of the atoms j and k, respectively. For a given atom the
average runs over all isotopes and combinations of the nu-
clear and neutron spins and we note that bj,coh © bj and
bj,inc © (|bj ≠ bj |2)1/2 are, respectively, the coherent and
incoherent scattering lengths of atom j. Coherent and in-
coherent scattering probe, respectively, the collective and
average single atom dynamics of the system under con-
sideration, but since these scattering types are not sepa-
rable without special spin-polarization experiments,18–20

we will not explicitly distinguish between them.
The intermediate scattering function fulfills the sym-

metry relations of a quantum time correlation function,

F
ú(q, t) = F (q, ≠t), (4)

F (q, ≠t) = F (≠q, t + i—~), (5)

where — = 1/kBT is the inverse Boltzmann temperature.
For the dynamic structure factor Eq. (5) translates into

F̃ (q, Ê) = e
—~Ê

F̃ (≠q, ≠Ê), (6)

which is the well-known detailed-balance relation.

B. Elastic and inelastic scattering

Noting that

e
iq·R̂j(t) =

⁄
d

3
r exp(≠iq · r)”(r ≠ R̂j(t))

is the spatially Fourier-transformed single particle den-
sity for atom j, we introduce the deviation of this quan-
tity with respect to its mean value,

”fl̃k(q, t) = e
iq·R̂j(t) ≠

e
e

iq·R̂j(t)
f

, (7)

to split the intermediate scattering function into a static
and a time-dependent component,

F (q, t) = F (q, Œ) + ”F (q, t), (8)

which are given by

F (q, Œ) = 1
N

ÿ

j,k

�jk

e
e
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fú e
e

iq·R̂k

f
, (9)

”F (q, t) = 1
N
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j,k

�jk

e
”fl̃

†
j(q, 0)”fl̃k(q, t)

f
. (10)

Making the the physically reasonable assumption

lim
tæŒ

”F (q, t) = 0, (11)

shows that F (q, Œ) is the asymptotic form of the in-
termediate scattering function and it follows by Fourier
transform of Eq. (8) that

F̃ (q, Ê) = F (q, Œ)”(Ê) + ”F̃ (q, Ê). (12)

Therefore F (q, Œ) represents the elastic amplitude of the
Fourier spectrum and ”F̃ (q, Ê) its inelastic component.
Here “inelastic” is to be understood as “non-elastic” and
includes also the quasielastic component of the spectrum,
which is very close to the elastic line and describes relax-
ation and di�usion processes.

C. Generic form of the scattering functions

For modeling purposes it is convenient to introduce the
normalized relaxation function

„(q, t) = ”F (q, t)/”F (q, 0), (13)

noting that this function does not monotonously decay
for short times. This leads to the generic form

F (q, t) = F (q, Œ) + (F (q, 0) ≠ F (q, Œ))„(q, t) (14)

of the intermediate scattering function which translates
into the corresponding generic form

F̃ (q, Ê) = F (q, Œ)”(Ê)
+ (F (q, 0) ≠ F (q, Œ))„̃(q, Ê) (15)

of the dynamic structure factor. We note that

F (q, 0) = 1
N

ÿ

j,k

�jk

e
e

iq·(R̂k≠R̂j)
f

(16)

is the total static structure factor, which tends for q ©
|q| æ Œ to a constant value,

lim
qæŒ

F (q, 0) = 1
N

ÿ

k

�kk, (17)

and oscillates for smaller q-values around that constant.
For modeling purposes it is convenient to normalize the
intermediate scattering function such that

1
N

ÿ

k

�kk = 1. (18)

D. Hydrogen-rich systems

We finally consider the frequent of case of neutron scat-
tering from hydrogen-rich systems, such as proteins and
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Der di f f er ent i el l e St r euquer schni t t f ür di e i nel ast i sche
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F(q,t) is a quantum time correlation function
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Usually the dynamic structure factor is denoted by
S(q, Ê), but we use the symbol F̃ (q, Ê) to label Fourier
transforms in a uniform way. The scattering-related
quantities are, respectively, the momentum and energy
transfer from the neutron to the sample, q and Ê, in units
of ~, N is the total number of atoms in the scattering
system and for each pair {j, k} of them, {R̂j(t), R̂k(t)}
denote the associated time-dependent position operators.
The symbol È. . .Í stands for a quantum ensemble average
and the weighting factors �jk have the form

�jk = bj
ú
bk + ”jk|bj ≠ bj |2, (3)

where bj and bk are the (complex) scattering lengths1,17

of the atoms j and k, respectively. For a given atom the
average runs over all isotopes and combinations of the nu-
clear and neutron spins and we note that bj,coh © bj and
bj,inc © (|bj ≠ bj |2)1/2 are, respectively, the coherent and
incoherent scattering lengths of atom j. Coherent and in-
coherent scattering probe, respectively, the collective and
average single atom dynamics of the system under con-
sideration, but since these scattering types are not sepa-
rable without special spin-polarization experiments,18–20

we will not explicitly distinguish between them.
The intermediate scattering function fulfills the sym-

metry relations of a quantum time correlation function,

F
ú(q, t) = F (q, ≠t), (4)

F (q, ≠t) = F (≠q, t + i—~), (5)

where — = 1/kBT is the inverse Boltzmann temperature.
For the dynamic structure factor Eq. (5) translates into

F̃ (q, Ê) = e
—~Ê

F̃ (≠q, ≠Ê), (6)

which is the well-known detailed-balance relation.

B. Elastic and inelastic scattering

Noting that

e
iq·R̂j(t) =
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3
r exp(≠iq · r)”(r ≠ R̂j(t))

is the spatially Fourier-transformed single particle den-
sity for atom j, we introduce the deviation of this quan-
tity with respect to its mean value,

”fl̃k(q, t) = e
iq·R̂j(t) ≠

e
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to split the intermediate scattering function into a static
and a time-dependent component,

F (q, t) = F (q, Œ) + ”F (q, t), (8)

which are given by
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N
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Making the the physically reasonable assumption

lim
tæŒ

”F (q, t) = 0, (11)

shows that F (q, Œ) is the asymptotic form of the in-
termediate scattering function and it follows by Fourier
transform of Eq. (8) that

F̃ (q, Ê) = F (q, Œ)”(Ê) + ”F̃ (q, Ê). (12)

Therefore F (q, Œ) represents the elastic amplitude of the
Fourier spectrum and ”F̃ (q, Ê) its inelastic component.
Here “inelastic” is to be understood as “non-elastic” and
includes also the quasielastic component of the spectrum,
which is very close to the elastic line and describes relax-
ation and di�usion processes.

C. Generic form of the scattering functions

For modeling purposes it is convenient to introduce the
normalized relaxation function

„(q, t) = ”F (q, t)/”F (q, 0), (13)

noting that this function does not monotonously decay
for short times. This leads to the generic form

F (q, t) = F (q, Œ) + (F (q, 0) ≠ F (q, Œ))„(q, t) (14)

of the intermediate scattering function which translates
into the corresponding generic form

F̃ (q, Ê) = F (q, Œ)”(Ê)
+ (F (q, 0) ≠ F (q, Œ))„̃(q, Ê) (15)

of the dynamic structure factor. We note that

F (q, 0) = 1
N
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(16)

is the total static structure factor, which tends for q ©
|q| æ Œ to a constant value,

lim
qæŒ

F (q, 0) = 1
N

ÿ

k

�kk, (17)

and oscillates for smaller q-values around that constant.
For modeling purposes it is convenient to normalize the
intermediate scattering function such that

1
N

ÿ

k

�kk = 1. (18)

D. Hydrogen-rich systems

We finally consider the frequent of case of neutron scat-
tering from hydrogen-rich systems, such as proteins and

<latexit sha1_base64="hRj6cb/HqiJA+kgFYX2e/EM/tr4="></latexit>Z +1

�1
d! !S(q,!) = �i

@F (q, t)

@t

����
t=0

/ ~|q|2
2m

<latexit sha1_base64="fs8iWC+B8NnIOo9iohgQUXi+AgI=">AAAD4HicjVJNb9NAEJ3UfJTw0RSOXFakoIDayEERcEGq4MKxKKStVLdl19mmVm2vWa+BysqdG+LKD+I/8A+o1CucmZlsESGCspaT2TfznufNrirSpHRh+LWxEFy4eOny4pXm1WvXbyy1lm9ulqaysR7GJjV2W8lSp0muhy5xqd4urJaZSvWWOnpO+a232paJyV+540LvZnKcJwdJLB1C+63Xg70HnSir30xWI5Ppsbwv7j0Vg1loNYqag/kqvVdHSjsZHSppp/hk0Fmb1q35wv1WO+yGvMR80PNBG/zaMMuNPkQwAgMxVJCBhhwcxilIKPHZgR6EUCC2CzViFqOE8xom0ERuhVUaKySiR/g7xt2OR3Pck2bJ7Bi/kuJrkSngLnIM1lmM6WuC8xUrE/o37Zo1qbdj/FdeK0PUwSGi5/HOKv+XR14cHMAT9pCgp4IRchd7lYqnQp2L31w5VCgQo3iEeYtxzMyzOQvmlOydZis5/40rCaV97GsrOPmnO9qn7IZ6NP50csy948lm7DXHTmrEM8zT2ZIn2it0KKCNyOQc5niGG/EZGHjvVeiER7+mKmCFNVdIFe9m78+bOB9sPuz2HnX7L/vt9Wf+li7CbbgDHdR5DOvwAjZgiH19gVP4Dj8CFXwIPgafpqULDc+5BTMr+PwTNQPVTg==</latexit>

S⇤(q,!) = S(q,!),

S(q,!) = e�~!S(�q,�!)

Scattering 
kinematics



PH YSI CAL REVIEW VOLUME 95, NUMBER 1 JULY 1, 1954

Correlations in Space and Time and Born Approximation Scattering in Systems
of Interacting Particles
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A natural time-dependent generalization is given for the well-known pair distribution function g(r) of
systems of interacting particles. The pair distribution in space and time thus defined, denoted by G(r, t),
gives rise to a very simple and entirely general expression for the angular and energy distribution of Born
approximation scattering by the system. This expression is the natural extension of the familiar Zernike-
Prins formula to scattering in which the energy transfers are not negligible compared to the energy of the
scattered particle. It is therefore of particular interest for scattering of slow neutrons by general systems of
interacting particles: G is then the proper function in terms of which to analyze the scattering data.
After defining the G function and expressing the Born approximation scattering formula in terms of it,

the paper studies its general properties and indicates its role for neutron scattering. The qualitative behavior
of G for liquids and dense gases is then described and the long-range part exhibited by the function near the
critical point is calculated. The explicit expression of G for crystals and for ideal quantum gases is brieRy
derived and discussed.

I. INTRODUCTION
" 'N two special cases, the 6rst Born approximation for
~ - the scattering of x-rays or particles by a system S
of interacting particles is known to express the differ-
ential cross section in terms of simple density distribu-
tion functions for the particles of S.
(i) If S is in a pure quantum state and if this state

does not change in the scattering process, the latter is
elastic and the differential cross section is expressible in
terms of the density distribution p(r) for one particle
of the system (supposed for simplicity to be composed of
identical particles). This applies for example to the
elastic scattering of x-rays or electrons by the electrons
of an atom''
(ii) If the energy transfers occurring in the scattering

process are negligible compared to the energy of the
scattered photon or particle, the momentum transfer is
essentially unique for each scattering angle and the dif-
ferential cross section per unit angle is expressible in
terms of the pair distribution function g(r) of 8, which
describes the average density distribution as seen from
a particle of the system. This is the so-called static ap-
proximation which applies, for example, to the sum of
elastic and inelastic scatteririg of x-rays and electrons
by the electrons of an atom, '4 as well as to that part of
the scattering of x-rays by solids, liquids, and gases
which leaves the atomic quantum states unchanged. ' '
The purpose of the present paper is to show that in

Born approximation the scattering cross section is
always expressible in terms of a suitably generalized
pair distribution function G(r, t) depending on a space
vector r and a time interval t, and to study this function

' I. Wailer, Z. Physik 51, 213 (1928).
s N. F. Mott, Proc. Roy. Soc. (London) A127, 658 (1930).
e I. Wailer and D. R. Hartree, Proc. Roy. Soc. (London) A124,

119 (1929).' P. M. Morse, Physik. Z. 33, 443 (1932).'I. Wailer, dissertation, Uppsala, 1925 (unpublished).
6 F.Zernike and J.Prins, Z. Physik 41, 184 (1927);P. Debye and

H. Memke, Ergeb. Tech. Rontgenk. II (1931).

in some detail for a number of systems. For scattering
theory this would be of rather academic interest in
connection with x-ray scattering, for which the condi-
tions of case (ii) above are usually well fulfilled. The
same hoMs for electrons, for which, however, the Born
approximation is of much more limited applicability
than for x-rays, For slow neutrons, on the contrary,
(wavelength &1A) now used in a rapidly growing
variety of scattering experiments, ~ the energy transfers
are usually comparable to or larger than the incident
energy, whereas the first Born approximation holds
quite well provided the neutron-nucleus interaction is
described by means of the Fermi pseudopotential. The
need has thus arisen for an improvement of the static
approximation for scattering by general systems, and
correction terms valid at relatively high neutron ener-
gies have been calculated by Placzek and by Kick.' We
present here a general solution to this problem, ap-
plicable at all neutron energies, by describing the Born
approximation scattering in terms of the time-de-
pendent pair-distribution function G.
Furthermore, the fact that 6 has often, even for

complicated systems, a number of qualitative properties
which are easy to visualize, makes it in many cases a
practical tool for the discussion of scattering experi-
ments. Its use for the analysis and interpretation of
experimental data has been illustrated elsewhere on
the case of slow neutron scattering by ferromagnetic
crystals. 9
The generalized pair-distribution function G(r, t), to

which neutron scattering gives direct experimental
access, turns out to be a very natural extension of the
conventional g(r) function. Independently of its use in
scattering theory, it is of genuine interest from the
general standpoint of statistical mechanics. Its physical
r See, e.g., D. J. Hughes, Pde Neutrou Research (Addison-

Wesley Publishing Company Cambridge, 1953).
e G. Placzek, Phys. Rev. 86, 377 (1952);G. C.Wick, Phys. Rev.

94, 1228 (1954).' L. Van Hove, Phys. Rev. 93, 268 (1954).
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Motivation for a spectroscopy-oriented theory of neutron scattering

From (q,ω)-space to (r,t)-space

Only for ℏ → 0 G(r,t) becomes a time-dependent (real-valued) pair correlation function   

Gcl(r, t) =
1

N

X

j,k

�jk h� (r� [Rk(t)�Rj(0)])icl
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Classical statistical mechanics description of neutron scattering
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one would like to have a physical meaning attac]~ed to the imaginary part 

ihCl(r, t) = ~- <p~(r) pt , (r ' )  - -  p v ( r ' )  p d r ) > ,  

or rather to the function G1 itself which has a non-vanishing value in the 
classical limit. To present a physical interpretation of the imaginary part 
of the time-dependent pair distribution is the aim of the present note. 

2. I n t e rpre ta t i o n  of G1. We assume a neutron to be present in our system, 
liquid or gas, and we calculate its effect on the local density of the medium, 
to first order in the interaction W between neutron and medium. In presence 
of the neutron the local density at a point r and a time t is given by 

n(r ,  t) = <exp [ iH ' ( t  - -  to) h -1] pto(r ) e x p [ - - i H ' ( t  - -  to)h-l]> 

where the time to is taken sufficiently far in the past to insure that  the 
neutron was not in the neighbourhood of r at to. By H '  we denote the total 
hamiltonian H + K + W, K being the kinetic energy of the neutron. Using 
the well known expansion 

exp[-- i H ' ( t  - -  to) ti -1] = exp[-- i(H + K ) ( t  - -  t0)~ -1] -- 

- -  i h - l  f~ o dt '  exp[-- i ( H +  K ) ( t  - -  t')h -1] W exp[-- i ( H  + K ) ( t ' - -  t0)h -1] + . . .  

one finds to first order in W 

n(r ,  t) = (p,(r)> + ih-lft*o dr' ( W v p t ( r )  - -  p d r ) W t , )  (12) 

where W v  is the interaction operator at time t' in the "interaction repre- 
sentation", i.e. the Heisenberg representation with W neglected 

W t ,  = exp[i(H + K)th-1]W exp[-- i(H + K)th-1]. 

From (2) one finds 

W v  = ( 2 ~ a h 2 / m ) p v ( r t  ,) 

with rv the neutron position at time t' in the interaction representation. 
Eq. (12) now gives 

n(r, t) = <p~(r)) + (2 . xa~2 /m) ih - l f t*  ° d t ' ( p v ( r t , ) p t ( r ) - - p t ( r ) p v ( r v ) ) .  

From the choice of to we are allowed to take the expectation values as if 
the neutron would be absent. We further can replace to by -- oo in the 
integral. Using (10) one finds 

n(r ,  t) = po - -  (2~za~2/m)po ft_oo d t ' G l ( r  - -  r v ,  t - -  t'). (13) 

In the righthand side the expectation value must still be taken with 
respect to the actual neutron wave packet. The function Gl(r ,  t) approaching 
zero for r or t ~ oo, the integral in (13) actually extends over a finite time 
interval only. 

TIME-DEPENDENT PAIR DISTRIBUTION 405 

tration by Z e r n i k e  and P r in s ,  and very dilute gases, amenable to ex- 
pansion methods in powers of the density 2). As stressed by Z e r n i k e  and 
P r in s ,  this circumstance does not deprive the consideration of g(r) of its 
usefulness, even for liquids where a reliable calculation is far beyond our 
possibilities. In fact, the qualitative properties of g(r) can be predicted 
quite well, also for liquids or compressed gases, and they account very 
simply for the most striking features of molecular order effects in scattering, 
which would be difficult to understand otherwise. 

I t  is remarkable that  one of the conditions under which the pair distribu- 
tion describes molecular order effects in scattering can be relaxed if a 
natural, time-dependent generalization of the distribution function is 
considered, and that  the advent of very slow neutron experiments has given 
practical interest to this generalization. The condition to be relaxed concerns 
the smallness of energy changes. In slow neutron scattering the energy 
change of the neutron is often of the same order as the incident nefitron 
energy and is perfectly measurable. This is one of the circumstances which 
have made slow neutrons such an attractive tool for solid and liquid state 
studies. The Born approximation condition, on the other hand, applies to 
neutrons as well as to X-rays; for neutrons one must describe the neutron- 
nucleus interaction by means of the pseudopotential 

V(r) = (XTm~2/m)~(r) (2) 

where a is the scattering length and m the neutron mass. 
The generalized, time-dependent pair distribution has been introduced in 

a previous paper, to be referred to as A 3). Its definition for a system of N 
identical particles (atoms or molecules) is 

G(r,t) = N -1 <T,~df dr '  6(r + r~(O) --  r') 6(r' - -  rj(t))>, (3) 

where 

rj(t) = e x p ( i n t / h ) r j  exp(--int/~) (4) 

is the position operator of the j-th atom or molecule in the Heisenberg 
representation. H is the hamiltonian of the system, neutron excluded. For 
classical systems the vectors r~(t) and rz(0) are commuting quantities, the 
integration over r' in (3) can be performed and G(r, t) is a real-valued 
function. This is no longer the case for quantum systems, at least for non- 
vanishing time t: G(r, t) is then complex and can be written 

G(r, t) = Go(r, t) + i~Gl(r ,  t) (5) 

with Go and G1 real. As shown in A, Go is even and G1 uneven in all four 
arguments. For t = 0 the imaginary part G1 vanishes and integration over 
r'  in (3) gives 

G(r, O) = Go(r, O) = 6(r) + g(r). (6) 
The imaginary (odd part in time) of G(r,t) describes the density perturbation of 
the sample due to the impact of the neutrons. 
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A R E M A R K  O N  T H E  T I M E - D E P E N D E N T  
P A I R  D I S T R I B U T I O N  

by L~;ON VAN HOVE 
Instituut voor theoretische fysiea der Rijksuniversiteit, Utrecht, Nederland 

Synopsis 
Afte r  recal l ing the  classical work  of Z e r n i k e  and P r i n s  on the  pair  d is t r ibut ion  

funct ion  of a l iquid or  gas and its role in X- r ay  sca t ter ing  theory,  one brief ly discusses 
the  t ime-dependen t  general izat ion of this  d is t r ibut ion  function,  which is of special 
in teres t  for neu t ron  scat ter ing.  In  line wi th  an earlier resul t  of F a n o ,  one shows t h a t  
the  imag ina ry  pa r t  of the  t ime-dependen t  pair  d is t r ibut ion  .directly describes the  local 
dens i ty  change produced in a l iquid or  gas by  the  presence of a neutron.  

1. The time-dependent pair distribution. In a classical paper of 1927 
entitled: "Die Beugung von R5ntgenstrahlen in Fliissigkeiten als Effekt 
tier Molekiilanordnung", Z e r n i k e  and P r in s  introduced the concept of 
pair distribution function in a liquid or gas and showed that this function 
gives an exhaustive description of the influence of molecular order on X-ray 
scattering by the system 1). 

The pair distribution function for a system of N identical particles is 
defined by 

~. g(r) -:  N-1 < X j ~  ~(r + rz - rj)> (1) 

where rl  . . . .  fly are the position vectors of the particles and <...> desig- 
nates the average value for the statistical ensemble representing the state 
of the system. If the scattering by individual atoms or molecules is known, 
the function g(r) completely determines the differential cross section for 
X-ray scattering by the system and, conversely, it is entirely determined 
by it (with the obvious limitations following from the inaccuracy of the 
measurements). These facts, established by Z e r n i k e  and Prins ,  are valid 
under two important conditions, which are both very well fulfilled for X-ray 
scattering: the scattering must be describable by the first Born approxima- 
tion, and the frequency change of the radiation (i.e. the energy change of 
the photons) must be negligible compared to the incident frequency (or 
photon energy). 

An actual calculation of the pair distribution is only possible for very 
special systems like one-dimensional models, already considered as illus- 
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For ℏ → 0 “impactless” scattering. The neutron is a passive probe.
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Spotting the ``kick’’ of the neutron



emits a γ-ray with energy EMö = 14.412497 keV and a mean life
τMö = 141 ns corresponding to a rate coefficient kMö = 1/τMö =
7.1 × 107 s−1 and a natural line width ΓMö = 4.66 neV. Usually,
the 57Fe nucleus recoils; the emitted gamma ray loses the recoil
energy and shifts out of resonance with the 14.4-keV transition.
However, if the 57Fe atom is embedded in a solid, some of the
atoms do not recoil so that the emitted gamma rays carry the full
energy EMö and have the natural line width ΓMö. The Mössbauer
spectrum is measured by the transmission of γ-rays from a 57Fe
source moving with a velocity v through a stationary sample
containing 57Fe embedded for instance in a protein and kept at
the temperature T. A fraction f(T) of the incoming recoilless

Mössbauer photons elastically excites the 14.4-keV level. In
the thin-absorber limit the transmission Tr(ΔE) is related to the
scattering amplitude S(ΔE) by Tr (ΔE) = 1 − const. S(ΔE),
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Fig. 1. (A) Conventionally the elastic line and the quasielastic band in
neutron scattering are treated as separate phenomena. (B) The broad
band is usually assumed to be composed of Lorentzians of different widths
and amplitudes, centered at ΔE = 0 (black curves). The sum is shown in red.
(C ) The proposed model (ELM) is composed of a very large number of
narrow, shifted Lorentzians and has no separate elastic line. B and C
adapted from ref. 4.
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Fig. 2. (A) Energy spectrum of perdeuterated metmyoglobin measured
with QENS (red circles). The resolution function R(E) is scaled to maximum at
zero energy and assumed to be approximately Gaussian (blue lines). The
spectrum involves 72% H atoms from hydration water and 28% from the
protein. Adapted from Achterhold et al. (6). (B) Mössbauer spectrum for car-
bonmonoxy–myoglobin at low temperature. Adapted from ref. 9. (C) The
spectrum measured using the Mössbauer effect for hydrated metmyoglobin at
295 K. Adapted from ref. 10. Hydration is 0.4 for A and C. Note the different
energy scales in A and B.
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QENS spectrum composed of 
many « Mössbauer lines »

A wave-mechanical model of incoherent quasielastic
scattering in complex systems
Hans Frauenfeldera,1, Paul W. Fenimorea, and Robert D. Youngb

aTheoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545; and bCenter for Biological Physics, Arizona State
University, Tempe, AZ 85287-1504
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Quasielastic incoherent neutron scattering (QENS) is an important
tool for the exploration of the dynamics of complex systems such
as biomolecules, liquids, and glasses. The dynamics is reflected in
the energy spectra of the scattered neutrons. Conventionally these
spectra are decomposed into a narrow elastic line and a broad
quasielastic band. The band is interpreted as being caused by
Doppler broadening due to spatial motion of the target molecules.
We propose a quantum-mechanical model in which there is no
separate elastic line. The quasielastic band is composed of sharp
lines with twice the natural line width, shifted from the center by
a random walk of the protein in the free-energy landscape of the
target molecule. The walk is driven by vibrations and by external
fluctuations. We first explore the model with the Mössbauer ef-
fect. In the subsequent application to QENS we treat the incoming
neutron as a de Broglie wave packet. While the wave packet
passes the protons in the protein and the hydration shell it
exchanges energy with the protein during the passage time
of about 100 ns. The energy exchange broadens the ensemble
spectrum. Because the exchange involves the free-energy land-
scape of the protein, the QENS not only provides insight into
the protein dynamics, but it may also illuminate the free-energy
landscape of the protein–solvent system.

quasielastic neutron scattering | neutron wave packet |
protein free-energy landscape

Quasielastic effects are a key to understanding the dynamics
of complex systems, from water to proteins (1, 2). A novice

trying to understand quasielastic incoherent neutron scattering
(QENS) is easily mystified. “Quasielastic” is usually taken to
mean broadening of the elastic line due to spatial diffusion of
the scattering particle. This definition is vague. We introduce
a model that permits an unambiguous definition. It describes the
QENS of proteins as involving a random walk in the free-energy
landscape (FEL), driven by external fluctuations and by thermal
vibrations. During the walk, the neutrons exchange energy with
the protein, thus broadening the energy spectrum.
In QENS the energy spectrum I(ΔE) of the scattered neutrons

is measured as a function of the energy transfer ΔE relative to
the energy of the elastic line at ΔE = 0. At present the QENS
spectra are separated into a narrow elastic peak and a broad
quasielastic band shown schematically in Fig. 1A. The band is
taken to consist of broad Lorentzians with width Γh centered at
ΔE = 0 as sketched in Fig. 1B. The broadening is attributed to
spatial motion of the target atoms, for instance by continuous
diffusion, by jumps from one lattice site to another, or by con-
formational changes in proteins. The motions lead to different
width Γh for different proteins. We call this model SMM, for
“spatial motion model,” and discuss it in more detail later. We
have introduced a radically different model, ELM, for “energy
landscape model” (3). In the ELM, there is no separate elastic
line pinned to the center. The entire spectrum is composed of
a very large number of spectral lines with twice the natural
line width as shown in Fig. 1C. Such a spectrum is called
“inhomogeneous” (4, 5). The lines are shifted from the center

by transitions among the conformational substates of the FEL.
Different proteins experience different energy shift. The shift
energies are taken from the spectrum of low-energy soft modes
of the system. We explain the ELM in more detail below. The
two models are complementary because every transition in the
energy landscape involves a change in the protein conformation
and vice versa. The ideal model for the QENS would treat both
aspects together. Such a model does not yet exist and we are left
exploring which model explains the experimental data more
convincingly, does not contradict experimental evidence, and
uses fewer fit parameters. The present work treats protein; other
systems such as water may lead to different conclusions.

Mössbauer Effect
Neutron scattering is not the best technique to study the con-
cepts of protein dynamics because its instrumental energy reso-
lution is poor. This fact is evident in Fig. 2A, where the re-
solution function R(ΔE) hides the central part of the QENS
spectrum (6). The spectra of the SMM and of the ELM have
similar wings, but differ unmistakably near the center. The SMM
claims to see a sharp elastic line and an underlying broad band;
the ELM spectrum is smooth and without a separate sharp line.
To distinguish the two models, the energy resolution must have
about the same width as the elastic line. The QENS violates this
condition. Fortunately there is a stand-in for the QENS with
a superb energy resolution, namely the Mössbauer effect (7,
8), which also displays quasielastic effects. We therefore treat
the Mössbauer effect first and then apply what we learned to
the QENS. In the Mössbauer experiments a radionuclide, usually
57Fe, is the source of the gamma radiation. The nuclide 57Fe

Significance

Quasielastic incoherent neutron scattering (QENS) is a key
tool for the exploration of complex systems, such as liquids,
polymers, glasses, and biomolecules. A considerable number
of neutron facilities exist and more are being planned. Un-
derstanding QENS is important, both for comprehending and
applying the science and making efficient use of the facilities.
We claim that the present explanation of QENS is incomplete.
We propose a wave-mechanical model, consistent with neu-
tron diffraction. It is based on the free-energy landscape and
treats the neutrons as de Broglie wave packets. The model is
supported by experiments and has predictive power. It pro-
vides significant insight into the dynamics of proteins and may
lead to a better understanding of biological processes.
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passes the protons in the protein and the hydration shell it
exchanges energy with the protein during the passage time
of about 100 ns. The energy exchange broadens the ensemble
spectrum. Because the exchange involves the free-energy land-
scape of the protein, the QENS not only provides insight into
the protein dynamics, but it may also illuminate the free-energy
landscape of the protein–solvent system.

quasielastic neutron scattering | neutron wave packet |
protein free-energy landscape

Quasielastic effects are a key to understanding the dynamics
of complex systems, from water to proteins (1, 2). A novice

trying to understand quasielastic incoherent neutron scattering
(QENS) is easily mystified. “Quasielastic” is usually taken to
mean broadening of the elastic line due to spatial diffusion of
the scattering particle. This definition is vague. We introduce
a model that permits an unambiguous definition. It describes the
QENS of proteins as involving a random walk in the free-energy
landscape (FEL), driven by external fluctuations and by thermal
vibrations. During the walk, the neutrons exchange energy with
the protein, thus broadening the energy spectrum.
In QENS the energy spectrum I(ΔE) of the scattered neutrons

is measured as a function of the energy transfer ΔE relative to
the energy of the elastic line at ΔE = 0. At present the QENS
spectra are separated into a narrow elastic peak and a broad
quasielastic band shown schematically in Fig. 1A. The band is
taken to consist of broad Lorentzians with width Γh centered at
ΔE = 0 as sketched in Fig. 1B. The broadening is attributed to
spatial motion of the target atoms, for instance by continuous
diffusion, by jumps from one lattice site to another, or by con-
formational changes in proteins. The motions lead to different
width Γh for different proteins. We call this model SMM, for
“spatial motion model,” and discuss it in more detail later. We
have introduced a radically different model, ELM, for “energy
landscape model” (3). In the ELM, there is no separate elastic
line pinned to the center. The entire spectrum is composed of
a very large number of spectral lines with twice the natural
line width as shown in Fig. 1C. Such a spectrum is called
“inhomogeneous” (4, 5). The lines are shifted from the center

by transitions among the conformational substates of the FEL.
Different proteins experience different energy shift. The shift
energies are taken from the spectrum of low-energy soft modes
of the system. We explain the ELM in more detail below. The
two models are complementary because every transition in the
energy landscape involves a change in the protein conformation
and vice versa. The ideal model for the QENS would treat both
aspects together. Such a model does not yet exist and we are left
exploring which model explains the experimental data more
convincingly, does not contradict experimental evidence, and
uses fewer fit parameters. The present work treats protein; other
systems such as water may lead to different conclusions.

Mössbauer Effect
Neutron scattering is not the best technique to study the con-
cepts of protein dynamics because its instrumental energy reso-
lution is poor. This fact is evident in Fig. 2A, where the re-
solution function R(ΔE) hides the central part of the QENS
spectrum (6). The spectra of the SMM and of the ELM have
similar wings, but differ unmistakably near the center. The SMM
claims to see a sharp elastic line and an underlying broad band;
the ELM spectrum is smooth and without a separate sharp line.
To distinguish the two models, the energy resolution must have
about the same width as the elastic line. The QENS violates this
condition. Fortunately there is a stand-in for the QENS with
a superb energy resolution, namely the Mössbauer effect (7,
8), which also displays quasielastic effects. We therefore treat
the Mössbauer effect first and then apply what we learned to
the QENS. In the Mössbauer experiments a radionuclide, usually
57Fe, is the source of the gamma radiation. The nuclide 57Fe

Significance

Quasielastic incoherent neutron scattering (QENS) is a key
tool for the exploration of complex systems, such as liquids,
polymers, glasses, and biomolecules. A considerable number
of neutron facilities exist and more are being planned. Un-
derstanding QENS is important, both for comprehending and
applying the science and making efficient use of the facilities.
We claim that the present explanation of QENS is incomplete.
We propose a wave-mechanical model, consistent with neu-
tron diffraction. It is based on the free-energy landscape and
treats the neutrons as de Broglie wave packets. The model is
supported by experiments and has predictive power. It pro-
vides significant insight into the dynamics of proteins and may
lead to a better understanding of biological processes.

Author contributions: H.F., P.W.F., and R.D.Y. designed research; H.F., P.W.F., and R.D.Y.
performed research; H.F., P.W.F., and R.D.Y. analyzed data; and H.F., P.W.F., and R.D.Y.
wrote the paper.

Reviewers: A.E.G., Rensselaer Polytechnic Institute; G.K., Centre National de la Recherche
Scientifique–Université d’Orléans; E.M., Oak Ridge National Laboratory; R.P., University
of Indiana.

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.
1To whom correspondence should be addressed. Email: hansfrauenfelder@me.com.

12764–12768 | PNAS | September 2, 2014 | vol. 111 | no. 35 www.pnas.org/cgi/doi/10.1073/pnas.1411781111

Conformational substates

x

V
[x
]

where ΔE = EMö v/c. Mössbauer spectra are evaluated by plot-
ting Tr(ΔE) versus ΔE or versus the corresponding source ve-
locity v in mm/s, where 1 mm/s corresponds to 48.8 neV. Fig. 2 B
and C displays Mössbauer spectra (9, 10). At 80 K, the spectrum
can be fit with a single Lorentzian with about twice the natural
line width ΓMö. At 295 K the spectrum is broad and can be fit
either with a sharp line and a broad band (SMM) or with a broad
spectrum consisting of a very large number of Mössbauer lines
without a central narrow line (ELM).

ELM
The Mössbauer photons emitted by a stationary 57Fe source al-
ways have the energy EMö = 14.4 keV, the lifetime τMö = 141 ns,
and the natural line width ΓMö = 4.66 neV. The resonance levels
in the 57Fe absorber have the same energy and line width. In
each observed event, a Mössbauer photon is resonantly absorbed
by a 57Fe atom in the target. At low temperatures the spectrum
shows a narrow line with a width of about 2ΓMö as in Fig. 2B. If
the target 57Fe atom is in a protein and observed at ambient
temperature, the spectrum shows broad wings as in Fig. 2C. In
the ELM we do not introduce a separate sharp central line, but
interpret the observed spectrum as being smooth, composed of
lines with width 2ΓMö (Fig. 1C). Each 57Fe atom has a different
resonance energy owing to the protein being in a different con-
formational substate. An incoming quantum with energy EMö can
only be absorbed by a transition with the same energy EMö. If the
absorption spectrum does not show the line at EMö, but at EMö +
ΔE, the target must have provided the energy ΔE during the
lifetime τMö. We propose that the energy fluctuations in the
protein–solvent system are responsible for the energy shifts. A
protein can assume a large number of different conformations
with energies up to a few eV (11–14). The 57Fe atom is coupled
to the protein–solvent system and its FEL. At very low temper-
atures, transitions between substates are too slow to be observed.
A protein in a given substate remains in that substate, and the
Mössbauer spectrum consists of a single narrow line. At high
temperatures, however, a protein fluctuates rapidly among sub-
states. The Mössbauer photon is a wave packet (15) that
exchanges energy with the 57Fe atom during the passage time
given by the Mössbauer lifetime τMö. During this time the protein
makes a random walk in the energy landscape as shown in Fig. 3
(3). When the Mössbauer quantum is registered the spectrometer
records the absorption line at EMö + ΔE. ΔE does not depend on

the energy of the initial substate and can be positive or negative.
The result is a broad band. If ΔE << kBT, the band is symmetric
with the center set at ΔE = 0 as in Figs. 1 and 2. The energy for the
random walk is provided by the heat bath in which the protein
lives (16). The transitions in the FEL are driven by three types of
fluctuations known from the physics of solids, glasses, and super-
cooled liquids (17). They are the α-fluctuations in the bulk solvent
(13, 18), the βh-fluctuations in the hydration shell (19–21), and
vibrations (22). The α-processes are structural fluctuations in the
solvent; they modulate the shape of the protein and can thereby
induce transitions among the substates. Their rate coefficient
kα(T) is inversely proportional to the solvent viscosity; the
α-fluctuations are unobservable in solids. The βh-fluctuations are
dielectric fluctuations in the hydration shell. Their rate coefficient
kβ(T) depends on the degree of hydration and they are absent in
dehydrated proteins (23, 24). Here we use experimental data
from systems where the α-fluctuations are absent. We have
treated the effect of thermal vibration previously (3). Thus, we
restrict the treatment on the effect of the βh-fluctuations.
The exploration of the ELM starts with the elastic fraction f(T),

the primary result of most experiments. Unfortunately many papers
do not report f(T), but invert the Lamb–Mössbauer relation

f ðTÞ= exp
!
-q2

D
x2ðTÞ

E"
[1]

and publish the mean-squared displacement (msd), <x2(T)>.
Here q is the momentum transfer. This relation is only valid in

the Gaussian approximation, which can be wrong in complex
systems (25). This leaves us in a quandary. We can either use Eq.
1 to extract f(T) or we can use the msd despite its limited validity.
We select the second route and plot in Fig. 4 the msd from three
Mössbauer experiments (26–28) and three QENS experiments
(29, 30). The figure shows four striking features: (i) The curves
are all similar despite the fact that they involve very different
targets, techniques, samples, and times. (ii) The msd increases
nearly linearly from about 10 K to a temperature TD ∼ 180 K.
The slope is similar for the Mössbauer experiments and the QENS.
TD is approximately the same for QENS and the Mössbauer effect.
(iii) At TD, the slope of the msd in hydrated proteins increases
dramatically. This effect is called “protein dynamical transition,” or
PDT (29). (iv) In dehydrated proteins, the PDT is absent and the
nearly linear T dependence of the msd continues to at least 300 K.
We now compare the two models in their ability to explicate these
features. The SMM can explain feature (ii) as being caused by
vibrations (31), but has little to say for the rest. The ELM explains
all features: (i) The similarity implies underlying general mecha-
nisms. The principal features of the ELM, namely the existence of
the FEL and the control through fluctuations, are similar in all
systems in Fig. 4. (ii) The approximately linear increase with
temperature of the msd below about 180 K is explained in both
models as being caused by the thermal vibrations (3). (iii) The
ELM quantitatively explains the PDT: The change in slope is due
to the kinetic onset of the βh-fluctuations in the hydration shell
(3, 18, 19, 32). Fig. 3 implies that sizable shifts can only be observed
if the βh-fluctuations are faster than the characteristic Mössbauer
rate or if

τβ < τM€o: [2]

This simple relation is significant because it pinpoints the
temperature TD where the protein dynamics changes from vibra-
tion-dominated to external-fluctuation controlled. Below TD
thermal vibrations dominate and proteins are essentially non-
functional. Above TD the external fluctuations are crucial; they
shift the lines from the center thereby decreasing f(T), increasing
the msd, and producing the broad spectrum. (iv) In the absence
of the external fluctuations no dynamical transition occurs.

Fig. 3. Random walk of a protein in the energy landscape. In the Mössbauer
effect, the incoming photon hits a protein in a specific substate. During the
lifetime τMö, the protein makes a random walk in the energy landscape,
gaining or losing the energy ΔE. The jumps in the FEL are caused by the βh-
fluctuations in the hydration shell. The time for one jump of magnitude ±δE
is τβ. The total energy shift is approximately given by ΔE ∼ ± δE(τMö/τβ)1/2. The
model is assumed to apply also to QENS.
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During its flight through the sample, the neutron wave packet records the net energy transition of 
the system from the initial energy level E to the final level E+ΔE. 

Energy landscape-based description of neutron scattering

H. Frauenfelder et al, Science 254, 1598 (1991). 



The role of momentum transfer during incoherent
neutron scattering is explained by the energy
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We recently introduced a model of incoherent quasielastic neu-
tron scattering (QENS) that treats the neutrons as wave pack-
ets of finite length and the protein as a random walker in the
free energy landscape. We call the model ELM for “energy land-
scape model.” In ELM, the interaction of the wave packet with
a proton in a protein provides the dynamic information. During
the scattering event, the momentum Q(t) is transferred by the
wave packet to the struck proton and its moiety, exerting the
force F(t) = dQ(t)/dt. The resultant energy E? is stored elastically
and returned to the neutron as it exits. The energy is given by
E? = kB(T0 + �Q), where T0 is the ambient temperature and �
(⇡ 91 K Å) is a new elastobaric coefficient. Experiments yield the
scattering intensity (dynamic structure factor) S(Q; T) as a func-
tion of Q and T . To test our model, we use published data on
proteins where only thermal vibrations are active. ELM competes
with the currently accepted theory, here called the spatial motion
model (SMM), which explains S(Q, T) by motions in real space.
ELM is superior to SMM: It can explain the experimental angular
and temperature dependence, whereas SMM cannot do so.

QENS | de Broglie neutron wave packet | pressure-temperature
equivalence | transient energy transfer

Incoherent quasielastic neutron scattering (QENS) is used to
study, for instance, the dynamics of complex systems (1, 2).

In these experiments, the scattering intensity S(Q ,!,T ) is mea-
sured as function of temperature T , momentum transfer Q , and
energy transfer ~!. “Incoherent” essentially means that the neu-
tron scatters from only one proton, and thus interference from
different protons does not contribute. To extract the informa-
tion from the data, a model is needed. The currently accepted
model, used for > 50 y, assumes that the observed effects are due
to spatial motions. We call it the spatial motion model (SMM).
We recently introduced a model in which S(Q ,!,T ) is based on
motions in the conformational free energy landscape (FEL) (3,
4). We call the model ELM, for energy landscape model. ELM
assumes that the effects observed in QENS are predominantly
due to changes in the population of the FEL. ELM as intro-
duced in ref. 4 explained the neutron scattering from proteins,
but left the role of the momentum transfer Q in limbo. The
Q dependence is noteworthy because, although the physics of
n-p scattering at low energies is s-wave (isotropic), the observed
scattering from proteins is Q-dependent (see Fig. 3A), meaning
anisotropic. We have now found that Q plays an important role:
It creates an inhomogeneity in the target during the passage of
the neutron.

Consider a neutron with wave vector q that hits a proton in a
protein. S(Q ,!,T ) is measured as a function of the tempera-
ture T at different scattering angles, characterized by their wave
vectors q0. The wave vectors q and q0 determine the transferred
wave vector, Q= q0�q. Q is related to the momentum by P= ~Q.
E = ~! is the energy change of the neutron when it has com-
pleted its scattering event. To simplify notation, we omit Q or !
from S(T ) when Q =0 or !=0. In elastic scattering, ! is zero.

In quasielastic scattering, E = ~! is nonzero, but much smaller
than the energy of the incoming neutron. Fig. 1 shows character-
istic features of the QENS. At low temperatures, only a narrow
line is observed as in Fig. 1A. Its spectral shape is determined by
the resolution function of the system. With increasing tempera-
ture, S(0, 0;T )⌘S(T ) decreases, and a broad band emerges. In
SMM, the elastic line and the broad band are assigned to sep-
arate processes. The broad band is taken to be homogeneous
and is ascribed to spatial motions. In contrast, ELM assumes
that the broadening is caused by fluctuations in the energy land-
scape that shift lines, as indicated in Fig. 1B, where the bars
represent the shifted lines. The broad spectrum is therefore
inhomogeneous, composed of lines with narrow widths. This
explanation has been proven with the Mössbauer effect (3, 5) and
for neutron scattering (6) when the samples experience driven
vibrations.

The Woes of the SMM
The simplest version of the SMM assumes that the scatter-
ing intensity for elastic processes can be described by a single
Gaussian of the form,

S(Q , 0,T ) = A exp{�Q2hr2i/3}. [1]

This form is often generalized to include a summation over
several Gaussians. The spatially averaged mean-square displace-
ment (MSD) of the hydrogen atoms in the target is given by hr2i,
and A is a normalization coefficient. The SMM has several short-
comings. (i) Low-energy n-p scattering is isotropic. In addition,

Significance

Quasielastic neutron scattering (QENS) has been used for
> 40 y to study complex systems. Fascinating questions
remain. The neutron has to be a de Broglie wave packet to
obtain dynamics information on biological systems. During its
interaction with a proton in a protein, the wave packet puts
pressure on the proton and its environment. The protein acts
like an ideal spring and by Hooke’s law transiently stores the
energy produced by the pressure. On leaving, the wave packet
regains essentially the full energy. However, during the pas-
sage, fluctuations in the sample change the neutron energy
slightly and broaden the energy spectrum. The results call for
a reexamination of the theory of quasielastic neutron scatter-
ing from complex systems.
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• The neutron is an active probe : “Local heating” 
of the sample due to the momentum transfer.

• But: Momentum and energy transfer are not 
connected through scattering kinematics.

PNAS 114, 5130 (2017).

• The description is essentially qualitative
• The neutron is considered as a passive probe
• Momentum transfer is not considered



is “spectroscopic”, in the sense that the 
neutron is an active probe, (de)exciting 
transitions in the scattering system 

Develop a theory of neutron scattering, which  

integrates the concept of energy 
landscapes, which is adapted for complex 
systems
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Franck–Condon picture of incoherent
neutron scattering
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A spectroscopic interpretation of incoherent neutron scattering

experiments is presented which is based on Franck–Condon-type

probabilities for scattering-induced transitions between quantum

states of the target. The resulting expressions for the scattering

functions enable an energy landscape-oriented analysis of neu-

tron scattering spectra as well as a physical interpretation of Van

Hove’s space–time correlation functions in the quantum regime

that accounts for the scattering kinematics. They suggest more-

over a combined analysis of quasi- and inelastic scattering that

becomes inseparable for complex systems with slow power-law

relaxation.

neutron scattering theory | quasielastic neutron scattering | energy
landscapes | complex systems | Van Hove theory

I
ncoherent thermal neutron scattering is an established tech-
nique for studying the average single-atom dynamics in molec-

ular systems. As far as the stochastic, diffusive dynamics is
concerned, one usually speaks of quasielastic neutron scattering
(QENS) (1–3). The accessible time scales for QENS experiments
are roughly between 0.001 and 100 ns and the accessible length
scales between 1 and 100 Å. QENS is in particular increasingly
used to study the internal dynamics of complex molecular sys-
tems, such as proteins, which is characterized by self-similarity.
Such a behavior can be qualitatively explained by viewing the
dynamics of the target system as a thermally activated hopping
process between the many energetically almost equivalent min-
ima (“conformational substates”) of a fractal free energy land-
scape (FEL). This idea has been introduced by Frauenfelder (4)
in the context of protein dynamics, but the concept applies to any
complex physical system with a broad spectrum of (free) energy
levels. It is, however, not a trivial task to integrate the FEL
picture into a quantitative analysis of neutron scattering exper-
iments. In a series of recent papers, Frauenfelder, Fenimore,
and Young proposed a corresponding approach (“energy land-
scape model”), which is inspired by Mößbauer spectroscopy
(5–7). The widely used analysis of QENS in terms of “spatial
motion models” (3, 8, 9), which is based on Van Hove’s the-
ory of neutron scattering (10), is claimed to give the wrong
picture of QENS. This has led to controversial discussions (11,
12), and here only a few remarks are added that are meant to
motivate the approach to modeling QENS and incoherent neu-
tron scattering in general that will be presented in this paper. In
the energy landscape model by Frauenfelder and coworkers, the
effects of momentum and energy transfer are essentially treated
in the framework of classical mechanics, using physically plau-
sible arguments for proteins but not a systematic approach on
the basis of quantum mechanical scattering theory. The criticized
classical QENS models are identified with the underlying neu-
tron scattering theory developed by Van Hove (10), overlooking,
however, that nothing is wrong with his space–time interpre-
tation of neutron scattering experiments, as long as one does
not consider the classical limit “~! 0” of the scattering func-
tions. In this limit, which is indeed used in most QENS models,
not only are quantum properties of the scattering system dis-
regarded but so is the scattering kinematics—that is, the local
perturbation of the sample by the incident neutrons (13, 14).
The corresponding classical scattering functions do not fulfill the
detailed balance symmetry relation of quantum time correlation

functions, which is reflected in QENS spectra from molecular
systems if the energy transfer becomes a noticeable fraction of
the thermal energy, kBT . In Frauenfelder’s QENS model, the
perturbation of the sample by the scattered neutrons is repre-
sented in the form of a transient local pressure the incident
neutron exerts on the environment of the scattering atom, but
the scattering kinematics is not completely accounted for, since
momentum and energy change of the scattered neutrons are
not connected and energy changes just are Doppler-type passive
recordings of the scattering system’s “hops” on the FEL.

The idea of this paper is to develop a spectroscopic analy-
sis of incoherent neutron scattering experiments on the basis of
quantum mechanical scattering theory, which fully integrates the
scattering kinematics and facilitates the interpretation of neu-
tron scattering spectra from complex systems within the energy
landscape picture. The paper attempts moreover to give a new
physical interpretation of Van Hove’s space–time correlation
functions in the quantum case and to establish a physically
intuitive relation to their classical counterparts.

Wick’s Interpretation of Plane Wave Neutron Scattering
In 1954, when Van Hove (10) presented his famous paper on
neutron scattering theory, Gian-Carlo Wick (15) presented a
completely different but equivalent form, which is the starting
point for the description of neutron scattering experiments pre-
sented in this paper. Similar to Van Hove, Wick starts from
standard scattering theory, where neutron scattering experi-
ments are described within the Born approximation, using the
Fermi pseudopotential to model the short-ranged interactions
between the neutron and the atomic nuclei in the sample under
consideration (2). The incident neutrons are described by plane
waves, with a well-defined initial momentum, p0 = ~k0, and leave
the sample again with a well-defined momentum p= ~k. In this
case, the differential scattering cross-section per atom is given by
the relation

Significance

Despite the long history of neutron scattering studies on com-

plex condensed matter systems, there is still a need for appro-

priate analysis concepts beyond the classical Van Hove theory,

which is commonly used to interpret the experimental spectra

in terms of trajectory-based dynamical models. The approach

presented in this paper, which is based on quantum mechan-

ical transition rather than on classical displacement probabil-

ities, accounts by construction for the scattering kinematics

and opens perspectives for the interpretation of quasielastic

neutron scattering experiments from complex systems.
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Use Wick’s “kicked” Hamiltonian

Energy-landscape representation of the intermediate

scattering function

Use the complete sets of energy eigenstates of Ĥ and Ĥ
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Eigenfunctions and eigenvalues of the kicked Hamiltonian 

The neutron in being scattered “causes” transitions between the quantum 
states of the scattering system but does not change the states.

From the Brockhouse Nobel lecture (1994): 
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where r̂↵ are the position operators of the atomic nuclei and
q = (p0 � p)/~ and ! = (E0 � E)/~ denote, respectively,
the momentum and energy transfer from the neutron to the
sample in units of ~. The weighted sum of time correlation
functions, F(q, t), is the intermediate scattering function and
the weighting factors are related to the coherent and inco-
herent scattering lengths of the atoms, �↵� = b

⇤
↵,cohb�,coh +

�↵� |b↵,inc|2. The latter are in general complex and deter-
mine the corresponding total neutron scattering cross sections
through �↵ = 4⇡(|b↵,coh|2 + |b↵,inc|2).

In the following it will be for simplicity assumed that the
sample under consideration contains a large amount of hy-
drogen atoms, which is typical for proteins and soft matter
systems in general. It will also be assumed that the hydrogen
atoms in the system under consideration are physically equiva-
lent. Since incoherent scattering from hydrogen dominates by
far all other contributions [8, 9], the intermediate scattering
function can then be approximated by

F(q, t) ⇡ |bH,inc|2Fs(q, t), [4]

where Fs(q, t) is the self-part of one “representative” scatter-
ing atom (arbitrarily chosen to be ↵ = 1),

Fs(q, t) =
D
e
�iq·r̂1(0)

e
iq·r̂1(t)

E
. [5]

Analogously to [2] we introduce the corresponding dynamic
structure factor through

Ss(q,!) =
1
2⇡

Z +1

�1
dt e

�i!t
Fs(q, t), [6]

and the rest of the paper will be devoted to the discussion of
Fs(q, t) and Ss(q,!).

Wick’s form of the intermediate scattering function. In an
early paper on neutron scattering theory, GC Wick used an
elegant trick to cast the intermediate scattering function into
a form which emphasizes the kinematics of the scattering pro-
cess [10]. The trick is based on the fact that position operators
are generators for translations in momentum space (and vice
versa). Applied to the intermediate scattering function it leads
to the identity

Fs(q, t) =
1
Z
tr
n
e
��Ĥ

e
�iq·r̂

e
itĤ/~

e
iq·r̂

e
�itĤ/~

o

=
1
Z
tr
n
e
��Ĥ

e
itĤ

0(q)/~
e
�itĤ/~

o
, [7]

where Ĥ is the Hamilton operator of the sample and Ĥ
0(q)

is obtained by shifting the momentum of the scattering atom
by ~q,

Ĥ =
NX

↵=1

p̂2
↵

2m↵

+ V (r̂1, . . . , r̂N ) , [8]

Ĥ
0(q) =

NX

↵=1

(p̂↵ + �1↵~q)2
2m↵

+ V (r̂1, . . . , r̂N ) . [9]

As usual, V (.) denotes the potential energy and

Z = tr{e��Ĥ} [10]

is the partition function. Here � = (kBT )
�1, with kB being

the Boltzmann constant and T the absoute temperature. The
Hamilton operator Ĥ

0(q) carries thus the “kick” which the
scattering atom receives from the scattered neutron.

ω

S(q,ω)

Fig. 1. Sketch of a Franck-Condon type line spectrum for neutron scattering.

The slight asymmetry indicates the detailed balance relation.

Recoil e↵ects.Defining the frequency moments of the dynamic
structure factor through

h!ni ⌘
Z +1

�1
d! !

n
Ss(q,!) = (�i)n @

n

t Fs(q, t)|t=0 , [11]

it follows directly from Wick’s form of the intermediate scat-
tering function that

h!i = ~|q|2
2M

. [12]

The short time behavior of the intermediate scattering func-
tion is thus entirely determined by the scattering kinematics
and Expression (12) is the so-called recoil moment.

Franck-Condon principle for discrete energy spectra
Formalism.Suppose now that the eigenvalue spectrum of Ĥ

is discrete, such that Ĥ|�ni = En|�ni (n = 0, 1, 2, . . .) and
|�ni form a basis in a corresponding Hilbert space of square-
integrable functions. The eigenstates of the perturbed Hamil-
tonian, Ĥ 0(q), here denoted as |�0

n(q)i, constitute another ba-
sis and it follows from the completeness of the two bases that
the intermediate scattering function can be formally expressed
as

Fs(q, t) =
1
Z

X

m,n

e
��Em

e
i(E0

n�Em)/~ |amn(q)|2 , [13]

where
amn(q) = h�0

n(q)|�mi [14]

are the projections of the perturbed eigenstates onto the un-
perturbed ones.

The transition amplitudes amn(q) take a particularly sim-
ple form if one works in momentum space representation,
where momentum operators are replaced by normal vectors,
p̂↵ ! p↵, and position operators by di↵erential operators,
x̂↵ ! i~@/@p↵. The Hamiltonian takes here the form

Ĥ =
NX

↵=1

|p|2↵
2m↵

+ V (i~@/@p1, . . . i~@/@pN ) [15]

and one sees immediately that the eigenfunctions of the shifted
version have the same functional form as those of the original
one. Defining �m(p) ⌘ hp|�mi to be the the eigenfunctions of
the unperturbed Hamiltonian in momentum space, we have

Ĥ�n(p) = En�n(p), [16]

Ĥ
0(q)�n(p+ ~Q) = En�n(p+ ~Q). [17]

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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Symmetry properties of the transition probabilities

Detailed balance relation etc. fulfilled 

d
2�

d⌦d!
=

|k|
|k0|

S(q,!), [1]

where S(q,!) is the dynamic structure factor that carries the
information about the microscopic structure and dynamics of the
system under consideration. The variables q=(p0 � p)/~ and
!=(E0 �E)/~ denote, respectively, the momentum and energy
transfer from the neutron to the sample in units of ~. Consid-
ering samples like polymers and biopolymers, which contain a
large amount of predominantly incoherently scattering hydrogen
atoms, it follows that S(q,!)⇡ |bH ,inc |2Ss(q,!), where bH ,inc

is the incoherent scattering length of hydrogen and Ss(q,!)
describes the particle-averaged dynamics of the hydrogen atoms
in the sample:

Ss(q,!)=
1
2⇡

Z +1

�1
dt e

�i!t
Fs(q, t), [2]

Fs(q, t)=
1
N

X

↵2H

D
e
�iq·̂r↵(0)

e
iq·̂r↵(t)

E
. [3]

Fs(q, t) is referred to as intermediate scattering function and
r̂↵ is the position operator of hydrogen atom ↵ in the sample.
The symbol h. . .i denotes here a quantum ensemble average, and
the intermediate scattering function is a quantum time correla-
tion function. The index “s” indicates that self-correlations in
dynamics of the hydrogen atoms are probed.

Wick uses now the fact that position operators are generators
for translations in momentum space and transforms expression
(3) into

Fs(q, t)=
1
N

X

↵2H

D
e
itĤ↵(q)/~

e
�itĤ/~

E
, [4]

where Ĥ is the Hamilton operator of the sample and Ĥ↵(q) is
obtained by shifting the momentum of atom ↵ by ~q:

Ĥ =
NX

µ=1

p̂2
µ

2Mµ
+V (r̂1, . . . , r̂N ), [5]

Ĥ↵(q)=
NX

µ=1

(p̂µ + �↵µ~q)2

2Mµ
+V (r̂1, . . . , r̂N ). [6]

Here Mµ is the mass of hydrogen atom µ and p̂µ is its momentum
operator. The Hamilton operator Ĥ↵(q) carries thus the “kick,”
which atom ↵ receives from the scattered neutron.

A Franck–Condon Picture of Neutron Scattering
Discrete Energy Spectra. We consider first the situation that the
eigenvalue spectrum of the Hamiltonian describing the dynamics
of the scattering system is discrete, such that Ĥ |�n

↵
=En |�n

↵
.

The eigenstates |�n

↵
of Ĥ are supposed to form an orthonormal

basis in a corresponding Hilbert space. For simplicity, we make
the second assumption that all hydrogen atoms are physically
equivalent, such that

Fs(q, t)=
D
e
itĤ

0(q)/~
e
�itĤ/~

E
where Ĥ

0 ⌘ Ĥ1 [7]

and atom 1 is the arbitrarily chosen scattering atom. The eigen-
states of the perturbed Hamiltonian, Ĥ

0(q), here denoted as
|�0

n(q)
↵
, constitute another orthonormal basis, and it follows

from the completeness of the two bases that the intermediate
scattering function can be formally expressed as

Fs(q, t)=
1
Z

X

m,n

e
��Em

e
i(E 0

n
�Em )/~ |am!n(q)|2, [8]

where am!n(q)=
⌦
�0
n(q)|�m

↵
are the projections of the

unperturbed eigenstates onto the perturbed ones. Here, Z =

P
m
e
��Em is the partition function of the scattering system,

where �=1/(kBT ) with kB being the Boltzmann constant and
T the temperature in Kelvin.

The transition amplitudes am!n(q) take a particularly simple
form if one works in momentum space representation, where
momentum operators are replaced by normal vectors, p̂↵ ! p↵,
and position operators by differential operators, r̂↵ ! i~@/@p↵.
One sees immediately that the eigenfunctions corresponding
to the shifted Hamiltonian have the same functional form as
those of the original one. Defining �̃m(P)⌘

⌦
P|�m

↵
to be the

eigenfunctions of the unperturbed Hamiltonian in momentum
space, we have

Ĥ �̃n(P)=En �̃n(P), [9]

Ĥ
0(q)�̃n(P+ ~Q)=En �̃n(P+ ~Q). [10]

We note that

�̃m(P)=
1

(2⇡~)3N/2

Z
d
3N

R e
�iR·P/~�m(R),

�m(R)=
1

(2⇡~)3N/2

Z
d
3N

P e
iR·P/~�̃m(P),

where �m(R)=
⌦
R|�m

↵
is the wave function in position space.

Here and in the following, the vectors R and P comprise the
3N components of all N atomic positions and momenta, respec-
tively, and the components of Q are defined such that the
operation P+ ~Q shifts only the momentum of the scattering
atom—that is, Q1 = qx , Q2 = qy , Q3 = qz , and Qj =0 for 3<
j  3N . It follows then from Eq. 10 that �̃0

n(P; q)= �̃n(P+ ~Q)
and that E

0
n =En , such that the coefficient am!n(q) can be

expressed as overlap integrals involving the shifted and unshifted
energy eigenfunctions of the unperturbed Hamiltonian in
momentum space,

am!n(q)=
Z

d
3N

p �̃⇤
n(P+ ~Q)�̃m(P). [11]

The squared transition amplitudes,

wm!n(q)⌘ |am!n(q)|2 , [12]

fulfill the relations
X

m

wm!n(q)=
X

n

wm!n(q)= 1, [13]

wm!n(0)= �mn , [14]

and can be interpreted as probabilities for the neutron scattering-
induced transitions |�m

↵
! |�n

↵
for a given momentum trans-

fer ~q. Using the notation Eq. 12, the intermediate scattering
function and the corresponding dynamic structure factor take
the form

Fs(q, t)=
1
Z

X

m,n

e
��Em

e
it(En�Em )/~

wm!n(q), [15]

Ss(q,!)=
1
Z

X

m,n

e
��Em

wm!n(q)� (!� [En �Em ]/~). [16]

The symmetry property

wm!n(q)=wn!m(�q) [17]

leads to the detailed balance relations
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Fs(q, t)=Fs(�q,�t + i�~), [18]

Ss(q,!)= e
�~!

Ss(�q,�!), [19]

which express that energy loss of the scattered neutrons is more
likely than energy gain (2).

The Dirac distributions in the double sum (Eq. 16) express
that the total energy for the scattering system and the neutron
is conserved, and Fig. 1 shows a sketch of the corresponding
line spectrum. Each Dirac distribution is here slightly broadened
to make it visible, and the broadening may be interpreted as
the result of finite instrumental resolution. Splitting the double
sum in Eq. 16 into terms with m 6=n and m =n , one obtains
a decomposition into, respectively, the inelastic and the elastic
component of the spectrum. The latter is usually written as

S
(el)
s (q,!)=EISF (q)�(!), [20]

where

EISF (q)=
1
Z

X

m

e
��Em

wm!m(q) [21]

is the Elastic Incoherent Structure Factor (EISF). It is the
thermally weighted probability for the scattering system to stay
in its initial energy level after the scattering of a neutron with
momentum transfer ~q.

The construction of the transition probabilities reminds the
Franck–Condon theory of vibronic transitions in molecules (16,
17). In the latter case, one considers, however, overlap integrals
of energy eigenfunctions in position space that correspond,
respectively, to the molecular vibrational spectra before and
after the absorption or emission of a photon. The absorption/
emission of the photon changes the potential energy of the
molecule, and this change entails a shift of its minimum in space
(i.e., a shift of the atomic equilibrium configuration). In the
case of neutron scattering, it is instead the kinetic energy of the
atomic nuclei in the sample that is shifted due to the momentum
transfer ~q of the neutron (see Fig. 2).

Continuous Energy Spectra. If the Hamiltonian of the scattering
system has a continuous energy spectrum, the corresponding
eigenvalue problem has the form

Ĥ |�(X )
↵
=E(X )|�(X )

↵
, [22]

where the energy eigenstates, |�(X )
↵
, are described by a set of

real-valued variables, X ⌘ {x1, . . . , xf }, and E(X ) is the energy

Fig. 1. Sketch of a Franck–Condon-type line spectrum for neutron scat-
tering. The slight asymmetry is due to the detailed balance relation
(Eq. 19).

Fig. 2. Neutron scattering in the Franck–Condon representation. The
model system is here the harmonic oscillator, and one considers the 0 ! 3
excitation. T and T

0 are the kinetic energies, respectively, before and after
the collision with the neutron and T

0(p) = T(p + ~q).

in these variables. We further assume that the eigenstates are
normalized, such that

⌦
�(X 0)|�(X )

↵
=

⇢
1 ifX =X

0,
0 otherwise. [23]

The quantum states are counted via an appropriate density of
states, ⇢(X ), such that m ! dm = ⇢(X )d f

X and so forth, and
it is convenient to work with probability densities instead of
probabilities. The transition probability density is in particular
defined as

W (X 0|X ; q)= ⇢(X 0)|a(X 0|X ; q)|2, [24]

with

a(X 0|X ; q)=
Z

d
3N

p �̃⇤(P+ ~Q;X 0)�̃(P;X ) [25]

and �̃(P;X )⌘
⌦
P|�(X )

↵
, and it fulfills the condition

W (X 0|X , 0)= �(X �X
0). [26]

Similarly, we define the equilibrium probability density

Weq(X )= ⇢(X )
e
��E(X )

Z
, [27]

where Z =
R
d
f
X ⇢(X ) exp(��E(X )). With these prerequi-

sites, the intermediate scattering function takes the form

Fs(q, t)=
Z Z

d
f
Xd

f
X

0
Weq(X )

⇥e
i(E(X 0)�E(X ))t/~

W (X 0|X ; q), [28]

and the resulting dynamic structure factor reads

Ss(q,!)=
Z Z

d
f
Xd

f
X

0
Weq(X )W (X 0|X ; q)

⇥�(!� [E(X 0)�E(X )]/~), [29]

in analogy with Eq. 16.
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The vector p comprises here the Cartesian coordinates of all
atomic momenta and the components of Q are defined such
that the operation p + ~Q shifts only the momentum of the
scattering atom, i.e. Q1 = qx, Q2 = qy, Q3 = qz, and
Qj = 0 for 3 < j  3N . It follows then from [17] that
�
0
n(p;q) = �n(p+ ~Q), such that the coe�cients amn(q) can

be expressed as overlap integrals involving the shifted and un-
shifted energy eigenfunctions of the unperturbed Hamiltonian
in momentum space,

amn(q) =

Z
d
3N

p�
⇤
n(p+ ~Q)�m(p). [18]

The squared transition amplitudes,

pmn(q) ⌘ |amn(q)|2 , [19]

fulfill the relations
X

m

pmn(q) =
X

n

pmn(q) = 1, [20]

pmn(0) = �mn, [21]

and can thus be interpreted as probabilities for the neutron
scattering-induced transitions |�mi ! |�ni of the sample dur-
ing the scattering event. Using the notation (19), the inter-
mediate scattering function and the corresponding dynamic
structure factor take the form

Fs(q, t) =
1
Z

X

m,n

e
��Em

e
it(En�Em)/~

pmn(q), [22]

Ss(q,!) =
1
Z

X

m,n

e
��Em

pmn(q)� (! � [En � Em]/~) , [23]

where the partition function is given by

Z =
X

m

e
��Em

. [24]

The symmetry property

pmn(q) = pnm(�q) [25]

leads to the detailed balance relations

Fs(q, t) = Fs(�q,�t+ i�~), [26]

Ss(q,!) = e
�~!

Ss(�q,�!), [27]

which reflect the fact that energy loss of the scattered neutrons
more likely than energy gain [8].

The Dirac distributions in the double sum (23) express en-
ergy conservation for the transition Em ! En and Fig. 1
shows a sketch of a such a line spectrum. Each Dirac distri-
bution is here slightly broadened to make it visible. Splitting
the double sum in Expression (23) into terms with m 6= n and
m = n, one obtains, respectively, a decomposition into an in-
elastic and an elastic component of the spectrum. The latter
is usually written as

S
(el)
s (q,!) = EISF (q)�(!), [28]

where

EISF (q) =
1
Z

X

m

e
��Em

pmm(q) [29]

is the Elastic Incoherent Structure Factor.

The construction of the transition probabilities re-
minds the Franck-Condon theory of vibronic transitions in

p
~q

~�

0

1

2

3

4

0�
1�

2�
3�

4�

E
TT �

Fig. 2. Neutron scattering in the Franck-Condon representation. The model

system is here the harmonic oscillator and one considers the 0 ! 3 excitation. T
and T 0

are the kinetic energies, respectively, before and after the collision with the

neutron and T 0(p) = T (p+ ~q).

molecules [11, 12]. In the latter case one considers, however,
overlap integrals of energy eigenfunctions in coordinate space,
which correspond to the molecular electronic spectra before
and after the absorption or emission of a photon. The absorp-
tion/emission of the photon changes here the potential energy
of the molecule and this change entails a shift of its minimum
in space, i.e. a shift of the atomic equilibrium configuration.
In the case of neutron scattering it is instead the kinetic en-
ergy of the atomic nuclei in the sample which is shifted due to
the momentum transfer ~q of the neutron. Fig. 2 illustrates
this point for the harmonic oscillator which will be discussed
in the following.

Harmonic oscillator.The harmonic oscillator is the simplest
spectroscopic model system with a discrete spectrum of eigen-
values. The potential energy function is here a quadratic func-
tion of the displacement coordinate, x,

V (x) =
1
2
M⌦2

x
2
,

where M is the mass of the oscillator and ⌦ its (angular) fre-
quency. Since both the potential and the kinetic energy are
quadratic functions in time, the stationary Schrödinger equa-
tion in momentum and position space have the same form if
appropriate dimensionless variables are introduced,

�
00(⇠) +

✓
✏� ⇠

2

4

◆
�(⇠) = 0.

Here ✏ = E/~⌦ is the energy in units of ~⌦ and in the following
⇠ =

p
2/(~M⌦)p. The solution of the stationary Schrödinger

equation for an oscillator leads to the well-known equidistant
eigenvalue spectrum, En = (n + 1/2)~⌦, and the associated
eigenfunctions have the form

�m(⇠) = exp(�⇠
2
/4)Hem (⇠) /

p
m!,

where Hem(x) = Hm

�
x/

p
2
�
/
p
2m and Hm(x) are the Her-

mite polynomials [13].

The transition amplitudes and probabilities for the har-
monic oscillator can be computed analytically. Introducing
the dimensionless momentum transfer

y(q) =

r
2~
M⌦

q, [30]
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Textbook result (c.f. Lovesey)

Illustrations for Two Model Systems
Quantum Oscillator. The harmonic oscillator is a simple quantum
system with a discrete energy spectrum for which an analytical
solution for the Franck–Condon-type transition probabilities and
the resulting scattering functions can be found. The potential
energy function is here a quadratic function of the displacement
coordinate, x ,

V (x )=
1
2
M⌦2

x
2,

and the corresponding eigenvalue spectrum of the Hamiltonian
is equidistant, En =(n +1/2)~⌦. Introducing the dimensionless
momentum transfer

y(q)=

r
2~
M⌦

q , [30]

the transition probabilities can be computed analytically from the
well-known oscillator eigenfunctions, which have the same form
in position and momentum space, and the result is found to be
(see SI Appendix)

wm!n(q)= e
� y

2

4 (�1)m+n
L
(n�m)
m

✓
y
2

4

◆
L
(m�n)
n

✓
y
2

4

◆
, [31]

where L
(↵)
m (.) denote the generalized Laguerre polynomials (18).

A few examples are given in Fig. 3. Due to the symmetry
of the potential, they depend only on the absolute value of
the momentum transfer and not on its sign. The intermediate
scattering function can be written in the equivalent forms (see
SI Appendix)

Fs(q , t)=
1
Z

X

m,n

e
��~⌦(m+1/2)

e
i(n�m)⌦t

wm!n(y(q)), [32]

= e
i
y(q)2

4 (sin(⌦t)+i(1�cos(⌦t)) coth( �⌦~
2 )), [33]

where the partition function is given by Z = e
1
2�~⌦/(e�~⌦ � 1),

and Eq. 33 is equivalent with the formula stated in the classical
textbook by Lovesey (2). The corresponding expressions for the
dynamic structure factor are

Fig. 3. Probabilities wm!n(y) for the transition m ! n of the harmonic
oscillator. The variable y is the dimensionless momentum transfer defined
by Eq. 30.

Ss(q ,!)=
1
Z

X

m,n

e
��~⌦(m+1/2)�(!� [n �m]⌦)wm!n(q),

[34]

= e
� y(q)2

4 coth( �~⌦
2 )+ �~!

2

+1X

n=�1
In(a(q))�(!�n⌦),

[35]

with In(.) being the Bessel functions and a(q)= y(q)2/
(4sinh(�~⌦/2)).

Ideal Gas. The ideal gas is the simplest model for a system with
a continuous distribution of quantum states. Between collisions,
individual molecules move freely, without the influence of forces.
The quantum state of a freely moving particle is character-
ized by the three components of its sharply defined momen-
tum, p0—that is, X = {p0,x , p0,y , p0,z}. The corresponding wave
functions in position space are 3D-plane waves,

⌦
r|�(p0)

↵
/

exp(ip0 · r/~), and lead to a momentum representation of the
form

⌦
p|�(p0)

↵
= �(p� p0). Since these wave functions are not

square-normalizable, the state of the scattering atom is described
by a square-normalized Gaussian wave packet, which is sharply
peaked around p= p0,

�̃(p; p0)=
1

(2⇡✏2)3/4
e
� (p�p0)2

4✏2 , [36]

where �̃(p; p0)⌘
⌦
p|�(p0)

↵
. Setting ⇢(p1)= 1/(2

p
⇡✏)3 for the

density of final states labeled by p1, the resulting transition
probability has the form (see SI Appendix)

W (p1|p0; q)=
e
� (p0�p1+~q)2

4✏2

(2
p
⇡✏)3

✏!0
= �(p0 + ~q� p1) [37]

and expresses strict momentum conservation in the limit ✏! 0.
Inserting the right-hand side together with the Maxwell equi-
librium distribution, Weq(p0)= (2⇡M /�)�3/2 exp(��p2

0/2M ),
into the general Eq. 28 for the intermediate scattering function,
one is left with a simple volume integral over p0, which can be
easily computed and yields the well-known form for the interme-
diate scattering function of an ideal gas consisting of molecules
with mass M (2),

Fs(q, t)= e
� q

2
t(t�i�~)
2�M , [38]

where q ⌘ |q| is the modulus of the momentum transfer. The
corresponding dynamic structure factor also has a Gaussian
form:

Ss(q,!)=
✓
2⇡q2

�M

◆�1/2

e
�

�(~q
2�2M!)2
8Mq2 . [39]

Reinterpreting the Van Hove Function
Van Hove introduced the spatial Fourier transform of the
intermediate (self)-scattering function,

Gs(r, t)=
1

(2⇡)3

Z
d
3
q e

�iq·r
Fs(q, t),

=

Z
d
3
r
0 ⌦�(r� r0 + r̂1(0))�(r0 � r̂1(t))

↵
, [40]

to relate the (r, t)-space of spatial motions to the (q,!)-space of
neutron scattering spectra:

Ss(q,!)=
1
2⇡

Z +1

�1
dt

Z
d
3
r e

i(q·r�!t)
Gs(r, t). [41]
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they are found to be (details are skipped here)

amn(q) = e
� y2

8 2m�n

r
m!
n!

y
n�m

L
(n�m)
m

✓
y
2

4

◆
, [31]

pmn(q) = e
� y2

4 (�1)m+n
L

(n�m)
m

✓
y
2

4

◆
L

(m�n)
n

✓
y
2

4

◆
, [32]

where L
(↵)
m (.) denote the generalized Laguerre polynomi-

als [13]. Relation [32] follows from the symmetry property

L
(n�m)
m (x) = L

(m�n)
n (x)(�x)m�n(n!/m!). A few examples for

the transition probabilities are given in Fig. 3.

With the above definitions, the intermediate scattering func-
tion takes the form

Fs(q, t) =
1
Z

X

m,n

e
��~⌦(m+1/2)

e
i(n�m)⌦t

pmn(q), [33]

and the partition function is given by Z = e
1
2�~⌦

/(e�~⌦ � 1).
The double series [33] can be summed up to (details are omit-
ted)

Fs(q, t) = e
i
y(q)2

4 (sin(⌦t)+i(1�cos(⌦t)) coth( �⌦~
2 ))

, [34]

which is equivalent with the formula stated in the classical
textbook by Lovesey [8].

It follows from (33) that the dynamic structure factor can
be written as a weighted double sum of Dirac distributions,
each corresponding to a transition Em ! En,

Ss(q,!) =
1
Z

X

m,n

e
��~⌦(m+1/2)

�
�
! � [n�m]⌦

�
pmn(q). [35]

Note that the usual form found in textbooks (see e.g. Ref. [8])
is derived from Expression (34), which leads to a weighted
single sum of Dirac lines.

Franck-Condon principle for continuous energy spectra
Formalism.We consider now the situation that the scattering
system under consideration has a continuous energy spectrum
and that its energy eigenstates |�(X)i are described by a set of
continuous real-valued variables X ⌘ {x1, . . . , xf}. It follows
then that

Ĥ|�(X)i = E(X)|�(X)i, [36]

where E(X) expresses the energy in the variables X. We as-
sume further that the eigenstates are normalized such that

h�(X 0)|�(X)i =
(
1 if X = X

0
,

0 otherwise.
[37]

The quantum states are counted via an appropriate density of
states, ⇢(X), such that m ! dm = ⇢(X)dfX etc., and it is
convenient to work with probability densities instead of prob-
abilities. The transition probability density is in particular
defined as

P (X 0|X,q) = ⇢(X 0)|a(X 0|X,q)|2, [38]

with

a(X 0|X,q) =

Z
d
3N

p�
⇤(p+ ~Q;X 0)�(p;X), [39]

and �(p;X) ⌘ hp|�(X)i, and it must fulfill the condition

P (X 0|X,0) = �(X �X
0). [40]
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Fig. 3. Probabilities pmn(y) for the transition m ! n of the harmonic oscil-

lator. The definition of y is given by Eq. [30].

Similarly, we define the equilibrium probability density

Peq(X) = ⇢(X)
e
��E(X)

Z
[41]

where Z =
R
d
f
X ⇢(X) exp(��E(X)). With these prerequi-

sites the intermediate scattering function takes the form

Fs(q, t) =

Z Z
d
f
Xd

f
X

0
Peq(X)

⇥ e
i(E(X0)�E(X))t/~

P (X 0|X,q), [42]

and the resulting dynamic structure factor reads

Ss(q,!) =

Z Z
d
f
Xd

f
X

0
Peq(X)P (X 0|X,q)

⇥ �(! � [E(X 0)� E(X)]/~), [43]

in analogy with [23]. The integration overX 0 can be performed
formally and yields

Ss(q,!) = ~
X

k

Z
dX Peq(X)

P (X 0
k(X,!)|X,q)

|rXE(Xk)|
, [44]

where X 0
k(.) denotes the ensemble of all roots solving the equa-

tion E(X 0) = E(X)+~! and rX is the gradient with respect
to X.

Ideal gas.The ideal gas is the simplest model system for a
system with a continuous distribution of quantum states. Be-
tween collisions individual molecules move freely, without the
influence of forces. The quantum state of a freely moving par-
ticle is characterized by the three components of its sharply
defined momentum, p0. The corresponding wave functions in
position space are plane waves, hx|�(p0)i / exp(ip0 · x) and
lead to a momentum representation of the form hp|�(p0)i =
�(p�p0). These wave functions have, however, the unpleasant
feature of being not square-normalizable and they are there-
fore not suited for the calculation of Franck-Condon type of
overlap integrals. For this reason the state of the scatter-
ing atom is described by a square-normalized Gaussian wave
packet of very small but finite width ✏ > 0,

�(p;p0) =
1

(2⇡✏2)3/4
e
� (p�p0)2

4✏2 , [45]
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Some transition probabilities as a 
function of momentum transfer

Franck-Condon picture of neutron scattering
Harmoic oscillator

E =
p
2

2m
+

1

2
m⌦2

x
2

Fs(q, t) =
1

Z

X

m,n

e
��~⌦(m+1/2)

e
i(n�m)⌦t

pmn(q),

pmn(q) = e
� y2

4 (�1)m+n
L
(n�m)
m

✓
y
2

4

◆
L
(m�n)
n

✓
y
2

4

◆

y(q) =

r
2~
M⌦

q



ARTICLE

�NATURE COMMUNICATIONS | 3:1124 | DOI: 10.1038/ncomms2117 | www.nature.com/naturecommunications

© 2012 Macmillan Publishers Limited. All rights reserved.

Received 6 Jun 2012 | Accepted 4 Sep 2012 | Published 9 Oct 2012 DOI: 10.1038/ncomms2117

The vibrational excitations of crystalline solids corresponding to acoustic or optic one-phonon 
modes appear as sharp features in measurements such as neutron spectroscopy. In contrast, 
many-phonon excitations generally produce a complicated, weak and featureless response. 
Here we present time-of-flight neutron scattering measurements for the binary solid uranium 
nitride, showing well-defined, equally spaced, high-energy vibrational modes in addition to the 
usual phonons. The spectrum is that of a single atom, isotropic quantum harmonic oscillator 
and characterizes independent motions of light nitrogen atoms, each found in an octahedral 
cage of heavy uranium atoms. This is an unexpected and beautiful experimental realization 
of one of the fundamental, exactly solvable problems in quantum mechanics. There are also 
practical implications, as the oscillator modes must be accounted for in the design of generation 
IV nuclear reactors that plan to use uranium nitride as a fuel. 

1 Quantum Condensed Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. 2 Chalk  
River Laboratories, Canadian Neutron Beam Center, National Research Council, Chalk River, Ontario, Canada K0J 1J0. 3 Materials Science and Technology 
Division, Physical Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. 4 CIRE, University of Tennessee, Knoxville, 
Tennessee 37996, USA. Correspondence and requests for materials should be addressed to A.A.A. (email: aczelaa@ornl.gov) or to S.E.N.  
(email: naglerse@ornl.gov). 

Quantum oscillations of nitrogen atoms  
in uranium nitride
A.A. Aczel1, G.E. Granroth1, G.J. MacDougall1, W.J.L. Buyers2, D.L. Abernathy1,  
G.D. Samolyuk3, G.M. Stocks3 & S.E. Nagler1,4

ARTICLE

�NATURE COMMUNICATIONS | 3:1124 | DOI: 10.1038/ncomms2117 | www.nature.com/naturecommunications

© 2012 Macmillan Publishers Limited. All rights reserved.

Received 6 Jun 2012 | Accepted 4 Sep 2012 | Published 9 Oct 2012 DOI: 10.1038/ncomms2117

The vibrational excitations of crystalline solids corresponding to acoustic or optic one-phonon 
modes appear as sharp features in measurements such as neutron spectroscopy. In contrast, 
many-phonon excitations generally produce a complicated, weak and featureless response. 
Here we present time-of-flight neutron scattering measurements for the binary solid uranium 
nitride, showing well-defined, equally spaced, high-energy vibrational modes in addition to the 
usual phonons. The spectrum is that of a single atom, isotropic quantum harmonic oscillator 
and characterizes independent motions of light nitrogen atoms, each found in an octahedral 
cage of heavy uranium atoms. This is an unexpected and beautiful experimental realization 
of one of the fundamental, exactly solvable problems in quantum mechanics. There are also 
practical implications, as the oscillator modes must be accounted for in the design of generation 
IV nuclear reactors that plan to use uranium nitride as a fuel. 

1 Quantum Condensed Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. 2 Chalk  
River Laboratories, Canadian Neutron Beam Center, National Research Council, Chalk River, Ontario, Canada K0J 1J0. 3 Materials Science and Technology 
Division, Physical Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. 4 CIRE, University of Tennessee, Knoxville, 
Tennessee 37996, USA. Correspondence and requests for materials should be addressed to A.A.A. (email: aczelaa@ornl.gov) or to S.E.N.  
(email: naglerse@ornl.gov). 

Quantum oscillations of nitrogen atoms  
in uranium nitride
A.A. Aczel1, G.E. Granroth1, G.J. MacDougall1, W.J.L. Buyers2, D.L. Abernathy1,  
G.D. Samolyuk3, G.M. Stocks3 & S.E. Nagler1,4

ARTICLE

��

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2117

NATURE COMMUNICATIONS | 3:1124 | DOI: 10.1038/ncomms2117 | www.nature.com/naturecommunications

© 2012 Macmillan Publishers Limited. All rights reserved.

The spectrum of elementary excitations in materials is one of 
the core concepts in modern condensed matter physics. !e 
archetypical example is the set of quantized lattice vibrations 

in crystalline solids, or phonons1. For crystals with more than one 
atom per unit cell, one expects both acoustic and optic phonon 
modes and if these are known, one can calculate the lattice contribu-
tion to fundamental properties such as the heat capacity. !e vibra-
tional spectrum at energies above those of the highest optic phonon 
mode is generally a complicated many phonon continuum that is 
o"en weak and featureless. In sharp contrast, for the binary solid 
uranium nitride (UN)2–5, where the nitrogen atoms are very light 
compared with the uranium atoms, our inelastic neutron-scattering 
measurements reveal that the high-energy spectrum is greatly sim-
pli#ed and consists of a set of equally-spaced, well-de#ned modes 
that can be measured to energies at least ten times as large as that 
of the optic phonon modes. !is data is best explained by assuming 
that each nitrogen atom behaves as an independent quantum har-
monic oscillator (QHO), and the nitrogen motion is therefore a rare 
experimental realization of an exactly soluble, three-dimensional 
model in quantum mechanics6.

!e binary uranium systems of the form UX (X  =  C, N, S, Se, 
Te, As, Sb) have relatively simple rocksalt crystal structures as illus-
trated in Fig. 1. !ey have been extensively studied owing to their 
vast array of puzzling physical and magnetic properties7, including 
unusually high electronic-speci#c heats and drastic suppression  
of ordered magnetic moments. Among these systems, UN has 
received signi#cant attention8–12 recently owing to its potential use 
as a high-temperature nuclear fuel13–15.

!e primary magnetic and lattice excitations of UN have been 
investigated previously via inelastic neutron scattering2,3,16. Despite 
these e$orts, several intriguing open questions remain concerning the 
details of the experimental spectra. Since the initial measurements, 
signi#cant advances have been made in inelastic neutron scattering 
using time-of-%ight methods. Next-generation chopper spectrom-
eters allow for measurements over much broader energy (ω) and 
momentum (


Q) transfer ranges than were previously accessible, with 

both improved intensity and resolution. For these reasons, the excita-
tions in UN were re-examined using the Fermi chopper spectrom-
eters SEQUOIA17,18 and ARCS19 at the Spallation Neutron Source of 
Oak Ridge National Laboratory. In addition to the expected magnon 
and phonon modes, this investigation resulted in the unexpected dis-
covery of a series of excitations spaced equally in energy by intervals 
of ~50 meV, and extending up to at least 500 meV.

Results
Conventional phonons. To perform the measurements, the same 
UN crystal utilized by Jackman et al.2 was aligned with the (HHL) 
plane horizontal and cooled to a temperature T = 5 K. Figure 2a 
shows representative results obtained at SEQUOIA using an incident 
neutron energy Ei = 80 meV for a typical symmetry direction in 
reciprocal space. A constant Q-cut through the data, at the position 
corresponding to the vertical line, is illustrated in Fig. 2b. !e solid 
red curve is a #t to a superposition of Gaussian peaks at the mode 
positions. !e measured phonon dispersion relations are consistent 
with earlier investigations2,20. !e black lines in Fig. 2a are obtained 
from a #t of the data to a simpli#ed model16 that includes only 
nearest-neighbour U-N (65 ± 2 N m − 1) and U-U (50 ± 4 N m − 1) 
force constants. !is model su'ces for illustrative purposes, 
although more detailed models2,8–10,21,22 give a closer match to the 
observed dispersion. Some of those models also include N-N force 
constants, although they are found to be negligibly small compared 
with their U-N and U-U counterparts.

Notably, the optic modes are well separated in energy from 
the acoustic modes and are weakly dispersive centred around 
ω~50 meV2,20. Because of the large mass ratio M/m, where M and 
m are the masses of the U and N atoms, respectively, the eigenvectors  

of the modes are such that the U atom motions are largely re%ected 
by the acoustic phonons and the optic modes correspond primarily 
to motions of the N atoms16. A weak column of magnetic scattering, 
previously observed by Holden et al.3, is also visible in Fig. 2a at the 
antiferromagnetic zone centre ( − 1  − 1 0).

High energy response. !e upper and lower panels in Fig. 2c,d 
show SEQUOIA data taken with Ei = 250 meV covering a larger 
range of energy transfer. !e upper panel shows the data averaged 
over all measured crystal orientations and the lower panel is a plot 
of intensity versus energy transfer for this data summed over Q. 
!e data is striking and reveals a series of essentially dispersionless 
excitations extending up in energy from the optic mode, and evenly 
spaced by ~50 meV intervals. !e intensity of each mode increases 
with increasing momentum transfer over several Å − 1 indicat-
ing that these excitations are vibrational as opposed to magnetic. 
!ese data were extended greatly in both energy and wavevector 
range by further measurements using the ARCS chopper spec-
trometer. !e larger Q range of this instrument is provided by its 
wide-angle detector coverage up to 2θ~135°, whereas the maximum 
2θ for SEQUOIA is only ~60°. Figure 3a,b show ARCS data with 
Ei = 500 meV plotted on a logarithmic intensity scale. Figure 3c,d 
show data from the same instrument with Ei = 800 meV; the upper 
panel c has intensity on a linear scale, whereas panel d is also on a 
logarithmic scale. A series of evenly spaced excitations is clearly vis-
ible up to the 10th order at an energy of 500 meV. !e well-de#ned 
peaks in the orientationally averaged data imply that the modes are 
localized and isotropic, and the energy widths of these excitations 
were found to be roughly the same for all orders of n.

QHO model. Some enhanced response at an energy corresponding 
to twice that of the optic phonon was observed in previous neutron 
scattering studies of UN and attributed to two-phonon processes16. 
However, the observation of such an extended series of equally 
spaced and well-de#ned modes is unprecedented. !e most obvious 
system exhibiting a spectrum consisting of equally spaced modes is 
the QHO. Here one can postulate that the extremely light mass of 
the N atom relative to the U atom leads to a situation where high-
frequency vibrations in the crystal essentially consist of motions of 
individual N atoms in a very isotropic and harmonic potential aris-
ing from a surrounding regular octahedron of U atoms. Each N atom 
is then a nearly ideal realization of the QHO in three dimensions,  
with a fundamental frequency corresponding to an energy 

Figure 1 | Rocksalt crystal structure of uranium nitride. Each N atom 
(small red spheres) is centred in a regular octahedron of U atoms (large 
blue spheres).
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indicates the prediction of the QHO model for a nitrogen atom with 
ωo = 50 meV, with the non-integer n values interpolated by using 
Γ(n + 1) to calculate n!. !e values obtained from the data agree 
very well with the model over nearly 20 orders of magnitude. !e  
maximum relative deviation for any one ratio is within a factor of 

two for the Ei = 800 meV data and within 20% for the Ei = 500 meV 
data. Given the large range of values covered and the simple assump-
tion made for the multiple scattering, this is strong con"rmation 
that the QHO picture applies to the nitrogen atoms in the uranium 
lattice.
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!e parameter C is related to the zero-point energy of the oscil-
lator. For a nitrogen atom in a harmonic potential corresponding to 
ωo = 50 meV, the calculated value of C is 0.003 Å2. !e mean value 
of C determined from all modes at both incident energies was found 
to be 0.00275(10) Å2; this is very close to the calculated value. As 
a further check, the data for each Ei was analysed using a global  
"t (see Supplementary Discussion Section B and Supplementary  
Fig. S3) obtaining values for C of 0.00276(2) Å2 and 0.00264(2) Å2 
for the Ei = 500 meV and 800 meV data sets, respectively, also in good 
agreement with expectations. !e slight discrepancies between the 
"tted and calculated C values may be due to the simple assumption 
made for the multiple scattering.

Binary solid model extension. Clearly, the QHO model gives an 
outstanding description of the data. It should be noted that a calcu-
lation of the multiphonon scattering for a single frequency, perfectly 
dispersionless Einstein model leads to a result that is equivalent to 
the QHO model24. However, the oscillator picture is a simpler and 
more physically reasonable description for the localized vibrations 
of N atoms in UN, particularly when one considers that it is not an 
ideal Einstein solid: the crystalline environment and acoustic modes 
also a#ect the scattering. Detailed theoretical predictions exist for 
the response of a binary harmonic solid consisting of a lattice of 
diatomic molecules with a light atom of mass m bound to a heav-
ier atom of mass M25. In the limit m  M, appropriate for UN, the 
"nite mass of the U atoms can be accounted for approximately by 
replacing the delta function in equation (2) with a Gaussian:

exp

− − −
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!is modi"cation suggests that the oscillator modes should be 
broadened to a width σ and the position of the nth mode shi$ed 
by the uranium recoil to   w w= +n Q Mo

2 2 2/ . For UN, it is not 
possible to associate a speci"c N atom with an individual U atom,  
nevertheless it is still reasonable to compare the data with the binary 
solid model. To assess how well this model describes the present 
data, constant Q-cuts (2 Å − 1 integration range) from the ARCS 
Ei = 500 meV measurement were "t to a superposition of several 
Gaussian functions (see Supplementary Fig. S4 for a representative 
"t). !e net result of the "tting shows that the modes have an aver-
age intrinsic full-width half-maximum of 26 meV with no systematic 
behaviour evident as a function of Q or n (see Supplementary Table 
S1 and Supplementary Fig. S5). !e magnitude of the broadening is 
in agreement with the prediction of the binary solid model25 that 
the intrinsic energy width of the n > 1 peaks should be of the same 
order as the bandwidth of the acoustic phonon modes. Inspection of 
Fig. 2a shows this width to be around 20 meV. Except for a possible 
small e#ect on the n = 1 mode, the "tting does not reveal a measura-
ble shi$ of the mode energies as a function of Q. Multiple scattering 
contributions at the mode positions may mask any shi$ at higher 
Q. More details of the binary solid model extension are provided in 
Supplementary Discussion Section C.

Local potential of the nitrogen atoms. To investigate why the iso-
tropic QHO description is so appropriate for UN, density functional 
theory (DFT) has been used to calculate the potential energy of the 
nitrogen atoms relative to their equilibrium positions for displace-
ments along major crystallographic directions. Although DFT 
o$en fails to give the true ground state for correlated materials, in 
fact it has been shown to give a good description of the electronic 

(4)(4)

energies in UN10. Moreover, DFT gives highly reliable values for 
relative energy di#erences of displaced atoms independent of the 
precise ground state. !e DFT results shown in Fig. 5 verify that 
the potential is harmonic over a wide energy range, certainly for 
E < 1 eV. At the same time, in this range, the potential energy along 
di#erent directions is isotropic to within 2%. !e ab-initio calcula-
tions predict an energy spacing for the oscillator modes of 50 meV, 
corresponding very well to the spacing of the excitations observed 
in the neutron-scattering measurements.

Discussion
!e QHO behaviour observed here should be visible in many  
materials where the constituent atoms have greatly di#erent masses. 
It is also important that there be weak interactions between light 
atoms sitting in a very harmonic potential. Possible harmonic oscil-
lator behaviour has long been sought and investigated in metallic 
hydrides, especially for zirconium and titanium systems26–31. How-
ever, the potentials at the hydrogen sites generally show signi"cant 
anisotropy or anharmonic e#ects32,33. !ese features manifest 
themselves as "ne structure and uneven spacing in the hydrogen 
vibrational modes, and they arise from H–H interactions, crystal-
line anisotropy and low potential barriers to hopping of the protons. 
In sharp contrast, the potential at the nitrogen sites of UN is very 
harmonic and isotropic, leading to evenly spaced nitrogen vibra-
tional modes exhibiting no "ne structure within the instrumental 
energy resolution. To the best of our knowledge, each nitrogen atom 
in UN is a unique manifestation of a single-atom QHO.

!e scattering of neutrons from the oscillator modes may be an 
important factor in the consideration of UN as a nuclear fuel mate-
rial. UN has several desirable characteristics for this application, 
including excellent thermal conductivity and a high melting tem-
perature. For that reason, it is currently under intense consideration 
for use in proposed Generation IV nuclear reactors13–15,34, which 
operate at high temperatures (500–1,000 °C), allowing for improved 
e&ciency in the conversion of heat to electricity.

Nuclear reactor designs require a detailed knowledge of the  
neutron cross-sections and thermal behaviour of the constituent 
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Continuous energy spectra
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Dynamic structure factor for self-scattering and X=E

The dynamic structure factor has a true probabilistic interpretation.

S(q,!) becomes a thermally averaged probability for a scattering-induced
transition from E ! E + ~! with a momentum transfer ~q.



<latexit sha1_base64="p372oaxeszAka+VZ06wpdFSRby8=">AAAFWXicjVPbbtNAEB2XBkK4pfQRIa1IgfShwYmiwgtSBS88Fom0leomsp1Nsqrttew1TeXuR/B3IH4AvoBXZicbSC8kbJRk9sycs3NmtUEaiVy57jdn7dZ65fad6t3avfsPHj6qbzw+yGWRhbwXykhmR4Gf80gkvKeEivhRmnE/DiJ+GJy+N/nDzzzLhUw+qfOUn8T+OBEjEfoKoUH9i5dORNOLy6nefutFfKSa3ijzw7KjSy8VerbxeJqLSCZ9g04CP+t3mPYyMZ6o7X7ZftXVvF/OSoWt0KiZ6oHrhUOpSF/XGGNYtzMrnPY7N8hqPag33JZLi10P2jZogF37csP5Ch4MQUIIBcTAIQGFcQQ+5Pg5hja4kCJ2AiViGUaC8hw01JBbYBXHCh/RU/wd4+7YognujWZO7BBPifCbIZPBc+RIrMswNqcxyhekbNB/aZekaXo7x//AasWIKpgguoo3r/xfnvGiYARvyINATykhxl1oVQqaiumcLbhSqJAiZuIh5jOMQ2LO58yIk5N3M1uf8j+o0qBmH9raAn4udWf2EbkxPUp7OwnmzmiyMXlNsJMS8Rjz5m6NJ7MP0CGDBiJ6BXN8ievRHUiYWhVzw8M/U2WwRZpbK1UD635ROaL82M7V6FzQvFepLNdY3oeZKMfe/2pcEMsj5bnS8i6uKtzEX9aDxLtc9DChaZbz28E33r76oq8HB51We7fV/dht7L2zr70KT+AZNFHlNezBB9iHHp7+y3nqvHBern+vOJVqpTYrXXMsZxMurcrmbw7YJ4M=</latexit>

�(x) =

✓
2

⇡

✏2

~2

◆1/4

e
i
~p0·xe�

x2✏2

~2

<latexit sha1_base64="A8USxTWB+/+242A+6G6wM0UkOMk="></latexit>

�̃(p) =
1

(2⇡✏2)3/4
e�

(p�p0)2

4✏2

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

p

ϕ [
p]

<latexit sha1_base64="Yk+7LlpLkNDd8FGxqYiWalPL1/4="></latexit>

W (p1|p0;q) =
e�

(p0�p1+~q)2

4✏2

(2
p
⇡✏)3

✏!0
= �(p0 + ~q� p1)

<latexit sha1_base64="i0sshXsCBqmGt9jbWOGUQ66Gn2c="></latexit>

⇢(X) = 1/(2
p
⇡✏)3

A simple analytical example - the ideal gas:
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Momentum vector of a free 
particle 

Momentum conservation
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From discrete to continuous distributions of energies

Vanishes for any continuous wave function �̃(P;E).

Contributes for any continuous wave function �̃m(P).

Elastic scattering from (low energy) bound states.

1) https://scipython.com/blog/the-morse-oscillator/
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SUR UN MODE DE CROISSANCE RÉGULIÈRE.
THÉORÈMES FONDAMENTAUX;

PAR M. J. KARAMATA
( Beograd).

Dans ma Note intitulée Sur un mode de croissance régulière
des fonctions (Mathematica (Cluj), V. iv, ipSo^ p. 38-53), j'ai
défini un mode de croissance régulière, dont des cas particuliers
furent étudiés par divers auteurs cités dans ladite Note ( f ) .

Cette notion de régularité trouvant bien des applications dans
diverses questions relatives à l'étude des relations asymptotiques,
je voudrais reprendre ici les théorèmes fondamentaux. La démons-
tration de ces théorèmes, qui se trouve dans ma Note citée, étant
longue et assez confuse, M. Vilmos Schmidt a bien voulu me
signaler ( 2 ) qu'on peut y parvenir par une voie bien plus courte.
Cette méthode devient encore plus claire si Von remarque quelle
repose sur un théorème classique de Cauchy, comme je vais
l'exposer dans ce qui suit.

La notion de régularité, dont il est question ici, peut être
définie de la manière suivante :

Une fonction q{^\ définie pour tout -c^o, sera dite à crois-
sance régulière lorsque

< y ( . r ) > o , pour tout -P^O,
et lorsque

< D i ) ' — ^ - - > À ( < ) pour tout t > o. x-><x>.

( 1 ) On peut ajouter encore le travail de I. SCHUB, Zur Théorie der Cesàro-
schen und ffàlderschen Mittelwerte {Math. Zeit.^ t. îl, 1929, p. 391-407), se
rapportant en particulier aux suites à termes complexes, appeNes u Mittelfolgen ».
tandis que notre étude est faite entièrement dans le réel.

(a) Par une lettre datée du 5 octobre 1931.
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▪ For power law relaxation, the elastic and quasi-elastic lines are fused  and the 
EISF must be adjusted with the parameters describing the relaxation function.

▪ Modeling essentially the asymptotic form of QENS spectra leads to 
«minimalistic models» describing the form of the spectra with few parameters.

distinction between elastic (!=0) and quasielastic scattering (!
in the vicinity of 0). This has also been suggested in ref. 6, and
in the following, it will be shown that elastic and quasielastic
scattering are practically not separable for complex systems with
slow power-law relaxation. For this purpose, we consider an
intermediate scattering function of the form (the q-dependence
is dropped)

Fs(t)=EISF +(1�EISF )R(t), [55]

where 0<EISF < 1 due to elastic scattering and R(t) is a
relaxation function fulfilling R(0)= 1 and limt!1 R(t)= 0. The
dynamic structure factor in the vicinity of !=0 can then be
obtained on the basis of purely mathematical arguments and is
directly determined by the asymptotic form of the intermediate
scattering function for long times (see SI Appendix),

Ss(!)
!!0⇠ lim

✏!0+

1
⇡
<
⇢
Fs(1/(i!+ ✏))

i!+ ✏

�
. [56]

The parameter ✏> 0 can be thought of as instrumental resolution.
It follows from Eq. 56 that the ratio of quasielastic and elastic
scattering at !=0 is increasingly smaller for exponential than for
power law relaxation, as ✏ tends to 0. This indicates that these
components can be well separated in the first case and not well
in the second. To investigate the separability of the elastic and
quasielastic components of a neutron scattering spectrum for a
concrete example, we consider a relaxation function of the form

R(t)=E�(�(|t |/⌧)�), 0<� 1, [57]

where E�(.) is the Mittag–Leffler function (18). With this defini-
tion, R(t) smoothly interpolates between exponential relaxation
(�=1) and an asymptotic power-law decay if |t |� ⌧ for 0<�<
1, where R(t)⇠ (t/⌧)��/�(1��) for t � ⌧ . Detailed balance
effects are here neglected—that is, �~⌧ ⌧ . Fig. 4, Left shows a
plot of the dynamic structure factors for �=1 (blue line) and
�=0.7 (orange line), where in both cases EISF =0.3, ⌧ =1, and
✏=0.01. For �=1—that is, for exponential relaxation—one rec-
ognizes that the elastic peak is well separated from the broader
quasielastic (Lorentzian) profile and that this distinction disap-
pears for �=0.7, where the decay is nonexponential. Fig. 4,
Right displays the corresponding plot with a resolution ✏=0.001
and shows that the nonseparability of elastic and quasielas-
tic scattering persists with higher resolution for �=0.7, while
these components are even more clearly separated for �=1.
The nonseparability for �=0.7 follows from the self-similarity
of the dynamic structure factor for !⌧ ⌧ 1, which is, in turn,
a consequence of the power law decay of R(t) for t � ⌧ . This
illustration shows that elastic and quasielastic scattering from

complex systems with slow power law relaxation cannot be sep-
arated in real-life experiments. Therefore, the EISF should here
be part of a global model for both elastic and quasielastic scatter-
ing, either for a resolution-broadened dynamic structure factor
or for the corresponding resolution-deconvolved intermediate
scattering function.

A point of practical importance in this context is the treat-
ment of the !-asymmetry in QENS spectra, which is due to the
detailed balance relation of quantum time correlation functions
(this effect has not been considered in the above discussion).
The results of a recent paper on a “model-free” description of
neutron scattering from diffusing quantum particles (19) sug-
gests that Schofield’s semiclassical correction (20) Ss(q ,!)/
exp(�~!/2)S (cl)

s (q ,!) or, equivalently, Fs(q , t)/F
(cl)
s (q , t �

i�~/2) may be applied for modeling QENS experiments, using as
input only the asymptotic form of the classical intermediate scat-
tering function. The scattering functions must here be normal-
ized to ensure the normalization condition

R +1
�1 d! Ss(q ,!)=

1=Fs(q , 0), which is imposed by the probabilistic interpretation
(Eq. 54) of the dynamic structure factor.

Conclusions
In this paper, an interpretation of incoherent neutron scatter-
ing spectra has been presented in which probabilities for neutron
scattering-induced transitions between different quantum states
of the sample play a central role. The transition probabilities are
expressed as squared Franck–Condon-type overlap integrals of
corresponding eigenfunctions in momentum space, whose argu-
ments are shifted by the momentum transfer from the neutron
to the sample. A particular simple form of the dynamic struc-
ture factor is obtained if the quantum states are described by
a (quasi)continuous set of energy eigenvalues. In this case, the
dynamic structure factor is simply the thermally averaged tran-
sition probability density for energy transitions E !E + ~! and
a momentum transfer ~q. Corresponding consequences for the
interpretation of QENS data have been discussed, in particu-
lar the smooth transition from elastic to quasielastic scattering
for complex systems where the intermediate scattering function
slowly decays with a power law. The elastic and quasielastic
component of the scattering spectrum appear here as fused.

The theory connects Frauenfelder’s idea of an energy
landscape-based interpretation of neutron scattering experi-
ments, in particular the decomposition of QENS spectra into
“Mößbauer lines,” with standard scattering theory. It provides
moreover a physical interpretation for the complex quantum
version of the Van Hove correlation functions and shows in
particular that there exists a physical meaningful and intuitively
understandable relation between the quantum and the classical
version of the Van Hove functions.
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▪ The asymptotic form of the relaxation function for long times time determines 
the asymptotic form of the dynamic structure factor for small frquencies. 
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Example: QENS from Phosphoglycerate kinase (A. Stadler)
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Diffusion — jumps between almost equal neighboring energy minima Proc. Nadl. Acad. Sci. USA
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Diffusion in a rough potential
ROBERT ZWANZIG
University of Maryland, College Park, MD 20742

Contributed by Robert Zwanzig, December 14, 1987

ABSTRACT Diffusion in a spatially rough one-dimension-
al potential is treated by analysis of the mean first passage
time. A general expression is found for the effective diffusion
coefficient, which can become very small at low temperatures.

This paper deals with diffusion in a rough potential. The
work was motivated in part by ideas of Frauenfelder and co-
workers concerning the dynamical behavior of proteins (for
a good summary with figures, see ref. 1). They suggest that
the potential surface of a protein might have a hierarchical
structure, with potential minima within potential minima,
etc. That is, the potential surface might be rough.
The treatment reported here of diffusion in a rough poten-

tial is restricted to one-dimensional systems and may not
have any immediate relevance to multidimensional protein
dynamics. However, the one-dimensional results seem inter-
esting in themselves. In particular, the roughness of a poten-
tial gives rise to a dramatic slowing down of diffusion at low
temperatures, especially when fluctuations in the potential
have a Gaussian distribution.
An example of what is meant by "rough" is shown in Fig.

1. This particular one-dimensional potential was constructed
from the arbitrarily chosen function

U(x) = x2 + 0.02(cos 167x + sin 73x).

x

FIG. 1. An example of a rough potential is shown. The potential
is given in Eq. 1 of the text.

tion determines the time (t) dependence of the probability
distribution p(x,t). It has the form

ap/at = -al/ax,

J = -De-U(x)a/axegu(x)p[1]

The general parabolic shape of the first term is clearly visi-
ble, but superimposed on it are many small potential barriers
distributed in a more or less random way. The amplitude E =
0.02 of the second term is a measure of the "roughness" of
the potential, a term which will be used here generally to
denote the characteristic energy scale E of the potential bar-
riers.
One expects that at very high temperatures, compared

with E, diffusion is essentially unaffected by the many small
barriers. But at temperatures that are small compared with E,
diffusion will be seriously hampered by having to cross over
the barriers. This is an important point made by Frauen-
felder and co-workers.
A rough potential U(x) has in general a smooth back-

ground U0(x) on which a rapidly, and perhaps randomly, os-
cillating perturbation Uj(x) is superimposed. The perturba-
tion has a typical amplitude E and a typical length scale Ax.
When U(x) is spatially averaged over Ax, the perturbation is
eliminated and only the smooth background remains. In the
given example, the length scale Ax is of the order of 0.1.
We are concerned only with diffusion on a much larger

length scale than Ax. This separation of the length scale of
roughness and the length scale of observed motion is essen-
tial to the following discussion. The results make sense only
if many fluctuations in roughness take place in the distance
of interest.
Brownian motion or diffusion of a system in a potential

U(x) is described by the Smoluchowski equation. This equa-

[2]

[3]

in which J is a current density, D is a diffusion coefficient,
and /3 = 1/kBT, where T is the temperature.
When the potential U is smooth, solution of the Smolu-

chowski equation is straightforward (although numerical
methods may be required). But when the potential is rough,
standard procedures are not so useful. This paper presents
an approximate treatment of diffusion in a rough one-dimen-
sional potential. The approach taken is an extension of some
old work of Lifson and Jackson (2). It makes use of an ana-
lytic expression for the mean first passage time (mfpt) to
move from one position to another. The main result is that
the original diffusion coefficient D is replaced by an effec-
tive diffusion coefficient D*, and the original potential U(x)
is replaced by an effective smooth potential U*(x). D* and
U* may depend very strongly on temperature, and D* may
be very much smaller than D. Illustrations will be given lat-
er.
We start with a familiar expression (2, 3) for the mean time

required for a system starting out at x0 to reach x for the first
time. This is the mfpt and is denoted by (t,x). For technical
reasons that are not relevant to the present discussion, we
assume that there is a reflecting barrier at some location x =
a. For convenience we consider only a <xO < x. The argu-
ment that follows does not depend critically on the values xo,
x, and a as long as all distances involved are large compared
with the length scale of the roughness. The mfpt is found by
solving the differential equation

e1u(x)a/axDe-&1u(x)a/ax(tx) = -1

Abbreviation: mfpt, mean first passage time.

2029
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Relaxation and time correlation functions have a multi-
exponential form: 

For complex systems these functions decay for long times slowly 
with a power law and exhibit thus self-similarity:

Protein dynamics displays self-similarity
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Self-similar relaxation dynamics seen in CO-rebinding kinetics

Mittag-Leffler function
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“Stretched” ML function and relaxation rate spectrum
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“Stretched” ML function and Fourier spectrum

Relaxation rate spectrumRelaxation function
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The distribution barrier heights corresponds to a distribution of rates for kinetic processes 
and conformational relaxation.  

Relating relaxation rates to the 
“roughness” of the energy landscape 
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Energy barrier distribution
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For diffusion in a 
harmonic potential

Relaxation function
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Integrate the momentum transfer q

Distribution of barrier heights

is that it decreases with temperature and with q. This can be understood since lowering the

temperature means slowing down the dynamics and since higher values of q probe increas-

ingly more localized and faster motions. The form parameter, –, of the relaxation function

varies, in contrast, weakly with temperature and increases with q to values close to 1, indi-

cating a close to exponential relaxation for localized motions. The particularly interesting

result is that the relaxation dynamics of MBP in the two solvents becomes similar with

increasing the temperature and is practically identical at 323 K. The observation is coherent

with the observation that both the hydrodynamic radii and the content and composition

–-helices and —-strands are comparable. We also see that the coagulation of MBP, which is

found by DLS in Solvent I at 323 K and certainly present in the QENS samples of higher

concentration, has no influence on the internal dynamics of the protein.

Concerning the EISF parameter, we observe that it is generally close to zero for the ac-

cessible q-range, except for Solvent II at 283 K and small q-values, which indicates that at

low temperatures Solvent II hinders somewhat more large-amplitude motions compared to

Solvent I. We note in this context that EISFs are not systematically small for our model

and refer to recent work on a QENS data analysis from hydrated powders of human acetyl-

cholinesterase,19,20 which is an enzyme with a well-defined structure. Here the EISF was

found to be clearly non-zero, as one would expect for such a protein which is more compact

and such a sample, where global protein motions are prevented.

To complement the discussion of the fit parameters we show in Fig. 6 the corresponding

relaxation rate spectra, p(⁄), which are defined through Eq. (37)). For both solvents and all

temperatures we observe that the peak of the relaxation rate spectrum shifts to higher values

with increasing q, and its width decreases. This reflects the fact the the form parameter

– approaches 1 with increasing q, noting that – = 1 corresponds to exponential relaxation

and a perfectly monodisperse relaxation rate spectrum of the form p(⁄) = ”(⁄ ≠ 1/·); We

are now in the position to give a physical interpretation of the form parameter –, referring

to the concept of protein energy landscapes proposed by Frauenfelder and collaborators.13

Proceding as in Ref. [19], we consider the variable

”›(q, t) = ›(q, t) ≠ È›(q, t)Í, where ›(q, t) = eiq·Rj(t), (46)

which is the spatial Fourier transform of the atomic density ”(r ≠ Rj(t)) of atom j, and

assume that the dynamics of ”›(q, t) can be modeled as a fractional Ornstein-Uhlenbeck

17
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and a perfectly monodisperse relaxation rate spectrum of the form p(⁄) = ”(⁄ ≠ 1/·); We

are now in the position to give a physical interpretation of the form parameter –, referring

to the concept of protein energy landscapes proposed by Frauenfelder and collaborators.13

Proceding as in Ref. [19], we consider the variable

”›(q, t) = ›(q, t) ≠ È›(q, t)Í, where ›(q, t) = eiq·Rj(t), (46)

which is the spatial Fourier transform of the atomic density ”(r ≠ Rj(t)) of atom j, and

assume that the dynamics of ”›(q, t) can be modeled as a fractional Ornstein-Uhlenbeck

17

Dynamical variable:

[2] M. Saouessi, J. Peters, and G. R. Kneller. J. Chem. Phys. 150(16):161104, 2019.
[1] R. Zwanzig. PNAS USA, 85(7):2029– 2030, Apr. 1988.

[3] A. N. Hassani, et al. J. Chem Phys., 152(2):025102, 2022.
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Motivation 
Understand the internal dynamics of MBP in two solutions : 

• D2O buffer 
• D2O buffer + 30% trifluoro ethanol (TFE)

• Essential component of the myelin sheath of the central nervous system
• Intrinscially disordered in aqueous solution 

Myelin basic protein — an intrinsically disordered protein

IN16B at Institut Laue-Langevin with BATS (backscattering + time of flight) 
with time scales 2 ps < t < 600 ps

Neutron Scattering experiment

Modeling QENS for concrete examples

(Thesis Abir Nesrine Hasssani, with Andreas Stadler, JCNS Jülich)

A. N. Hassani, L. Haris, M. 
Appel, T. Seydel, A. M. 
Stadler, and G. R. Kneller. 
J. Chem. Phys., 
156(2):025102, Jan. 2022.



Subtract the solvent

Volume fraction

Symmetrize and normalize the QENS spectra
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e��~!/2S(q,!)

R +1
�1 d! e��~!/2S(q,!)

() F (+)(q, t) =
F (q, t� i�~)
F (q,�i�~)
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F (+)(q, t) ⇡ Fcl(q, t)Semiclassical approximation  

Basic data treatment

≈ 4 %

P. Schofield, Phys. Rev. Lett. 4, 239 (1960)



F (+)(q, t) =
F (+)
m (q, t)

R(q, t)
� N(q, t)

R(q, t)
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S(+)
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Z +1
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Fint(q, t) = EISF (q) + (1� EISF (q)�(q, t))
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The “minimalistic model” for F(q,t)

�(t) = E↵ (�[t/⌧R]
↵)
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Mittag-Leffler 
function

Parameters

1. α

2. τ

3. EISF



Fitted parameters Fint(q, t) = EISF (q) + (1� EISF (q)�(q, t))
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Parameters

1. α

2. τ

3. EISF ≈ 0
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PDB entry 4EY5

AChE catalyzes the 
degradation of 
acetyl choline 
at neuro-muscular 
junctions

The enzyme hAChE

HupA

[1] M. Saouessi, J. Peters, and G. R. 
Kneller. J. Chem. Phys. 
150(16):161104, Apr. 2019.

[2] M. Saouessi, J. Peters, and G. R. 
Kneller. J. Chem. Phys. 
151(12):125103, Sept. 2019.

Dynamical changes of human acetylcholinesterase in 
presence of a reversibly bound inhibitor — Huperzine A

Thesis Melek Saouessi, with Judith Peters, ILL/UGA Grenoble

Hydrated powder 
samples 
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FIG. 1: F (q, t) obtained from the resolution-deconvolved
QENS spectra (points) and corresponding model fits (solid

lines) for q = 0.5, 0.9, 1.5 Å
�1

from top to bottom. Blue
and red correspond, respectively, to free and HupA-inhibited
hAChE.

The overwhelming part of QENS studies is and has been
interpreted by using the classical limit of Van Hove’s the-
ory,9 using classical di↵usion models to describe the dy-
namics of the hydrogen atoms. In this case F (+)(t) is
replaced by the classical limit of the intermediate scatter-
ing function, Fcl(t) = lim~!0 F (t). Besides the fact, that
recoil e↵ects are neglected, the use of such models be-
comes to some extent meaningless for complex molecular
systems, such as proteins, where each atom participates
in a large spectrum of motion types with an associated
large spectrum of time scales.10 Based on these insights
and on the fact that QENS probes di↵usion processes
and slow relaxation processes, which are to be consid-
ered as asymptotic dynamical regimes that are governed
by “universal” properties, such as self-similarity, rather
than by particular motion types,11,12 we propose a corre-
sponding analysis of QENS data on the basis of a simple
minimal model for the intermediate scattering function.
The relaxation function �(+)(t) is here represented by a
stretched Mittag-Le✏er (ML) function

�(+)(t) = E↵(�[t/⌧ ]↵), (0 < ↵  1), (9)

which behaves for large arguments as �(+)(t) ⇠P
M

k=1
(�1)k+1(t/⌧)�k↵/�(1� ↵k). M↵ > 1 assures that

all terms with a slow power law decay / t�� , with
0 < � < 1, are included. The Mittag-Le✏er function has
the series representation13 E↵(z) =

P1
n=0

zn/�(1 + ↵n)
and can be considered as a generalization of the expo-
nential function, which is retrieved for ↵ = 1.

Fig. (1) displays the intermediate scattering function
obtained from the resolution-deconvolved QENS spectra
for three di↵erent q-values and the corresponding fits of
Expression (8) with �(+)(t) according to (9). We define
here q ⌘ |q|. The extraction of the intermediate scatter-
ing function from the experimental QENS spectrum is de-
scribed in the Supplementary Material. Fig. 2 shows for
a selected q-value the resolution-broadened model (and
by definition noise-free) symmetrized dynamic structure
factor

S(+)

exp
(!) = R(!) ⇤ S(!) (10)

FIG. 2: Experimental QENS spectra for q = 1 Å
�1

(points)
and corresponding convolution-broadened model fits (solid
lines) in lin-log representation. Blue and red correspond, re-
spectively, to free and HupA-inhibited hAChE.

where “⇤” denotes a convolution integral, S(+)

exp (!) /
exp(��~!/2)Sexp(!) is the symmetrized experimental
dynamic structure factor14 which is normalized such that

such that F (+)

exp (0) = 1, and R(!) is the resolution func-
tion. The latter has been obtained from a vanadium run
and has approximately Gaussian shape, with a FWHM
of ⇡ 70µeV. With (8) it follows then that

S(!) = EISF �(!) + (1� EISF )�̃(+)(!), (11)

where15

�̃(+)(!) =
sin

�
⇡↵

2

�

⇡|!|
�
(⌧ |!|)�↵ + (⌧ |!|)↵ + 2 cos

�
⇡↵

2

�� . (12)

The model spectra shown in Fig. 2 have been computed
by discrete Fourier transform of Fexp(t) = r(t)F (t) for
the full accessible time range of IN6, which is here tmax =
206 ps, and r(t) denotes the resolution window in the time
domain.
Fig. 3 displays the fitted EISF for free and HupA-

inhibited hAChE. The results show that the EISF in the
latter case is slightly smaller than its counterpart for the
free variant. This reflects that the average motional am-
plitudes of the (hydrogen) atoms become slightly larger
in presence of the HupA ligand. This is compatible with
the results described in Peters et al.8 and the work by
Balog et al., who find by atomic detail normal mode anal-
ysis that binding of the cancer drug methotrexate softens
the low-frequency/large amplitude vibrations of its target
protein, dihydrofolate reductase5 and explain in this way
earlier neutron scattering results.16 The “softening” of
the low frequency modes leads, in fact, to smaller force
constants for the local harmonic potential of the (hy-
drogen) atoms and thus to larger motional amplitudes.
However, this result can not be generalized since inverse
cases are also reported in the literature. Examples can
be found in the following references [8,17].
While the EISF expresses the amplitudes of the atomic

motions, the parameters ⌧ and ↵ describe their relaxation
dynamics and thus truly dynamical properties of hAChE.
The q-dependence of ⌧ and ↵ is summarized in Fig. 4.

Blue : free hAChE 
Red : HupA-inhibited hAChE

Fitted intermediate scattering functions of resolution-
deconvolved spectra reveal differences between free and 
HupA-inhibited hAChE
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FIG. 3: EISF obtained from the fit of Expression (8),
with �(+)(t) defined by Eq. (9), for free and HupA-inhibited
hAChE (blue and red dots, respectively).

Blue and red points again represent the fitted param-
eters for free and HupA-inhibited hAChE, respectively,
and the corresponding solid lines correspond to linear
fits. One observes that both series for the ⌧ -parameter
decay with q, where the one for inhibited hAChE dis-
plays larger values as the one for the free counterpart.
The decrease of ⌧ with q, which is seen for both free

FIG. 4: Parameters ↵ and ⌧ for free and HupA-inhibited
hAChE as a function of q (blue and red, respectively). Points
correspond to fitted parameters ans solid lines to linear fits.

and inhibited hAChE, reflects the fact that localized mo-
tions are faster than large scale motions, whereas the
general increase of ⌧ upon inhibition of hAChE indicates
slower relaxation of the inhibited variant. In contrast to
the scale parameter ⌧ , the form parameter ↵ of the re-
laxation function exhibits a much weaker q-dependence,
where the values for the inhibited variant of hAChE are
slightly smaller than those of the free one. Noting that
↵ = 1 corresponds to exponential relaxation, this means
that the corresponding relaxation dynamics is less expo-
nential for the inhibited variant. In order to understand
the physical meaning of the ↵-parameter, we write the
stretched Mittag-Le✏er function as a continuous super-
position of exponential functions,

E↵(�t↵) =

Z 1

0

p(�) exp(��t) d�, (13)

which expresses the dynamical heterogeneity in a system
that is composed of a large number of atoms and where
each atom contributes exponentially with a di↵erent re-
laxation constant, �. Here both t and � are dimensionless

FIG. 5: Left panel: Sketch of a rough harmonic potential,
where the minima are separated by a fixed energy barrier.
Right panel: Model energy barrier spectrum for free and
inhibited hAChE (blueish and reddish curves, respectively)
from top to bottom for q = 0.5, 0.6, . . . 1.6/Å.

and

p(�) =
1

⇡

sin(⇡↵)

�(�↵ + ��↵ + 2 cos(⇡↵))
(14)

is a normalized relaxation rate spectrum fulfillingR1
0

p(�) d� = 1. Higher moments of p(�) do not exist.
The relaxation rate spectrum, p(�), may be related to

an energy barrier spectrum by assuming that the classi-
cal Fourier transformed single particle density, �⇢(q, t) =
exp(iq · r(t))�hexp(iq · r(0))i, di↵uses in a “rough” har-
monic potential. Abbreviating x(t) ⌘ �⇢(q, t), we write
V (x) = V0(x)+ �V (x), where V0(x) = Kx2/2 and �V (x)
define, respectively, its smooth and rough component (see
left panel of Fig. 5). The smooth component, V0(x),
tends to bring x ⌘ �⇢ to zero, while the rough com-
ponent, �V (x), hinders this process by trapping x in
one of the local minima which are separated by a fixed
energy barrier, �E. The di↵usion in the smooth po-
tential is described by an Ornstein-Uhlenbeck process,
where the displacement autocorrelation function relaxes
exponentially, hx(t)x(0)i = hx2i exp(�⌘0t), and where
the relaxation constant and the di↵usion constant are
related through D0 = hx2i⌘0. We use now Zwanzig’s
model18 for the e↵ective di↵usion in an arbitrary rough
potential, D = D0 exp(�[��E]2), where � = 1/(kBT ),
which translates thus for an harmonic potential into
⌘ = ⌘0 exp(�[��E]2) for the relaxation constant. In-
troducing the dimensionless energy barrier ✏ = ��E and
defining � = ⌘/⌘0, we may write

� = exp(�✏2), (15)

which leads to

P (✏) =
1

⇡

2✏ sin(⇡↵)

exp(↵✏2) + exp(�↵✏2) + 2 cos(⇡↵)
(16)

for the distribution of the dimensionless energy barri-
ers, ✏. The right panel of Fig. 5 shows the resulting en-
ergy barrier distributions for free and inhibited hAChE
(blueish and reddish curves) as a function of q, which in-
dicate that binding of the HupA ligand shifts the energy
barriers to slightly higher values and leads at the same
time to a slight broadening. Ligand binding thus leads to

3

FIG. 3: EISF obtained from the fit of Expression (8),
with �(+)(t) defined by Eq. (9), for free and HupA-inhibited
hAChE (blue and red dots, respectively).

Blue and red points again represent the fitted param-
eters for free and HupA-inhibited hAChE, respectively,
and the corresponding solid lines correspond to linear
fits. One observes that both series for the ⌧ -parameter
decay with q, where the one for inhibited hAChE dis-
plays larger values as the one for the free counterpart.
The decrease of ⌧ with q, which is seen for both free
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FIG. 4: Parameters ↵ and ⌧ for free and HupA-inhibited
hAChE as a function of q (blue and red, respectively). Points
correspond to fitted parameters ans solid lines to linear fits.

and inhibited hAChE, reflects the fact that localized mo-
tions are faster than large scale motions, whereas the
general increase of ⌧ upon inhibition of hAChE indicates
slower relaxation of the inhibited variant. In contrast to
the scale parameter ⌧ , the form parameter ↵ of the re-
laxation function exhibits a much weaker q-dependence,
where the values for the inhibited variant of hAChE are
slightly smaller than those of the free one. Noting that
↵ = 1 corresponds to exponential relaxation, this means
that the corresponding relaxation dynamics is less expo-
nential for the inhibited variant. In order to understand
the physical meaning of the ↵-parameter, we write the
stretched Mittag-Le✏er function as a continuous super-
position of exponential functions,

E↵(�t↵) =

Z 1

0

p(�) exp(��t) d�, (13)

which expresses the dynamical heterogeneity in a system
that is composed of a large number of atoms and where
each atom contributes exponentially with a di↵erent re-
laxation constant, �. Here both t and � are dimensionless

FIG. 5: Left panel: Sketch of a rough harmonic potential,
where the minima are separated by a fixed energy barrier.
Right panel: Model energy barrier spectrum for free and
inhibited hAChE (blueish and reddish curves, respectively)
from top to bottom for q = 0.5, 0.6, . . . 1.6/Å.

and

p(�) =
1

⇡

sin(⇡↵)

�(�↵ + ��↵ + 2 cos(⇡↵))
(14)

is a normalized relaxation rate spectrum fulfillingR1
0

p(�) d� = 1. Higher moments of p(�) do not exist.
The relaxation rate spectrum, p(�), may be related to

an energy barrier spectrum by assuming that the classi-
cal Fourier transformed single particle density, �⇢(q, t) =
exp(iq · r(t))�hexp(iq · r(0))i, di↵uses in a “rough” har-
monic potential. Abbreviating x(t) ⌘ �⇢(q, t), we write
V (x) = V0(x)+ �V (x), where V0(x) = Kx2/2 and �V (x)
define, respectively, its smooth and rough component (see
left panel of Fig. 5). The smooth component, V0(x),
tends to bring x ⌘ �⇢ to zero, while the rough com-
ponent, �V (x), hinders this process by trapping x in
one of the local minima which are separated by a fixed
energy barrier, �E. The di↵usion in the smooth po-
tential is described by an Ornstein-Uhlenbeck process,
where the displacement autocorrelation function relaxes
exponentially, hx(t)x(0)i = hx2i exp(�⌘0t), and where
the relaxation constant and the di↵usion constant are
related through D0 = hx2i⌘0. We use now Zwanzig’s
model18 for the e↵ective di↵usion in an arbitrary rough
potential, D = D0 exp(�[��E]2), where � = 1/(kBT ),
which translates thus for an harmonic potential into
⌘ = ⌘0 exp(�[��E]2) for the relaxation constant. In-
troducing the dimensionless energy barrier ✏ = ��E and
defining � = ⌘/⌘0, we may write

� = exp(�✏2), (15)

which leads to

P (✏) =
1

⇡

2✏ sin(⇡↵)

exp(↵✏2) + exp(�↵✏2) + 2 cos(⇡↵)
(16)

for the distribution of the dimensionless energy barri-
ers, ✏. The right panel of Fig. 5 shows the resulting en-
ergy barrier distributions for free and inhibited hAChE
(blueish and reddish curves) as a function of q, which in-
dicate that binding of the HupA ligand shifts the energy
barriers to slightly higher values and leads at the same
time to a slight broadening. Ligand binding thus leads to

Non-vanishing EISF



4

x

V(x)

FIG. 6: Sketch of the e↵ective energy landscapes for free and
HupA inhibited hAChE (blue and red curves, respectively).
More explanations are given in the text.

This means that localized motions take place in a rougher
potential than those involving the whole protein, and
we note that the energy barrier shift upon fixing of the
HupA ligand is more pronounced. We also note that the
q-dependence of the ↵-parameter is here obtained by us-
ing the linear fits for ↵(q) shown in the right panel of
Fig. 4. Fig. 6 resumes the analysis of the QENS experi-
ments on free and HupA-inhibited hAChE in one single
sketch. The blue and the red curve correspond here, re-
spectively, to the potential energy surface for free and
inhibited hAChE, where the irregularity of the energy
barriers correspond to the motional heterogeneity of the
dynamics. The reduced curvature in the case of inhibited
hAChE (red curve) reflects the above-mentioned vibra-

tional mode softening and explains the observed reduc-
tion of the EISF. The corresponding increased roughness
of the energy surface indicates the energy barrier shift to
higher values upon ligand binding.

The present work shows that a careful data analysis
with an appropriate model for the intermediate scatter-
ing function, which essentially reflects its asymptotic slow
power law relaxation, allows for an observation of subtle
but systematic changes of the enzyme dynamics upon
ligand binding. The intuitive interpretation of the re-
sults has been obtained by employing Zwanzig’s phys-
ical model of di↵usion in a rough quadratic potential,
which translates relaxation rate spectra into energy bar-
rier spectra. It is also worth noting that the typical bar-
rier heights we find in our study are of the same order of
magnitude as those given in Frauenfelder’s paper on pro-
tein energy landscapes,17 although the latter have been
obtained from flash photolysis experiments, which probe
in much longer time scales than neutron scattering, and
from another protein (myogmobin). This indicates the
“universality”and selfsimilarity of protein dynamics

We finally note that all numerical and many sym-
bolic calculations have been performed with the Wolfram
Mathematica package.18

Acknowledgements: We thank the ILL for the
beam time and M.M.Koza for help on IN6. We thank
P. Masson and F. Nachon for the permission to use and
to re-analyse the data.

1 M. Bée, Quasielastic Neutron Scattering: Principles and
Applications in Solid State Chemistry, Biology and Mate-
rials Science (Adam Hilger, Bristol, 1988).

2 F. Gabel, D. Bicout, U. Lehnert, M. Tehei, M. Weik, and
G. Zaccai, Quarterly reviews of biophysics 35, 327 (2002).

3 J. Smith, M. Krishnan, L. Petridis, and N. Smolin, Dy-
namics of Biological Macromolecules by Neutron Scattering
(Bentham Publisher, 2011), chap. Integration of neutron
scattering with computer simulation to study the struc-
ture and dynamics of biological systems.

4 A. Zen, V. Carnevale, A. Lesk, and C. Micheletti, Protein
Science 17, 918 (2008).

5 E. Balog, D. Perahia, J. C. Smith, and F. Merzel, The
Journal of Physical Chemistry B 115, 6811 (2011), ISSN
1520-6106, 1520-5207.

6 M. Trapp, M. Trovaslet, F. Nachon, M. M. Koza, L. van
Eijck, F. Hill, M. Weik, P. Masson, M. Tehei, and J. Peters,
Journal Of Physical Chemistry B 116, 14744 (2012).

7 M. Trapp, M. Tehei, M. Trovaslet, F. Nachon, N. Martinez,
M. M. Koza, M. Weik, P. Masson, and J. Peters, Journal
of the Royal Society Interface 11, 20140372 (2014), ISSN
1742-5689, 1742-5662.

8 J. Peters, N. Martinez, M. Trovaslet, K. Scannapieco,
M. M. Koza, P. Masson, and F. Nachon, Physical Chem-
istry Chemical Physics 18, 12992 (2016), ISSN 1463-9076,
1463-9084.

9 L. Van Hove, Physical Review 95, 249 (1954).
10 N. Alberding, R. H. Austin, S. S. Chan, L. Eisenstein,

H. Frauenfelder, I. C. Gunsalus, and T. M. Nordlund, The
Journal of Chemical Physics 65, 4701 (1976), ISSN 0021-
9606, 1089-7690.

11 F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W.
Clark, eds., NIST Handbook of Mathematical Functions
(Cambridge University Press, 2010).

12 P. Schofield, Physical Review Letters 4, 239 (1960), ISSN
0031-9007.

13 G. R. Kneller, Physical Chemistry Chemical Physics 7,
2641 (2005).

14 E. Balog, T. Becker, M. Oettl, R. Lechner, R. Daniel,
J. Finney, and J. C. Smith, Physical Review Letters 93
(2004), ISSN 0031-9007, 1079-7114.

15 C. D. Andersson, N. Martinez, D. Zeller, A. Allgardsson,
M. M. Koza, B. Frick, F. Ekstrm, J. Peters, and A. Li-
nusson, The Journal of Physical Chemistry B 122, 8516
(2018).

16 R. Zwanzig, Proceedings of the National Academy of Sci-
ences 85, 2029 (1988), ISSN 0027-8424, 1091-6490.

17 H. Frauenfelder, S. G. Sligar, and P. G. Wolynes, Science
254, 1598 (1991).

18 Wolfram Research Inc., Mathematica, Version 11.1 (Wol-
fram Research Inc., Champaign, Illinois, USA, 2017).

The effect of ligand binding 

Widening of V(x): 
“mode softening” 
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Possible explanation of the “mode softening”
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The widened, softer potential is effectively a double-
well potential. The neutrons see a superposition of the 
fast ps dynamics in the two wells and motional 
amplitudes determined by the envelope potential.
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Work in progress : integrate coherent scattering 
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Work in progress : integrate “ballistic” short time dynamics 
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The dynamics of single protein molecules is
non-equilibrium and self-similar over thirteen
decades in time
Xiaohu Hu1,2, Liang Hong3, Micholas Dean Smith1, Thomas Neusius4, Xiaolin Cheng1

and Jeremy C. Smith1,5*
Internal motions of proteins are essential to their function.
The time dependence of protein structural fluctuations is
highly complex, manifesting subdi�usive, non-exponential
behaviour with e�ective relaxation times existing over many
decades in time, from ps up to ⇠102 s (refs 1–4). Here, using
molecular dynamics simulations, we show that, on timescales
from 10�12 to 10�5 s, motions in single proteins are self-
similar, non-equilibrium and exhibit ageing. The characteristic
relaxation time for a distance fluctuation, such as inter-domain
motion, is observation-time-dependent, increasing in a simple,
power-law fashion, arising from the fractal nature of the
topology and geometry of the energy landscape explored.
Di�usion over the energy landscape follows a non-ergodic con-
tinuous time random walk. Comparison with single-molecule
experiments suggests that the non-equilibrium self-similar
dynamical behaviour persists up to timescales approaching the
in vivo lifespan of individual protein molecules.

Although fluctuations of distances between atoms in folded
proteins are necessarily spatially bounded (confined), it is
conceivable that, as the timescale of observation is increased, a
protein may incorporate into these fluctuations slower pathways
over its energy landscape. The question then arises as to whether
there is at all a finite characteristic time associated with any
given structural change, or, instead, that the timescale on which
a structural fluctuation is observed determines the apparent
characteristic relaxation time for the motion that will be obtained.
To examine this question we have performed molecular dynamics
(MD) simulations to characterize the internal dynamics of three
globular proteins of markedly di�erent size and structure: one
with a single structural domain (K-Ras), one with two structural
domains (phosphoglycerate kinase (PGK)) and one with four
structural domains (the Escherichia coli aminopeptidase N
(ePepN)). MD simulations of di�erent lengths (observation
times) were performed. We examine in detail the motion between
the two domains of PGK (Fig. 1), which is of direct functional
importance5. The time-averaged mean-square displacement
(TA-MSD), �2(�; t) (Supplementary Equations 1 and 2), where �
is the lag time and t the observation time (length of the trajectory),
calculated from the time series of the distance R(t) between the
centres of mass of the two domains, is presented together with the
corresponding normalized displacement autocorrelation function

R(t)

Figure 1 | Yeast PGK. Blue, N-terminal domain (residues 1–185);
red, C-terminal domain (residues 200–389); yellow, hinge region (residues
186–199 and 390–416). R(t) indicates the inter-domain
centre-of-mass distance.

(ACF) C(�; t) (Supplementary Equations 3 and 5), in Fig. 2a,b.
The TA-MSD does not reach a plateau over the timescale examined.
Furthermore, TA-MSDs calculated over di�erent observation
times t are shifted relative to each other, with the slope becoming
increasingly smaller with increasing t , a signature of ageing and
observation-time-dependent dynamics6.

C(�; t) shifts towards longer lag times with increasing t , again
consistent with ageing. Furthermore, an intriguing commonality is
found in the dynamics examined on di�erent timescales: Fig. 2c
shows that ⌧c, the characteristic time of the inter-domain motion,
increases in a power-law fashion with the observation time, t ,
as ⌧c(t) / t ✓ , with ✓ ⇡ 0.9, showing no sign of convergence.
Remarkably, data from single-molecule experiments on the distance
fluctuations between side-chain pairs3,4 fall close to the same power-
law relationship (Fig. 2c), although these were obtained on t�300 s
observation timescales, more than seven orders ofmagnitude longer
than the MD, and on other proteins. Together, Fig. 2a–c reveals
strong non-stationarity (ageing) of the inter-domain dynamics and
suggests a power-law dependence extending from 10�12 to 102 s.

The residues probed in the experimental single-molecule studies
are only ⇠0.3–0.4 nm apart from each other3,4, in contrast to
the inter-domain distance explored above, the average of which
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QENS from Phosphoglycerate Kinase (with A. Stadler JCNS Jülich)

ScrewFrame tube model

Influence of ATP on the internal dynamics seen by QENS

Secondary structure

PDB 3PGK



PGK in D2O buffer PGK in D2O buffer + ATP

Data from A. Stadler obtained on IN16B, ILL 
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Pseudoelastic scattering due to finite resolution

Model

Resolution function

Convolution
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σ=1.75μeV ≃ 0.0027 THz, τ=115 ps, α=0.75
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True and measured elastic scattering 
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Fit parameter

MyoglobinMBPF(+)(t) = F(∞) + (F(0) − F(∞))Eα( − ( | t | /τ)α)



Conclusions

• The Franck-Condon formulation of neutron scattering links the concepts of energy 
landscapes of complex systems and scattering theory/spectroscopy.


• A quasi-classical interpretation beyond “ħ → 0” (impactless scattering) is possible 
and corresponds to diffusion in “rough potentials”. 


• Coherent inelastic scattering has no classical interpretation and probes correlated 
wave function-based conformational changes.


• The FC formulation enables a combined description of elastic and quasi-elastic 
scattering through asymptotic analysis of F(q,t).


• MD simulations are most useful to probe and understand the transition to the 
asymptotic regime of self-similar protein dynamics in the ps regime.


• “Minimalistic” few parameter for QENS spectra can capture the signature of 
slight changes in the conformational dynamics of proteins due to external stress.
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Propagator form for the intermediate scattering function

Fs(q, t) =
1

Z

Z Z Z
dxdx

0
dx
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Propagator form of the intermediate scattering function

Retrieve trajectories through a path integral 
representation of the propagators

Integrate the neutron kick into a trajectory-based 
description of neutron scattering 

G. R. Kneller. Inelastic Neutron Scattering from Classical Systems. Mol Phys, 83(1):63–87, 1994.
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“Kicked” real time propagator

“Kicked” path action integral

Kicked real time propagator
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d⌧ (Mẋ(⌧)2/2� V (x(⌧) + ~qẋ(⌧))| {z }
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Imaginary time propagator
Time-slicing/imaginary path integrals

Setting tth = �~ and �tth = tth/n

K (xb, xa,�i�~) = hxb|e��Ĥ |xai = hxb|
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Propagator form for the intermediate scattering function

continuation

Fs(q, t) =
1

Z

Z Z Z
dxdx

0
dx

00
K (x , x 0,�i�~)Kq(x

0, x 00,�t)K (x 00, x , t)

x
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The red path corresponds to the classical 
limit, where the total real time action is 
minimized and the high temperature/short 
time limit is used for the propagation in 
imaginary time. The “neutron kick” is taken 
into account.
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Classical limit of the intermediate scattering function

Expressing the density matrix through the classical limit of the
Wigner function and retaining only the classical path (A � ~)
yields

F̃cl(q, t) =
1

Zcl

Z Z
d
3
pd

3
x e

��H(p,x)
e
���V (p,x;~q,t)

⇥ e
i��(p,x;~q,t)/~

e
iq·(x0(p,x,t)�x)

�V (p, x; ~q, t) = V ((x+ x00)/2)� V (x)

��(p, x; ~q, t) = A(x, x0, t)� A(x0, x00, t) + (p0 + ~q) · (x� x00)

where x0 ⌘ x0(p, x, t) and x00 ⌘ x00(p, x; ~q, t).

The standard classical limit reads

lim
~!0

F̃cl(q, t) =
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Zcl

Z Z
d
3
pd

3
x e

��H(p,x)
e
iq·(x0(p,x,t)�x)
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Reinterpreting the Van Hove function
Van Hove introduced the spatial Fourier transform of the in-

termediate (self) scattering function,

Gs(r, t) = 1(2⇡)3 � d
3
q e
−iq⋅r

Fs(q, t),
= � d

3
r
′ ��(r − r′ + r̂1(0))�(r′ − r̂1(t))� [43]

in order to relate the (r, t)-space of spatial motions to the(q,!)-space of neutron scattering spectra,

Ss(q,!) = 1

2⇡
� +∞
−∞ dt� d

3
r e

i(q⋅r−!t)
Gs(r, t). [44]

The Van Hove function takes the convenient form of a condi-

tional probability density for displacements r within time t if

one considers the classical approximation

Gs(r, t) ≈ ��(r − [r1(t) − r1(0)])�cl [45]

which is the standard assumption in modelling QENS spec-

tra. As mentioned earlier, this approximation corresponds to

considering the limit �h→ 0 and not only implies that the scat-

tering system can be treated in the classical approximation,

but also that the momentum transfer �p = �hq does not per-

turb the dynamics of the scattering system.

The spectroscopic picture of neutron scattering introduced

in this paper gives more insight into the physical meaning of

the quantum Van Hove correlation function. If expression (55)

is inserted into the definition (43) of the Van Hove (self) cor-

relation function one obtains

Gs(r, t) = 1

Z
�
m,n

e
−�Em

e
it(En−Em)��h

gm→n(r), [46]

where the functions gm→n(r) are the Fourier transforms of the

transition probabilities,

gm→n(r) = 1(2⇡)3 � d
3
q e
−iq⋅r

wm→n(q). [47]

For simplicity, we consider here only the discrete energy spec-

tra. Since wm→n(q) = �am→n(q)�2, it follows from the correla-

tion theorem of the Fourier transform that

gm→n(r) = � d
3
r
′
Am→n(r + r′)A∗m→n(r′), [48]

with Am→n(r) = 1(2⇡)3 � d
3
q e
−iq⋅r

am→n(q). [49]

Noting that the transition amplitudes can be written as

am→n(q) = � d
3N

Re
iQ⋅R

�
∗
n(R)�m(R), [50]

the functions Am→n(r) can be expressed as partial overlap

integrals

Am→n(r) =
� d

3
r2 . . . d

3
rN �

∗
n(r, r2, . . . , rN)�m(r, r2, . . . , rN) [51]

of the energy eigenfunctions �n(R) in position space. For

m = n we have in particular

Am→m(r) = � d
3
r2 . . . d

3
rN ��m(r, r2, . . . , rN)�2 . [52]

This is the marginal probability density to find the scattering

atom at position r for the case that the system is before and

Fig. 4. Left: Dynamic structure factor corresponding to the intermediate scat-

tering function (59), with R(t) = E�(−(t�⌧)�) for ⌧ = 1, ✏ = 0.01, and two

di↵erent values for the form parameter, �. Right: The same figure for ✏ = 0.001.

after the scattering process in the same energy eigenstate ��m�.
For m ≠ n the Fourier transformed transition amplitudes

An→m(r) cannot be considered as probability densities, since

they are generally complex. They verify the symmetry relation

A
∗
m→n(r) = An→m(r), which leads to g

∗
m→n(r) = gn→m(−r).

The time variable can be straightforwardly integrated into

the formalism by introducing the time-dependent wave func-

tions

 m(R, t) = �m(R)e−iEnt��h [53]

and the corresponding time-dependent transition overlap in-

tegrals

Tm→n(r, t) =
� d

3
r2 . . . d

3
rN  

∗
n(r, r2, . . . , rN , t) m(r, r2, . . . , rN , t). [54]

With these definitions the Van Hove self function is given by

Gs(r, t) = 1

Z
�
m,n

e
−�Em

Gm→n(r, t), [55]

and each coe�cient

Gm→n(r, t) = � d
3
r Tm→n(r + r′, t)T ∗m→n(r′,0) [56]

corresponds to the neutron scattering-induced energy transi-

tion m→ n.

In this context it is instructive to come back to the classical

limit of the Van Hove correlation function, which is defined by

Eq. (45). In this case

G
(cl)
�(0)→�(t)(r, t) = �(r − [r1(t) − r1(0)]) [57]

corresponds to the coe�cient Gm→n(r, t), where �(0) is a

point in phase space describing the state of the system at time

t = 0 and �(t) is the point in phase space to which the system

evolves in time t. This final point is exactly determined by the

laws of classical Hamiltonian mechanics and one can formally

write r(t) ≡ r(�(t)) and r(0) ≡ r(�(0)). Therefore, there is

no integral over the final points in phase space, which would

correspond to the sum over the energy levels n in the quantum

case, and only the thermal average over the initial points in

phase space is needed to compute G
(cl)(r, t).

QENS from complex systems
We consider now QENS from complex systems, where the dis-

tribution of energy levels is quasi-continuous in the range of

accessible energy transfers. Choosing the energy to specify the

quantum state of the scattering system, the dynamic structure

factor takes a particularly simple form. Setting X ≡ E in Ex-

pression (32), the integral over X
′ ≡ E

′
can be performed to

yield

Ss(q,!) = �h� dEWeq(E)W (E + �h!�E;q). [58]

Footline Author PNAS Issue Date Volume Issue Number 5

Based on the probabilistic interpretation of the dynamic 
structure factor

one can define a Shannon entropy for the neutron scattering 
explored energy landscape of proteins

H(q) = �
Z +1

�1
d! Ss(q,!) log

⇣
Ss(q,!)

⌘
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has been, in fact, reported for IDPs,35,36 but we will here not comment on that. The

essential point is that no unfolding transition is observed with increasing temperature, which

is characteristic for folded globular proteins. Fig. 4 shows that this result is in agreement with

the observation from CD spectroscopy that the secondary structure content is essentially

constant over the whole temperature range, being slightly larger for the TFE-enriched bu�er

(Solvent II). TFE is known to induce –-helical motives and one can observe that at 283 K, but

with increasing temperature this e�ect disappears continuously with increasing temperature,

and at 323 K. The e�ect of TFE consists thus in moving —-strand into –-helical motives and

vice versa, keeping the total secondary structure content constant.

FIG. 4: Secondary structure content of MBP in Solvent I (hollow symbols) and Solvent II (full

symbols).

In Fig. 5 we show the fit parameters concerning the internal dynamics of MBP, comparing

again the three di�erent temperatures, 283 K, 303 K, and 323 K, and Solvent I and II. The

time scale parameter · varies considerably with temperature and q, where the general rule

16
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FIG. 3. Left panel: Arrhenius plot of the diffusion coefficient for MBP in solvent I (blue symbols) and solvent II (dark yellow symbols). The solid lines represent the
corresponding fitted Arrhenius laws. Right panel: Effective hydrodynamic radii of MBP in the two solvents as a function of temperature.

correspond here to solvent I, the dark yellow points correspond
to solvent II, and the corresponding solid lines label the fits. We
note that not all data points have been used for the fits but a
selection of points, which takes all data for F(q, t) at short time lags
and increasingly less points at large time lags. The reason is that
the evaluation of the ML relaxation function is time consuming.
We verified that that the resulting fit parameters are only weakly
influenced by this choice.

We discuss first the results for the diffusion constants in the two
buffers at the three temperatures, which have been obtained by DLS
and QENS. We recall that MBP in D2O buffer coagulates at 323 K,
and we note in this context that the DLS experiments have been
performed at lower protein concentrations than the QENS experi-
ments (4 mg/ml for solvent I and 7 mg/ml for solvent II), which are
thus certainly affected by coagulation. We are though confident that
this phenomenon does not affect our results concerning the inter-
nal dynamics probed by the IN16B spectrometer since even setting
D = 0, i.e., neglecting completely global diffusion in the fits of τ, α,
and EISF, does only slightly alter the resulting values for τ, α, and
EISF. The fits are though sensitive to deviating too much from the
DLS and QENS values toward higher values. Replacing DDLS for sol-
vent I at 323 K by the extrapolated value from lower temperatures is
not tolerated since the corresponding width Dq2 for all q-values lies
clearly outside the resolution of IN16B. The left panel of Fig. 3 shows
an Arrhenius plot of the diffusion constants, where for solvent I at
323 K the extrapolated triangular data point has been used instead
of the measured one. Here, the blue symbols refer again to solvent I
and the dark yellow symbols refer to solvent II. The corresponding
solid lines denote the fits of an Arrhenius law,33,34

D(T) = D0e− �G
kBT , (44)

where the activation energy is �G = 5.10 kcal�mol for solvent I and
�G = 6.05 kcal�mol for solvent II. We note in this context that the
activation energy for solvent I is close to the values that have been
found for other IDPs34 and corresponds to the activation energy for
self-diffusion in liquid water.35,36 The right panel of Fig. 3 shows
an estimation of the effective hydrodynamical radius, Rh, of MBP

as a function of temperature and solvent using the Stokes–Einstein
relation

D = kBT
6πηRh

, (45)

with the diffusion coefficients from DLS and experimental values
for the dynamic viscosity, η, which are given in the supplementary
material. The viscosity was measured with a rolling ball viscome-
ter for both solvents and the relevant temperature range (see the
supplementary material). The results show that Rh is essentially con-
stant with increasing temperature, and between 283 and 303 K, it

FIG. 4. Secondary structure content of MBP in solvent I (hollow symbols) and
solvent II (full symbols).
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FIG. 1: Pseudoelastic contribution ›ML as a function of
‰ © ‡· and –. The solid lines correspond to the calculation
according to Eq. (54) and the points to control calculations
by numerical integration. More explanations are given in the
text.

we find that

|R̃Padé(Ê) ≠ R̃(Ê)| < 10≠6

in the relevant Ê-domain. All computations have been
performed with the Wolfram Mathematica software.27

IV. APPLICATIONS

A. QENS analysis of Myelin Basic Protein

To illustrate the pseudoelastic contribution to elastic
scattering we consider now a concrete example related
to a recently published QENS study of Myelin Basic
Protein (MBP) in aqueous solution.15 Myelin Basic Pro-
tein is an elementary constituent of the myelin sheath
of nerves and in aqueous solution it is an intrinsically
disordered protein (IDP). The incoherent QENS spectra
for the study cited above have been recorded on the new
IN16B spectrometer of the Institut Laue-Langevin, us-
ing the BATS option (Backscattering And Time-of-flight
Spectrometer) with an instrumental resolution (FWHM)
of 3.5 µeV. The translational di�usion constant, D, of
MBP was measured separately by dynamic light scat-
tering (DLS) and was then injected into the fit, writing
F

(+)(q, t) = exp(≠Dq
2|t|)F (+)

int (q, t), where F
(+)
int (q, t) is

the symmetrized intermediate scattering function for in-
ternal motions, the generic form of which is given by
Eq. (36). The implicit assumption is here that global
and internal motions are not correlated. As mentioned
in Ref. [15], the resulting fits for EISF , –, and · vary
only little if the di�usion constant is simply neglected.
This is illustrated in Fig. 2, which shows a log-log plot of
the Fourier spectrum of the fitted model relaxation func-
tion for MBP in D2O bu�er (T = 283 K, q = 1.2/Å) for
the dynamical range of the instrument, together with the
corresponding di�usion-broadened counterpart resulting
from the damping factor exp(≠Dq

2|t|) of the interme-
diate scattering function. We take here D = 3.3 Å2
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FIG. 2: Impact of global di�usion on the Fourier spectrum
of the model relaxation function for MBP in D2O bu�er at
T = 283 K and q = 1.2/Å. The solid blue line labels the relax-
ation function and the yellow line the corresponding function
with the di�usion damping factor, where D = 3.3 Å2

/ns from
DLS. The vertical dashed indicates the instrumental resolu-
tion (FWHM).

from DLS. Having this figure in mind, the resolution-
deconvolved intermediate scattering function can there-
fore be fitted directly with the model (36).

The impact of pseudoelastic scattering on the observed
elastic intensities is illustrated in Fig. 3, which shows
again the Fourier spectrum of the fitted model relax-
ation function „̃ML(Ê) for the same parameters as in
Fig. 2 (blue line), together with the model resolution
function (yellow line), where the instrumental resolu-
tion (HWHM) corresponds to ‡ = 0.0027 THz, and the
resulting resolution-broadened spectrum, „̃

(R)
ML(Ê) (red

line). The (dimensionless) area in light red is the cor-
responding pseudoelastic contribution, which is for this
example ›ML ¥ 0.47 with ‘ = 3‡. The di�erence between
the model spectrum and its resolution-broadened version
should also be noticed.

An important result of the study in Ref. [15] was
that the fitted EISF vanishes. This can be explained
by the fact that MBP in solution is a very flexible
molecule, such that Èexp(iq · R̂j)Í ¥ 0. In the Gaussian
approximation28,29 (in q © |q|) of the elastic amplitude
one would write

EISF (q) |q|æ0≥ 1
N

ÿ

jœH

e
≠ 1

3 |q|2Èû2
j Í ¥ 0, (59)

where Èû2
j Í © È(R̂j ≠ÈR̂jÍ)2Í is the mean square position

fluctuation of (hydrogen) atom j. For smaller q-values a
vanishing EISF stands thus for large motional amplitudes
of the atoms. Keeping in mind that the EISF is a “theo-
retical quantity”, EISF (q) = Finc(q, Œ), which can only
be determined by assuming a model, we can now check
the fits of the three-parameter model (36) with a two-
parameter fit, where the EISF is eliminated according to
Eq. (27). The results in Fig. 4 show that – and · change
only slightly comparing the two- and three-parameter fits
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�̃(✏)
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�
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�↵/2
+ ! sin(↵ arg(✏+ i|!|)) + ✏ cos(↵ arg(✏+ i|!|))

(!2 + ✏2)
⇣
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⌘

✏ = Dq2

�(✏)
ML(t) = e�Dq2|t|�ML(t)

Setting D = 0 has very little influence on the fit parameters ↵, ⌧ , EISF .


