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Phanomene des Niederschlags, besonders Richtung uud In- 
tensitat des Windes genau bestimint werden. 

Die Vertheiluug der Regenmenge in der jahrlichen Pe- 
riode ist daher in verschiedenen Gegenden sehr verschie- 
den; sie kann aber auch in entfernten Localitaten der Zcit 
iiacli dieselbe werden, obgleich ihreni Ursprung nacli In- 
fsert verschieden seyn. Ohne Bcrucksichtigung dieser Be- 
diugungen quantitativ Gleiches in graphischen Darstellungen 
unter einander verbinden, erschwcrt das Verstzndnifs, statt 
es zu fordern. 

(EIier f o l g t  d i e  T a b e l l e . )  

IV. Ueber Dqfusion; uon Dr. A d o l f  Fick ,  
Prosector in Ziirich. 

D i e  Hydrodiffusion durcli Membranen diirfte billig nicht 
blocs als eiiier der Elementarfactoren des organiscben Lebens 
sonderii aucli als ein a n  sich hiichst interessanter physika- 
lischer Vorgang weit mehr Aufinerksamkeit der Physiker in 
Anspruch nehmen als ihr bisher zu Theil geworden ist. 
W i r  besitzen namlich eigentlich erst vier Untersuchungen, 
von B r u c k e  ’), J o l l y  * ) ,  L u d w i g  3, und C l o e t t a  4, 
ubcr diesen Gegenstaiid, dic seine Erkenntnifs urn einen 
Schritt weiter, gefiirdert haben. Vielleiclit ist der Grund 
dieser spsrlichen Bearbeitung zum Theil in der grofsen 
Schwierigkeit zu S U C ~ C I ~ ,  auf diesem Felde gcnaue quanti- 
tative Versuche anzustellen. Und in der That ist diese 
so grofs, dafs es mir trotz andauernder Beiniihungcn iioch 
nicht hat gelingen wollen, den Streit der Theorien zu 

1) l’ogg. Ann. Bd. 5 8 ,  S. i’i. 
2 )  Zcirrclirih Iiir ralionelle Medicin, niich d. Ann. Rd.  78, S. 261. 
3) Ibidem, auch d. Ann. Iid. 78, S. 307. 
4)  Dif~i~sio~isrersoche durch Mernlranen mit zwei Snlsen. Ziiriclr 1851. 

« Normal » diffusion
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presented in a concise way, starting with classical di↵usion models and their
mathematical extensions for the description of anomalous di↵usion and re-
laxation. These models are then related to exact results, which are obtained
by asymptotic analysis of the GLE and the related mean square displace-
ments, and the latter are illustrated by molecular dynamics simulations of
biomolecular systems.

2. Some models for anomalous di↵usion

2.1. Generalized Fick’s law

The first theoretical description of di↵usion processes can be probably
attributed to the physician and physiologist Adolf Fick [8]. He derived the
well-known di↵usion equation,

@

@t
f(r, t) = D�f(r, t), (1)

to model the time evolution of concentration profiles of particles in suspen-
sion. Here is D is the di↵usion coe�cient, which is a transport coe�cient
in the language of statistical physics. The di↵usion equation holds in the
regime of linear response, where the particle current density responds lin-
early to the concentration gradient, j = �Drf (first law of Fick). Imposing
particle conservation through @tf+r·j = 0 (second law of Fick), Eq. (1) fol-
lows. In this description one considers free di↵usion, i.e. di↵usion without a
deterministic driving force. In this case the di↵usion constant D determines
the spread of the concentration,

�2(t) :=

R
dnr |r|2f(r, t)R
dnr f(r, t)

= 2nDt, (2)

assuming that the initial concentration is localized at r = 0. Here n is the
geometrical dimension of the di↵usion problem.

Deviations from the di↵usion law (2) have been reported already 80 years
ago [9] and with the advent of sophisticated fluorescence-based spectroscopic
methods numerous observations of anomalous di↵usion have been reported
over the last 20 years. Typical examples are the di↵usion of molecules
in biological membranes and lipid model bilayers [10, 11, 12], where the
di↵usion of lipid molecules and embedded proteins is strongly hindered due
to the entanglement of with their environment. The e↵ect is often referred
to as crowding and leads to subdi↵usion, where

�2(t) / t↵ (3)
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�2(t) / t↵ (3)

Fick’s phenomenological approach
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n : dimension
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A. Einstein, Ann. Phys., vol. 322, no. 8, 1905.	


Einstein’s statistical approach
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7. Free diffusion – Wiener process

7.1. Definition. The most simple Fokker-Planck equation is obtained for
the case

a1(y) = 0, a2(y) = 2D = const. (II.55)
With this definition for the coefficients ak(y) the Fokker-Planck equation (II.29)
takes the form of the well-known diffusion equation,

⌃P (y, t)

⌃t
= D

⌃2P (y, t)

⌃y2
(II.56)

which is to be solved with the initial condition
P (y, 0) = �(y � y0) (II.57)

The corresponding stochastic equation of motion has the simple form

y(t0 + �t) = y(0) + ⇥ (II.58)

where the displacement ⇥ is Gaussian white noise with

⇥ = 0 and ⇥2 = 2D�t (II.59)

The equations (II.58) and (II.59) define the Wiener process1.

7.2. Solution of the Fokker-Planck equation. A simple way to solve equa-
tion (II.56) is to apply a Fourier transformation with respect to y. With

P̃ (k, t) =

⇧ +⇥

�⇥
dy exp(�iky)P (y, t)

one obtains
⌃P̃ (k, t)

⌃t
= �Dk2P̃ (k, t).

The solution is thus
P̃ (k, t) = P̃ (k, 0) exp(�Dk2t), with P̃ (k, 0) = exp(�iky0),

if one uses the initial condition (II.57). Consequently

P (y, t) =
1

2⇤

⇧ +⇥

�⇥
dk exp(ik[y � y0]) exp(�Dk2t).

This inverse Fourier transform can be easily performed2 and one finds

P (y, t) =
1⇤

4⇤Dt
exp

⇤
�(y � y0)2

4Dt

⌅
(II.60)

1Norbert Wiener, American mathematician, 1894 – 1964.
2One uses that f(x) = 1�

2�⇥
exp

�
� x2

2⇥2

⇥
⇥ f̃(k) = exp

�
�⇥2k2

2

⇥
and that f(x � x0) ⇥

f̃(k) exp(�ikx0).
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white noise

x(t0 + �t) = x(t0) + ⇠

@tP (x, t|x0, 0) = D

@

2

@x

2
P (x, t|x0, 0)

0.2 0.4 0.6 0.8 1.0
t

0.5

1.0

1.5

xHtL
Trajectory

-20 -10 0 10 20
x-x0

0.1

0.2

0.3

0.4

0.5

P(x,t|x0,0)

Free diffusion as a stochastic (Wiener) process 

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
t0.000

0.005

0.010

0.015

0.020

0.025

0.030
MSD

 W (t) := h(x(t)� x(0))2i = 2Dt

p(x,t|x0,0) is a transition probability



Anomalous diffusion in « crowded » media

1412 LETTERS TO THE EDITOR 

In the third column of Table I is shown the excess of energy of 
the gauche-molecule referred to that of the trans-molecule in the 
gaseous and liquid states, and in the fourth and fifth columns 
the wave numbers of the absorption peaks of the two bands used 
in the intensity measurement. These data are in general in agree-
ment with, but are more accurate than, those obtained previously 
by the spectroscopic and electric measurements,! and they support 

TABLE 1. The energy difference llE hetween the rotational 
isomers in cal/mole. 

Wave numbers 
(cm-I ) of ab-

sorption peaks 
Compounds State llE=Eg-E, trans gauche 

gas 1140±20 1232 1291 
CIH,C -CH,CI liquid {0±50 1451 1430 

0±50 1230 1284 

gas 1460±30 1204 1268 
CIH,C -CH,Br liquid {420±50 1440 1422 

410±50 1202 1259 

BrH,C -CH,Br gas 1700±40 1187 1251 
liquid 730±50 1437 1420 

our view that the decrease of the value of tJ.[i; in the liquid state 
arises from the molecular interaction, which can be calculated 
electrostatically.3 In other words, in the liquid state the gauclte-
molecules with larger moment decrease in their energy much more 
markedly than the trans-molecules, so that the values of tJ.E in the 
liquid state become smaller than those in the gaseous state. 

In this connection we should like to add a remark on the pre-
dominance of one rotational isomer of ClH2C - CHCh concluded 
from the dipole measurement of Thomas and Gwinn.' This has 
been confirmed by our infrared measurement, but the less stable 
isomer exists in an amount still detectable by our spectroscopic 
measurement, since the disappearance of some absorption peaks 
takes place on solidification and there is a change of relative 
intensity of absorption bands between the . liquid and nonpolar 
solution. * For example, the band at 1236 cm-1 of the less stable 
isomer becomes less intense in carbon tetrachloride solution than 
in the liquid state. From this fact this band can be assigned to 
the more polar isomer which becomes relatively less stable in a 
nonpolar solvent. 

1 The summary up to 1949 is given in Mizushima, Morino, and Shima· 
nouchi, J. Phys. Chem. 56, 324 (1952). See also S. Mizushima, Reilly 
Lectures, Vol. 5, University of Notre Dame (1952); Morino, Mizushima, 
Kuratani, and Katayama, J. Chem. Phys. 18, 754 (1950). The reference 
to the papers of other authors (including Bernstein, Rank, Kagarise, and 
Axford) are also given in these papers. 

'Shimanouchi, Tsuruta, and Mizushima, Sci. Pap. Inst. Phys. Chem. 
Res. Tokyo 42, 51 (1944). 

• Watanabe, Mizushima, and Masiko, Sci. Pap. Inst. Phys. Chem. Res. 
Tokyo 40, 425 (1943); S. Mizushima and H. Okazaki, J. Am. Chem. Soc. 
71,3411 (1949); Morino, Mizushima, Kuratani, and Katayama, J. Chem. 
Phys. 18, 754 (1950). In these papers the calculation is made on the assump-
tion of a single dipole located at the center of the molecule. Recently 
Wada in our laboratory improved the calculation by taking into account 
individual bond dipoles. 

• J. R. Thomas and W. D. Gwinn, J. Am. Chern. Soc. 71, 2785 (1949). * As to the significance of these spectral changes, see the first two papers 
of reference 1. 

Anomalous Diffusion of Acetone into 
Cellulose Acetate* 

F. A. LONG, E. BAGLEY, AND J. WILKENS 
Department of Chemistry, Cornell University, Ithaca, New York 

(Received May 18, 1953) 

A NOMALOUS or non-Fickian diffusion of small molecules in 
polymers. has been reported for several systems'-

6 and 
appears to be the normal behavior when the polymer-penetrant 
mixture is below its second-order transition." 6 The anomalies are 
particularly marked for diffusion into cellulosic polymers.2.3 For 
the kinetics of sorption of a vapor by a polymer film the major 
attention has been focused on the anomalous changes in sorption 
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FIG. 1. Interval sorption of acetone into cellulose acetate, 30°C. Plots 
extend to from 15 to 30 percent of equilibrium takeup. Film thickness is 
3.8 X 10-' cm. 

rate which occur at roughly half-time for the total sorption and 
the tentative explanations so far advanced have dealt essentially 
with this anomaly,3.6 We have done some interval sorption exper-
iments with acetone and cellulose acetate (37.9 percent acetyl) 
which put a quite different complexion on the problem since they 
show that the major anomaly occurs very early in the sorption 
process. 

The procedure and apparatus for interval sorption experiments 
have been described previously.'- 7 In the present case a dry film 
of cellulose acetate (cast from acetone on mercury) was suspended 
from a quartz spiral balance and the sorption kinetics followed for 
a series of successively higher, narrow pressure ranges of acetone. 
For each interval the film was equilibrated to the particular 
pressure of vapor before increasing the pressure for the next 
interval. The results of one set of interval sorptions are given in 
Fig. 1 as plots of weight takeup Q in mg/cm2 vs vt. (For Fickian 
diffusion, Q vs vt plots are initially linear.) Along with each curve 
are given the pressure and concentration range of the interval and 
the value of Q., the equilibrium weight increase for the particular 
interval. Attainment of final equilibrium generally took from four 
to seven days. 

The curves for the two lowest pressure intervals are similar to 
those reported previously for anomalous diffusion in that they are 
initially linear, but at later times the slope increases leading 
ultimately to an inflection in the Q-vt plots. Strikingly different 
behavior is shown by the curves for all subsequent intervals since 
for these there is an initial, rapid weignt increase (the "initial 
stage") followed by a very much slower weight increase (the "slow 
stage"). Quite clearly the slopes for the "initial stages" increase 
considerably with increasing concentration of acetone in the film; 
in contrast the slopes for the "slow stages" are essentially inde-
pendent of concentration. 

Experiments with films of different thickness show that, for a 
given concentration interval, the value of tl for completion of the 
initial stage increases directly with film thickness. This indicates 
that the initial phase is not simple due to a buildup of vapor on 
the surface; in fact it argues strongly that during the initial stage 
the vapor penetrates the entire film. Fairly direct evidence that 
this last is true is shown in Fig. 2, which compares the expansion 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
194.167.30.120 On: Sun, 23 Feb 2014 15:22:03

F.A. Long, E. Bagley, and J. Wilkens, 	

The Journal of Chemical Physics 21, 1412 (1953).

go6 ANOMALOUS DIFFUSION IN TRUE SOLUTION 

ANOMALOUS DIFFUSION IN TRUE SOLUTION. 

BY HERBERT FREUNDLICH AND DEODATA KRUGER. 

Received 30th April, 1935. 

The method generally adopted for measuring diffusion constants is 
that of Oeholm : a layer of the solution is covered carefully with a layer 
of the solvent thrice as thick; after a sufficient lapse of time, the whole 
amount of fluid is divided into four portions, which are analysed. The 
diffusion constant may then be determined according to Fick’s law, from 
tables calculated by Stefan and Kawalki. In some cases this method 
gives satisfactory constants, although, even when using small concen- 
centrations,l other methods fail to do so. Solutions of substances with 
high molecular weight very frequently deviate strongly from Fick‘s law,2 
and do not give constants when investigated by Oeholm’s method. A 
case of this type was first found by Herzog and PolotzkyS in aqueous 
solutions of dyestuffs. Still more pronounced instances have been de- 
tected in solutions of natural products and their derivatives (cellulose, 
etc.). There seem to be several possible explanations of these anomalies. 
That most favoured assumes that the solution is not homogeneous, but 
contains substances of different molecular weight. Other possibilities 
are lack of purity, a special chemical reaction with the solvent, the dis- 
turbing influence of a structure or of swelling. These explanations had 
to be discarded in those cases in which similar deviations from Fick’s 
law were found with well-defined substances having a small molecular 
weight: ti quinone diffusing in pure water gives a constant, which 

1 Fiirth, Physik. Z., 1925, 26, 719 ; Fiirth and Ullmann, Kolloid-Z., 1927, 41, 
304; Zuber, 2. Physik, 1932, 79, 291. 

The “ diffusion constant ” may be a function of the con- 
centration of the diffusing substance or the diffusion may proceed in an anomalous 
way owing to  secondary influences. 

3 R. 0. Herzog and Polotzky, 2. physik. Chem., 1914, 87,449. 
4 R. 0. Herzog and D. Kriiger, J. physic. chem., 1g2g,33, 179 ; R. 0. Herzog 

and Cohn. Helv. Chim. Act., 1928, I I ,  529 ; v. Frank and Mendrzyk, Ber., 1930. 
63,875 ; R. 0. Herzog and Kudar, 2. physik. Chem., 1933, rWA, 343 ; D. Kriiger 
and H. Grunsky, ibid., 1930, 150, 115 ; 1934, 170, 161 ; R. 0. Herzog, ibid., 

Quite generally. 

1935, 172,239. 
6 H. Freundlich and D. Kriiger, 2. Elektrochem., 1930, 36, 305. 
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H. Freundlich and D. Krüger, Trans. Faraday Soc. 31, 906 (1935).
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ago [9] and with the advent of sophisticated fluorescence-based spectroscopic
methods numerous observations of anomalous di↵usion have been reported
over the last 20 years. Typical examples are the di↵usion of molecules
in biological membranes and lipid model bilayers [10, 11, 12], where the
di↵usion of lipid molecules and embedded proteins is strongly hindered due
to the entanglement of with their environment. The e↵ect is often referred
to as crowding and leads to subdi↵usion, where
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presented in a concise way, starting with classical di↵usion models and their
mathematical extensions for the description of anomalous di↵usion and re-
laxation. These models are then related to exact results, which are obtained
by asymptotic analysis of the GLE and the related mean square displace-
ments, and the latter are illustrated by molecular dynamics simulations of
biomolecular systems.
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FIG. 1. Measurement principle in the IM-35 inverted microscope. The
cells are attached to coverslips and illuminated from below. Detection is
performed by placing the objective focal spot to the upper cell membrane
and imaging the fluorescent area to an avalanche photodiode for fluores-
cence correlation spectroscopy (FCS) analysis.

FIG. 3. Fluorescence correlation spectroscopic detection specificity on
the cell membrane. Only labeled membranes (position , 0) contribute to
the signal, which can be verified by loss in autocorrelation and fluorescence
count rate bursts if the focal spot is moved away from the cell surface.

FIG. 2. Confocal images of rat basophilic leukemia cells labeled with
diI-C12 to show the specificity of labeling the plasma membrane only
(equatorial layer, upper panel). For fluorescence correlation spectro-
scopic measurements, 20 times less dye was used. Single molecule
measurements were performed at the upper cell surface (lower panel).
Scale bar " 10 µm.
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attributed to the physician and physiologist Adolf Fick [8]. He derived the
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to model the time evolution of concentration profiles of particles in suspen-
sion. Here is D is the di↵usion coe�cient, which is a transport coe�cient
in the language of statistical physics. The di↵usion equation holds in the
regime of linear response, where the particle current density responds lin-
early to the concentration gradient, j = �Drf (first law of Fick). Imposing
particle conservation through @tf+r·j = 0 (second law of Fick), Eq. (1) fol-
lows. In this description one considers free di↵usion, i.e. di↵usion without a
deterministic driving force. In this case the di↵usion constant D determines
the spread of the concentration,
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assuming that the initial concentration is localized at r = 0. Here n is the
geometrical dimension of the di↵usion problem.

Deviations from the di↵usion law (2) have been reported already 80 years
ago [9] and with the advent of sophisticated fluorescence-based spectroscopic
methods numerous observations of anomalous di↵usion have been reported
over the last 20 years. Typical examples are the di↵usion of molecules
in biological membranes and lipid model bilayers [10, 11, 12], where the
di↵usion of lipid molecules and embedded proteins is strongly hindered due
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Subdiffusion of lipids observed by FCS
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without changing its position. Then a new run starts, and so
on. We compare the distribution of the run lengths for both
types of bacteria. For type A, the distribution is exponential,
independent of the CheR level. The level of CheR, however,
influences the average run-length—the lower the CheR
concentration, the longer the average run-length (see Fig. 3).

For bacteria of type B, a power-law run-length distribution
is observed at a sufficiently low average CheR concentration
(see Fig. 4). This result is in agreement with the result
observed in Korobkova et al. (8), where a power-law distri-
bution of the CCW events was found in stochastic simula-
tions of CheR binding. Also in these simulations, the
power-law behavior vanished for an increased CheR concen-
tration. We want to stress that the presences of strong low-
frequency modes in the CheR fluctuations is essential to
reproduce the power-law statistics. We introduced the slow
modes by integrating the white noise in Eq. 1. The slow fluc-
tuations are passed through the signaling pathway, influ-
encing the methylation level and therefore the tumbling
probability. If the fluctuations are too fast (for instance, white
noise), the run-length distribution would be, again, exponen-
tial. Additionally, if the average CheR concentration is too
high, the effect of added noise vanishes and the distribution
is again exponential. The power-law run-length distribution
can therefore be observed only at low CheR levels and
low-frequency colored noise. Example trajectories for type
A and type B bacteria are shown in Fig. 5, demonstrating
typical diffusionlike behavior of the individual A with
a constant CheR concentration, and a characteristic Lévy-
walk trajectory for bacteria of type B with CheR fluctuating.

Characteristic for a Lévy-walk is the switching between local
search and long space-covering walks.

This motion often represents an efficient search strategy,
since it gives a very low probability that the random walker
returns to a place where it searched before.

Correlation of run lengths

The low-frequency modes in the CheR fluctuations lead to
slow changes in the concentration levels of the active and
passive form of the receptor, and therefore to slow changes
in the probability of tumbling. In periods where CheR is
decreasing or low, the run lengths are, on average, longer
than at periods in which CheR is increasing or high. Because
the changes in the concentration levels are slow in compar-
ison to the duration of a single run, the length of consecutive
runs is correlated. In Fig. 6, we show a sequence of run
lengths that clearly display characteristic periods of shorter
and longer runs.

The success index

Our next numerical experiment involves bacteria of type A
and B in various types of nutrient environments. For this
we devised a number of simulations with different two-
dimensional chemoattractant landscapes and explored how
well both types of bacteria perform in each of them. To eval-
uate how effective the bacteria of different chemotactic strat-
egies are in different environments, we first define a measure
q for the success index, based on the average ligand concen-
tration that the bacteria in the population sense. We assume
that the bacteria in an optimally fit population will move in
such a way that they will spend most of the time at the posi-
tion with maximum ligand concentration. For each bacteria i
we take its position ~ri ¼ ðxi; yiÞ, and compute the ligand
concentration at this position Lð~riÞ. The success index q of
the whole population is then given as the average,

FIGURE 4 Run-length statistics for fluctuating CheR concentration. The
run-length distribution gets a power-law tail if the CheR concentration is

low and noisy. The inset shows the cumulative of the run-length distribution

on double-logarithmic axes.

FIGURE 5 Trajectories in a two-dimensional domain. Example trajecto-
ries of a bacterium with constant (left, online: blue. print: solid/black) and

with fluctuating CheR concentration (right, online: red. print: shaded/

gray) in a two-dimensional domain.
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E. coli Superdiffusion and Chemotaxis 949 F. Matthäus, M. Jagodič, and J. Dobnikar, Biophysical Journal 97, 946 (2009).

Normal diffusion of the E. coli,!
bacteria in absence of chemotaxis

Superdiffusion of the E. coli,!
bacteria in presence of chemotaxis

W (t) / t↵, 1 < ↵ < 2

Superdiffusion and chemotaxis of E. coli
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with 0 < ↵ < 1. Concentration profiles with an “anomalous” spread of the
form (3) can be obtained by an appropriate generalization of the di↵usion
equation (1) in form of a fractional di↵usion equation [13, 3]

@

@t
f(r, t) = @1�↵

t {D↵� f(r, t)} , 0 < ↵ < 2, (4)

where D↵ is a fractional di↵usion constant and @1�↵
t denotes a fractional

Riemann-Liouville derivative of order 1 � ↵ with respect to time [14, 15].
For an arbitrary function g(t), the latter is defined as

@1�↵
t g(t) =

d

dt

Z t

0
d⌧

(t� ⌧)↵�1

�(↵)
g(⌧) (5)

where �(.) denotes the Gamma function or generalized factorial [16]. For
↵ = 1, 2, 3, . . . the integral

R t
0 . . . becomes the familiar Liouville formula

for the multiple integration of g and one may e↵ectively write @1�↵
t g(t) =

d/dt I↵g(t), where I↵g(t) denotes a fractional integration of order ↵. The
time evolution of the spread can be computed from the fractional di↵erential
equation

@t�
2(t) = @1�↵

t 2nD↵ (6)

which follows from (2) and (4) and which can be solved straightwordly by
Laplace transform to yield

�2(t) =
2nD↵t

↵

�(1 + ↵)
. (7)

In view of Relation (3) this is the desired result.

2.2. Fractional Fokker-Planck equations for spatial di↵usion

Instead of modeling di↵usion as macroscopic migration process one can
take the perspective of individual particles as representatives for the whole
ensemble and develop models for their trajectories. This route has been
proposed by Einstein in his pioneering 1905 paper [17] and lead to the theory
of stochastic processes [18, 19, 20]. In this approach the concentration profile
becomes a conditional probability p(r, t|r0, 0) for a transition r0 ! r within
time t, and instead of the concentration spread one considers the mean
square displacement (MSD) of the di↵using particles,

W (t) = h|r(t)� r(0)|2i

⌘
Z Z

dnr0d
nr |r� r0|2p(r, t|r0, 0)peq(r0), (8)

Fractional derivative

W.  Wyss, Journal of Mathematical Physics 27, 2782 (1986).
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Compared to Fick’s first law, there are two generalizations to be mentioned.
Firstly there is a drift term due to the external potential and secondly it
follows from Eq. (5) that the fractional derivative induces memory e↵ects in
the response of j to the concentration gradient and the potential gradient.
It must be emphasized that the above phenomenological interpretation of
anomalous di↵usion is not the only route to anomalous di↵usion and fFPEs,
but it is conceptually close to the framework of non-equilibrium statistical
physics which will be used in the following discussion.

2.3. Fractional Wiener process

In case of free di↵usion, i.e. for V (r) = 0, p(r, t|r0, 0) describes a Wiener
process, which is generalized to a fractional variant if anomalous di↵usion
is considered. The corresponding fFPE reads

@

@t
p(r, t|r0, 0) = @1�↵

t D↵�p(r, t|r0, 0) (0 < ↵ < 2) (13)

and the MSD can be easily computed by using that the equilibrium distri-
bution is here peq(r) = 1/V , where V is the macroscopic volume in which
the free di↵usion process takes place,

W (t) =
2nD↵t

↵

�(1 + ↵)
. (14)

The MSD has thus exactly the same form as the particle spread for the
generalized Fick model (see Eq. (7)). It should be noted that (13) does not
only include the subdi↵usive regime mentioned earlier, where 0 < ↵ < 1,
but also a superdi↵usive regime, where 0 < ↵ < 2. The latter has for
example been found in experiments on chemotaxis [27].

2.4. Fractional Ornstein-Uhlenbeck process

2.4.1. Confined motions – di↵usion and relaxation

We consider now a di↵using particle whose motions are confined in space.
Due to the confinement, it has a well-defined mean position and introducing
u(t) = r(t)� hri, it follows that

W (t) = 2{cuu(0)� cuu(t)}, (15)

where
cuu(t) = hu(t) · u(0)i (16)

is the displacement autocorrelation function (DACF) of the di↵using parti-
cle. Relation (15) reflects thus at the same time di↵usion and relaxation in
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FIG. 1. Average backbone (x) values for myoglobin vs. residue number. 0, 80 K; o, 300 K. The average is taken over the N, C.,, and carbonyl
C atoms only, since the (x2) values of the carbonyl 0 atoms are usually higher. An (X2')d of 0.045 A2 has been subtracted from the individual observed
(xi) values.

tained for the iron atom by x-ray diffraction (9) and by
Mossbauer absorption (13) at 250-300 K. Subtracting the re-
sulting (X2)ld = 0.045 A2 from the individual atomic (x2) ob-
tained at 80 K leads to a number of values that are smaller than
0.01 A2, which is of the order of the zero-point vibrational (x2)
observed for small-molecule crystals at low temperatures (28).
Assuming that the freezing method did not decrease the lattice
order (and the results certainly show that it did not increase the
disorder), the (X2)Id value derived earlier (9) appears to be too
large (see below). It should be emphasized that the limits of
error of the (x2) values obtained from the x-ray analysis, esti-
mated to be 0.018 A2 (9), are at least as large as the zero-point
vibration (x2). In addition, any motion having a characteristic
time slower than 0.1 us does not contribute to the (x 2) deter-
mined by the Mossbauer method. Therefore, if motions on this
time scale contribute to the overall (x 2) (and there is ample
evidence that they must; K. Gersonde and G. N. La Mar, per-
sonal communication), the Mossbauer value underestimates the
dynamic contribution and leads to overestimation of the lattice
disorder term. Our refinement of the 80 K structure suggests
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that the correct value is closer to 0.025 A2. To facilitate com-
parison with earlier work, the value (x2Xd = 0.045 A2 has been
applied to the data in this paper. Whatever value is used for
(X2)1d, the results show that lattice disorder does not dominate
the overall or individual atomic displacements.

Individual Atomic Displacements. A graph of the average
(x2) values of the backbone N, Ca, and carbonyl C. atoms vs.
residue number at 80 and 300 K is shown in Fig. 1. The main-
chain displacements at 80 K do not exceed the corresponding
values at 300 K. The shapes of the two curves agree well. The
temperature dependence of the average (x 2) values of back-
bone atoms ofselected amino acids is shown in Fig. 2. The tem-
perature dependences of the (x2) values for the iron atom, the
atoms in the heme plane, and the proximal and distal histidines
are compared with those from M6ssbauer experiments on the
iron in Fig. 3.

Comparison ofthe (x 2) values at the four temperatures allows
a discussion of some general features of the dynamics of Mb.
Attempts were made to find a linear temperature dependence
for the atomic displacements. Only 46 of the 153 amino acids
in Mb show a temperature dependence that is consistant with
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FIG. 2. Temperature dependence of (x2) values of some selected
amino acids (backbone averages). +, glycine-121(GH3); x, alanine-
19(ABl); a, glutamic acid-83(EF6); o, phenylalanine-138(H14); *, leu-
cine-1l(A9); m, valine-68(E9); n, alanine-71(E14); *, average of all non-
hydrogen atoms; o, aspartic acid 126 (H2).
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FIG. 3. Temperature dependence of (x2) values. *, Fe measured
by M6ssbauer spectroscopy (13); *, Fe determined by x-ray analysis;
*, histidine-93(F8); o, histidine-64(E7).
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sulting (X2)ld = 0.045 A2 from the individual atomic (x2) ob-
tained at 80 K leads to a number of values that are smaller than
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large (see below). It should be emphasized that the limits of
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FIG. 2. Temperature dependence of (x2) values of some selected
amino acids (backbone averages). +, glycine-121(GH3); x, alanine-
19(ABl); a, glutamic acid-83(EF6); o, phenylalanine-138(H14); *, leu-
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FIG. 3. Temperature dependence of (x2) values. *, Fe measured
by M6ssbauer spectroscopy (13); *, Fe determined by x-ray analysis;
*, histidine-93(F8); o, histidine-64(E7).
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ABSTRACT The crystal structure ofsperm whale metmyoglo-
bin has been determined at 80 K to a resolution of2 A. The overall
structure at 80 K is similar to that at 300 K except that the volume
is smaller. Refinement of the structure by the method of re-
strained least squares (current R = 0.175) permits the assignment
of isotropic atomic mean-square displacements to all nonhydrogen
atoms. Comparison with the values obtained earlier at 250-300
K indicates that the protein at 80 K is more rigid. The average
experimentally determined Debye-Waller factor, B, for the pro-
tein is 14 A at 300 K and 5 A2 at 80 K. Plots of backbone mean-
square displacement vs. temperature show a discontinuity of slope
for at least one-third ofall residues. This behavior is in good agree-
ment with the temperature dependence of the mean-square dis-
placement of the heme iron as measured by Mossbauer absorp-
tion. The magnitudes of the smallest mean-square displacements
observed at 80 K indicate that intramolecular motions can be fro-
zen out to a surprisingly large degree. Even at 80 K, however,
some atoms in myoglobin still have mean-square displacements
greater than 0.1 A2, thus providing evidence for conformational
substates.

The view of protein molecules as systems that fluctuate over
a large number of conformational substates is now accepted
(1-3). Conformational fluctuations are important for biological
function, and detailed studies of their properties are therefore
desirable. Myoglobin (Mb), "the hydrogen atom of biology," is
a good choice for such studies. Mb is presumed to have a simple
function, storage and transport of oxygen in muscles (4). Some
of its properties can be understood in terms of its static three-
dimensional structure, determined by single-crystal x-ray dif-
fraction at 300 K (5, 6). However, dynamic features, especially
the access of oxygen to the heme and the kinetics of binding
of carbon monoxide to the iron (7, 8), cannot be explained by
a static picture. X-ray crystallography is a powerful tool for
mapping average displacements of atoms in a protein (9-11).
Here, we present the determination of the structure of metMb
at 80 K to a resolution of 2 A and compare this structure and
atomic displacements with earlier results at 250-300 K and with
the results of Mossbauer absorption studies at 4.2-300 K
(12-14).

Atomic displacements are involved in the interconversion of
different local configurations (conformational substates) of the
same overall protein structure (7-14). Different conformational
substates perform the same biological function, albeit possibly
with different rates. Transitions from one substate to another
require the surmounting of potential energy barriers. If the
barriers are very large compared with kBT, the distribution of

substates is static. If the barriers are small, the distribution is
dynamic and a molecule can move from one substate to another,
even at low temperatures. The idea that a dynamic distribution
can still exist at low temperatures is at first surprising. How-
erer- considerfor simplicity-4I attcaaoc either of
two positions separated by a barrier of height Ho. The time TR
characteristic for transitions between the two positions then is
given approximately by TR = roexp(HIR7), with To0 10-13 s.
Fluorescence quenching (15) and Rayleigh scattering (16) imply
barrier heights of about 25 kJ/mol. At 80 K, Ho = 25 kJ/mol
gives TR 103 s. During typical x-ray experiments, which last
about 105 s, conformational substates can equilibrate even at 80
K. If, moreover, the bottoms of the two conformational posi-
tions differ by 1 kJ/mol or less, both substates will be appre-
ciably populated even at 80 K.

Information about the spatial distribution of conformational
substates can be expressed in terms of individual atomic mean-
square displacements, (x2). By measuring these atomic dis-
placements as a function of temperature, the shape of the ef-
fective conformational potential well in which the atom moves
can be determined. In earlier crystallographic work, mean-
square displacements have been measured at 220-300 K (9).
The example given above shows that this temperature range is
too small to explore the conformational potential. We have
therefore extended the experiments to much lower tempera-
tures. The technique described here indeed shows major
changes in mean-square displacements in going from 300 to 80
Kand opens up the possibility of answering a number ofques-
tions about the structure and dynamics of proteins. Similar
work at low temperatures has been carried out with trypsin by
Huber and co-workers (17), who reach analogous conclusions.

EXPERIMENTAL
Sample Preparation and Data Collection. Crystals of sperm

whale metMb were grown from 3.75 M ammonium sulfate (pH
6.9), according to the published method (18). The crystals have
the symmetry of space group P21, with one molecule of molec-
ular weight 17,816 per asymmetric unit. Protein crystals are
usually destroyed if they are cooled below the liquid-ice phase
transition ofthe free mother liquor. There are, however, several
methods to overcome this difficulty. Crystal shattering can be
hindered by freezing under high pressure (19), exchanging the
mother liquor of the protein crystal with a cryoprotectant (20),
or shock freezing crystals containing their normal mother li-
quor (21). The last method has clear advantages: the solvent
around the molecule is not modified and no physical changes
should be introduced, in contrast to the application ofhigh pres-
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position space. Knowing that limt!1 cuu(t) = 0 and that cuu(0) = h|u|2i,
it follows moreover that the MSD tends to a plateau value for long times,

lim
t!1

W (t) = 2h|u|2i. (17)

2.4.2. The model

A simple example for a concrete dynamical model is the fractional
Ornstein-Uhlenbeck (fOU) process [3, 28, 29] which describes anomalous
di↵usion of a Brownian particle in a harmonic potential,

V (u) =
K

2
|u|2 (18)

The corresponding transition probability density is described by the fFPE
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Here D� is again a fractional di↵usion constant and kB and T denote, re-
spectively, the Boltzmann constant and the absolute temperature. Due to
the Hookean force �Ku the equilibrium probability density tends here for
long times to a Gaussian function of finite width,

peq(u) =
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With these definitions the DACF for the fOU process is defined as
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nuu · u0 p(u, t|u0, 0)peq(u0), (22)

but the full solution is not required for its computation. One can, in fact,
apply a similar trick as for the MSD of anomalous free di↵usion and establish
a fractional di↵erential equation for cuu(t), whose solution is found to be [29]

cuu(t) = h|u|2iE�(�[t/⌧ ]�). (23)

Here E�(z) denotes the Mittag-Le✏er function [16],

E�(z) =
1X

k=0
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N(t) = N(0)E�(�[t/⌧ ]�)
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FIGURE IV.9. Left: Harmonic potential driving the OU process.
Right: Sketch of the corresponding “rugged” potential energy
surface leading to fractional Brownian motion.

proposed long time ago by Frauenfelder et al. [56]. It must be emphasised that
such an effective harmonic model can only describe protein dynamics close to
the equilibrium state, which is here characterised by a single global minimum
of the potential.

Using the general considerations concerning FFPEs made in Section 3.1 of
this chapter we can immediately write down the solution of the FFPE describ-
ing the fractional OU process. For this purpose we use expression (IV.57) and
insert the eigenfunctions of the Fokker-Planck operator (II.161) associated with
the standard OU process which are given in Eqs. (II.163) and (II.165). Defining
again the scaled positions ⇤ = x/
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Here E�(·) is the Mittag-Leffler function defined in Eq. (IV.53).

4.2. Autocorrelation function and its spectrum. The autocorrelation func-
tion of the scaled variable ⇤ is obtained from the general expression (IV.59),
using that here y ⌅ ⇤ and

⇧
d⇤ ⇤Pn(⇤) = �n,1. Noting that the autocorrelation

function of ⇤ equals the normalised autocorrelation function of x, ⌃(t) ⇤ c⇥⇥(t),
one obtains

⌃(t) = E� (�⇥�t�) (IV.67)
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di↵usion of a Brownian particle in a harmonic potential,

V (u) =
K

2
|u|2 (18)

The corresponding transition probability density is described by the fFPE

@

@t
p(u, t|u0, 0) = @1��

t L p(u, t|u0, 0), 0 < �  1, (19)

and the Fokker-Planck operator reads

L = D�
@

@u
·
⇢

@

@u
+

Ku

kBT

�
. (20)

Here D� is again a fractional di↵usion constant and kB and T denote, re-
spectively, the Boltzmann constant and the absolute temperature. Due to
the Hookean force �Ku the equilibrium probability density tends here for
long times to a Gaussian function of finite width,

peq(u) =

r
K

2⇡kBT

n

exp

✓
�K|u|2

2kBT

◆
. (21)

With these definitions the DACF for the fOU process is defined as

cuu(t) ⌘
Z 1

�1

Z 1

�1
dnu0d

nuu · u0 p(u, t|u0, 0)peq(u0), (22)

but the full solution is not required for its computation. One can, in fact,
apply a similar trick as for the MSD of anomalous free di↵usion and establish
a fractional di↵erential equation for cuu(t), whose solution is found to be [29]

cuu(t) = h|u|2iE�(�[t/⌧ ]�). (23)

Here E�(z) denotes the Mittag-Le✏er function [16],

E�(z) =
1X

k=0

zk

�(1 + �k)
(24)
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which is an entire function and can be considered as a generalization of a
normal exponential function. For � = 1 the latter is retrieved, E1(z) =
exp(z). The time scale ⌧ may be defined through

⌧ =

✓
�(� + 1)

h|u|2i
nD�

◆1/�

, (25)

where h|u|2i = nkBT/K is the mean square position fluctuation in this
model. According to (15) the MSD takes the form

W (t) = 2h|u|2i
⇣
1� E�(�[t/⌧ ]�)

⌘
(26)

and two regimes can be distinguished:

a) The short time regime where t ⌧ ⌧ . Here one may use just the first
two terms of the series (24), such that

W (t)
t⌧⌧⇠

2nD�

�(1 + �)
t� . (27)

For � = 1 one retrieves W (t)
t⌧⌧⇠ 2nDt.

b) The long time regime where t � ⌧ . Here it follows from

E�(�[t/⌧ ]�)
t�⌧⇠ (t/⌧)��

�(1� �)
(28)

that the MSD behaves as

W (t)
t�⌧⇠ 2h|u|2i

✓
1� (t/⌧)��

�(1� �)

◆
. (29)

Since lim�!1 �(1 � �) = +1 the long-time tail vanishes as � ap-
proaches one. Here the Mittag-Le✏er function becomes a normal
exponential function, E1(z) = exp(z), and one retrieves the exponen-
tially relaxing DACF/MSD of the normal Ornstein-Uhlenbeck process.

2.4.3. Relaxation rate spectrum

It is illustrative to express the DACF (23) as a continuous superposi-
tion of exponential functions, which reflects the multiscale character of the
relaxation dynamics described by the fOU process [29, 30]. Defining the
normalized autocorrelation function, or relaxation function,

 (t) = cuu(t)/cuu(0), (30)
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R. Metzler and J. Klafter, Phys Rep 339, 1 
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Fig. 1. Left: Normalized DACF  fOU(t;�) for � = 0.1, 0.3, . . . , 0.9 (red to blue).
Right: Corresponding relaxation spectra pfOU(�;�).

one writes then

 (t) =

Z 1

0
d� p(�) exp(��t), (31)

where p(�) must be positive and must also satisfy the normalization con-
dition

R1
0 d� p(�) = 1. The relaxation rate spectrum is intimately related

to the Laplace transform of the DACF, which can be written as a Stieltjes
transform [16] of p(�)

 ̂(s) =

Z 1

0
dµ

p(µ)

s+ µ
, (32)

p(�) =
1

⇡
lim
✏!0

={ ̂(��� i✏)}. (33)

On a dimensionless time scale,

[t] = 1,

the relaxation function has the form

 fOU(t;�) = E�(�t�) (34)

and from its Laplace transform [31]

 ̂fOU(s;�) =
1

s(1 + s��)
(35)

one finds the corresponding relaxation rate spectrum

pfOU(�;�) =
sin(⇡�)

� (��� + �� + 2 cos(⇡�))
. (36)
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The convolution product (17) for the measured dynam-
ics structure factor can be written in the following form,
using S as the model (14),

Smðq;xÞ ¼ expð$q2hx2iÞ

% ðl & rÞ þ
X1

n¼1

q2nhx2in

n!2p
ðLD

a;sn & rÞðxÞ

( )

: ð21Þ

Here LD
a;snðxÞ ¼ ðLa;sn & lÞðxÞ is the convolution of a gener-

alized Lorentzian with a normal Lorentzian, for which an
analytical form can be given. Defining

~x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðDq2Þ2

q
; / ¼ argðDq2 þ ixÞ; ð22Þ

one obtains [33]

LD
a;sðxÞ ¼

2 ð~xsÞa cos/þ cosð½a$ 1)/Þf g
~x ð~xsÞa þ 2 cos a/þ ð~xsÞ$af g

: ð23Þ

In contrast to La,s, its convolution with a normal Lorentz-
ian stays finite at x = 0 if D > 0. This point is important if
one aims at evaluating the convolutions in (21) by the effi-
cient Fast Fourier Transform technique [34], as we did for
the fits presented in this article. With this method singular
functions cannot be treated and we refer to [33] to handle
the case of D = 0. It is worthwhile mentioning that the lat-
ter method can be easily generalized to include also global
diffusion, but the FFT technique is more efficient.

4.3. Results

We start the presentation of the results with the analysis
of the MD simulations. The most basic quantity to con-
sider is the time-dependent mean-square displacement.
Fig. 3 shows the neutron-weighted average atomic MSD
of lysozyme and the fit of the model function (3). The
atomic weights are chosen to be the squared incoherent

scattering lengths. We note that the MSD computed from
MD is the sum of the MSDs in the x-, y- and z-direction,
and expression (3) must thus be multiplied by 3 for the
fit. In the latter only two of the three parameters of the
model, s and a, were used and the mean square position
fluctuation hx2i has been fixed by a separate analysis of
the MD trajectory. The resulting fit parameters can be read
off from Table 3. It is important to emphasize that the
model parameters are quite strongly correlated, in particu-
lar hx2i and s. Therefore a good estimation of hx2i is crucial
even to estimate tendencies of s with pressure. In this con-
text we found that the direct calculation of hx2i from the
MD trajectories is less reliable than the calculation from
the EISF via expression (13) in the limit q ! 0. For ambi-
ent pressure this procedure gives a very similar result as the
direct calculation, but for p = 300 MPa the direct calcula-
tion yields a value which is about 10% smaller than the
one obtained from the EISF. This small difference leads
even to a slight shortening of s with pressure instead to
the lengthening seen in Table 3, and the fit is clearly less
good. If all parameters are left free in the fit, one also finds
a lengthening of s with pressure, and the resulting para-
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Fig. 3. Average atomic mean-square displacement of lysozyme in solution obtained fromMD simulation at p = 0.1 MPa and at p = 300 MPa (solid lines).
The broken lines correspond to a fit of the model according to expression (3). See Table 3 for the resulting parameters. More explanations are given in the
text.

Table 3
Parameters for the fractional Ornstein–Uhlenbeck process obtained from
fits to the simulated MSDs and to the simulated intermediate scattering
functions

0.1 MPa 300 MPa

hx2i (nm2) a s (ps) hx2i (nm2) a s (ps)

MSD 6.17 · 10$3 0.54 31.75 4.74 · 10$3 0.54 39.08

Finc(6 nm, t) 4.68 · 10$3 0.53 13.48 3.94 · 10$3 0.50 19.43
Finc(10 nm, t) 3.96 · 10$3 0.51 8.86 3.28 · 10$3 0.49 13.58
Finc(20 nm, t) 2.57 · 10$3 0.52 2.53 2.21 · 10$3 0.45 4.39
Finc(22 nm, t) 2.41 · 10$3 0.50 2.3 2.08 · 10$3 0.44 3.64

The value of hx2i is fixed according to Eq. (13).
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FIGURE IV.11. Dynamic structure factor for the fractional OU
process for � = 0.5. The ⌅-axis and the ordinate are on a loga-
rithmic scale. The series (IV.81) has been truncated after n = 20.

obtained from (IV.57). In analogy with (IV.59) one writes

I(q, t) =

⇧ ⇧
dx0dx exp(iq[x� x0])P (x, t|x0, 0)Peq(x0)

=
⇥⌅

n=0

⇤⇤⇤⇤
⇧

dx exp(iqx)Pn(x)

⇤⇤⇤⇤
2

E� (�⇤�,nt
�) . (IV.77)

In contrast to eq. (IV.59) the sum in (IV.77) runs from 0 to⇥, since the term with
n = 0 does not vanish here. This term yields in effect the elastic incoherent
structure factor (EISF),

EISF (q) =

⇤⇤⇤⇤
⇧

dx exp(iqx)P0(x)

⇤⇤⇤⇤
2

. (IV.78)

If the dynamical model is the fractional Ornstein-Uhlenbeck process, the
intermediate scattering function takes the form

I(q, t) = exp(�q2⇤x2⌅)
⇥⌅

n=0

q2n⇤x2⌅n

n!
E� (�n⇥�t�) (IV.79)

Since the EISF is a static average, we obtain the same result as for the normal
OU process – see Eq. (IV.43),

EISF (q) = lim
t�⇥

I(q, t) = exp
�
�q2⇤x2⌅

⇥
(IV.80)
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In the limit where � tends to 1 we have E� (�n⇤�t�) ⇥ exp(�n⇤t), and
since exp(�n⇤t) = exp(�⇤t)n, the series in (IV.79) represents the function
exp(q2⌅x2⇧ exp[�⇤t]). One retrieves thus the intermediate scattering function
corresponding to the standard OU process given in (IV.42). In the general
case, where 0 < � < 1, a closed form cannot be given, since E� (�n⇤�t�) ⇤=
E� (�⇤�t�)n.

The dynamic structure factor is obtained by the Fourier transform (IV.33),
inserting expression (IV.79):

S(q, ⌃) = exp(�q2⌅x2⇧)
�

⇥(⌃) +
⇥⌅

n=1

q2n⌅x2⇧n

n!

1

2⌅
L�(⌃; ⇧�,n)

⇥
(IV.81)

The generalized Lorentzians L�(⌃; ⇧) are given by (IV.61). Combining (IV.56),
(IV.62) and (II.164) one finds that the relaxation rates are given by

⇧�,n =
⇧̃

(n⇤⇧̃)1/�
(IV.82)

Fig. IV.11 shows the dynamic structure factor given in Eq. (IV.81) for � = 0.5,
using the first 20 terms in the series. The convergence has been checked em-
pirically. One notices that the dynamic structure factor has a very weak q-
dependence.

4.6. Fitting neutron scattering data. Let us now see how the model (IV.81)
fits to experimental data. For this purpose we take the reference data from
Doster et al. for myoglobin [61]. These data have been obtained from a hy-
drated myoglobin powder. This type of sample has been often used in the past
in order to suppress global translations and rotations of the proteins. In this
way only the dynamics of interest, namely the internal dynamics of proteins is
seen in the neutron scattering experiments.

4.6.1. Using the EISF. Expression (IV.81) depends formally on three param-
eters, which are �, ⇧ , and the position fluctuation ⌅x2⇧. Since the integral⇤ +⇥
�⇥ d⌃ S(q, ⌃) cannot be obtained with certainty from experiment, there is

even a fourth fit parameter – the amplitude of S(q, ⌃). The dynamic struc-
ture factor can nevertheless be fitted with three parameters, since the position
fluctuation can be obtained separately from a measurement of the EISF. The
latter has the Gaussian form (IV.80) for the model discussed here. Fig. IV.12
shows the EISF obtained from a hydrated myoglobin powder for T = 277 K
and T = 320 K. The curves have been re-plotted from the data presented
in [61]. The solid line represents the EISF at T = 300 K obtained from an MD
simulation of a single myoglobin molecule [62]. Global translations and rota-
tions have been subtracted prior to the calculation of the EISF.

It should be noted that q is to be considered as an experimental parameter
and that the elastic approximation (IV.41) is strictly valid for the EISF, since

102 4. PROTEIN DYNAMICS

where L�(·; ·) are the generalised Lorentzians

L�(⌃; ⌅) =
2⌅ sin(�⇤/2)

|⌃⌅ | (|⌃⌅ |� + 2 cos(�⇤/2) + |⌃⌅ |��)
, 0 < � ⌅ 1 (IV.61)

The relaxation times ⌅�,n are defined as

⌅�,n = ⇥�(1/�)
�,n , n ⌃= 0 (IV.62)

with ⇥�,n from Eq. (IV.56). Note that L�(⌃; ⌅) is singular at ⌃ = 0 if � ⌃= 1.
This is due to the fact that E�(�(t/⌅)�) is a self-similar function which has no
characteristic time scale. The limiting behaviour for large frequencies is

L�(⌃; ⌅) ⇧ ⌃�(1+�) (IV.63)

In contrast to the generalised stretched exponential, E�(�t�), whose
Fourier spectrum have in general a simple analytical form – but not the func-
tion itself – the inverse is true for the normal stretched exponential, ⇧SE(t; �) ⇤
exp(�t�). The � = 1/2 is one of the exceptions for which the Fourier spectrum
of the latter can be computed analytically. In this case the Laplace transform
has the form

⇧̂SE(s; 1/2) = 1� 1

2

⇤
⇤

s
exp

�
1

4s

⇥
erfc

�
1

2
↵

s

⇥
, (IV.64)

and the corresponding Fourier spectrum is again obtained from the relation
f̃(⌃) = 2⌥{f̂(i⌃)} for even functions f(t).

The right part of Fig. IV.8 shows the Fourier spectra of E1/2(�|t|1/2),
exp(t�1/2), and exp(�t) which are depicted in the left part. One recognises
that the Fourier spectrum of E1/2(�|t|1/2) is almost featureless. This illustrates
the self-similarity of dynamical processes described by FFPEs – any zoom on
the frequency scale yields a similar pattern of the Fourier spectrum.

4. Fractional OU process and applications

4.1. Description of the model and solution of the FFPE. We try now to
find a simple analytical model which aims to describe with a few parameters
the diffusive dynamics of an atom in a protein. The model must describe a
stochastic process which leads to confined motions in space and to the non-
exponential relaxation processes seen in Figs. IV.6 and IV.7. A candidate is the
fractional version of the OU process discussed earlier. The latter is a model for
diffusive motion in a harmonic potential which is schematically depicted in the
left part of Fig. IV.9. Due to the form of the potential the resulting motions are
confined in space. One can imagine that the anomalous diffusion described by
its fractional counterpart is caused by a highly irregular, “rugged” version of
the harmonic potential, which is shown in the right part of Fig. IV.9. A similar
qualitative description of the potential energy surface for a protein has been

G. Kneller,  Physical Chemistry Chemical Physics, vol. 7, pp. 2641 – 2655, 2005.
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We propose a fractional Brownian dynamics model for time correlation functions characterizing the
internal dynamics of proteins probed by NMR relaxation spectroscopy. The time correlation
functions are represented by a broad distribution of exponential functions which are characterized
by two parameters. We show that the model describes well the restricted rotational motion of N–H
vectors in the amide groups of lysozyme obtained from molecular dynamics simulation and that
reliable predictions of experimental relaxation rates can be obtained on that basis. © 2010 American
Institute of Physics. #doi:10.1063/1.3486195$

I. INTRODUCTION

NMR relaxation spectroscopy has proven to be a unique
approach for a site-specific investigation of both global tum-
bling and internal motions of proteins. The molecular mo-
tions modulate the magnetic interactions between the nuclear
spins and lead for each nuclear spin to a relaxation behavior
which reflects its environment. Since its first applications to
the study of protein dynamics, a variety of techniques has
been proposed for the investigation of both backbone and
side chain dynamics. Among them, relaxation measurements
of backbone amide 15N nuclei, which are routinely studied
by NMR, are most widespread.

The relationship between microscopic motions and spin
relaxation rates is provided by Redfield’s theory.1 In the case
of backbone amide 15N, relaxation primarily occurs through
fluctuations of the 15N– 1H-dipole-dipole interactions with
the directly bonded amide proton and of the 15N chemical
shift anisotropy tensor, which is commonly assumed to be
axially symmetric with its axis parallel to the NH bond !for a
general reference, see Ref. 2". The relaxation rates of the 15N
nuclei are determined by time correlation functions !TCFs"
of the form

Cii!t" = %P2!!i!t" · !i!0""& , !1"

where !i!t" is a unit vector pointing along the NH bond of
residue i and P2! . " is the second order Legendre polynomial.
Longitudinal and transverse 15N relaxation rates !R1i and
R2i", and 15N'1H( heteronuclear Overhauser enhancement
!!NHi" are expressed as linear combinations of the spectral
density functions Jii!"", the Fourier transforms of the Cii!t",
which are evaluated at the Larmor frequencies 0, "H, "N,
and "H#N)"H#"N

!NHi = 1 +
$H

$N

d2

R1
!6Jii!"H+N" − Jii!"H−N"" , !2a"

R1i = d2!3Jii!"N" + Jii!"H−N" + 6Jii!"H+N"" + 2c2Jii!"N" ,

!2b"

R2i = d2*2Jii!0" +
3
2

Jii!"N" +
1
2

Jii!"H−N" + 3Jii!"H"

+ 3Jii!"H+N"+ + c2*4
3

Jii!0" + Jii!"N"+ . !2c"

Here d=%0&$H$N /4,10'%rNH
3 & and c=$NB0()N /,15. The

parameters $H and $N are the gyromagnetic ratios of 15N and
1H atoms, respectively, %0 is the vacuum magnetic suscepti-
bility, & is the reduced Planck constant, and ()N is the 15N
chemical shift anisotropy. The NH distance is considered
constant and is fixed to its average value %rNH&.

The Redfield equations show that relaxation measure-
ments probe the relaxation dynamics of a selected nuclear
spin at only five selected frequencies. It is therefore not pos-
sible in practice to obtain a detailed picture about the internal
and global dynamics of proteins by a numerical reconstruc-
tion of Jii!"" from NMR data. In the model-free !MF" ap-
proach by Lipari and Szabo3 the assumption is made that the
internal reorientational correlation function decays exponen-
tially. Various studies of protein dynamics, spanning time
scales from picoseconds to hours4–10 give, however, evidence
that internal protein dynamics is characterized by strongly
nonexponential TCFs which may be described by non-
Markovian stochastic models, such as fractional Brownian
dynamics !fBD" and the continuous time random walk
!CTRW".11 The TCFs resulting from such models are char-
acterized by a superposition of exponential functions, with a
broad spectrum of decay rates. In the context of NMR spec-
troscopy we have recently shown12 that these relaxation
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NMR relaxation spectroscopy has proven to be a unique
approach for a site-specific investigation of both global tum-
bling and internal motions of proteins. The molecular mo-
tions modulate the magnetic interactions between the nuclear
spins and lead for each nuclear spin to a relaxation behavior
which reflects its environment. Since its first applications to
the study of protein dynamics, a variety of techniques has
been proposed for the investigation of both backbone and
side chain dynamics. Among them, relaxation measurements
of backbone amide 15N nuclei, which are routinely studied
by NMR, are most widespread.
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relaxation rates is provided by Redfield’s theory.1 In the case
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fluctuations of the 15N– 1H-dipole-dipole interactions with
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nuclei are determined by time correlation functions !TCFs"
of the form
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residue i and P2! . " is the second order Legendre polynomial.
Longitudinal and transverse 15N relaxation rates !R1i and
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parameters $H and $N are the gyromagnetic ratios of 15N and
1H atoms, respectively, %0 is the vacuum magnetic suscepti-
bility, & is the reduced Planck constant, and ()N is the 15N
chemical shift anisotropy. The NH distance is considered
constant and is fixed to its average value %rNH&.

The Redfield equations show that relaxation measure-
ments probe the relaxation dynamics of a selected nuclear
spin at only five selected frequencies. It is therefore not pos-
sible in practice to obtain a detailed picture about the internal
and global dynamics of proteins by a numerical reconstruc-
tion of Jii!"" from NMR data. In the model-free !MF" ap-
proach by Lipari and Szabo3 the assumption is made that the
internal reorientational correlation function decays exponen-
tially. Various studies of protein dynamics, spanning time
scales from picoseconds to hours4–10 give, however, evidence
that internal protein dynamics is characterized by strongly
nonexponential TCFs which may be described by non-
Markovian stochastic models, such as fractional Brownian
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acterized by a superposition of exponential functions, with a
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NMR relaxation spectroscopy has proven to be a unique
approach for a site-specific investigation of both global tum-
bling and internal motions of proteins. The molecular mo-
tions modulate the magnetic interactions between the nuclear
spins and lead for each nuclear spin to a relaxation behavior
which reflects its environment. Since its first applications to
the study of protein dynamics, a variety of techniques has
been proposed for the investigation of both backbone and
side chain dynamics. Among them, relaxation measurements
of backbone amide 15N nuclei, which are routinely studied
by NMR, are most widespread.

The relationship between microscopic motions and spin
relaxation rates is provided by Redfield’s theory.1 In the case
of backbone amide 15N, relaxation primarily occurs through
fluctuations of the 15N– 1H-dipole-dipole interactions with
the directly bonded amide proton and of the 15N chemical
shift anisotropy tensor, which is commonly assumed to be
axially symmetric with its axis parallel to the NH bond !for a
general reference, see Ref. 2". The relaxation rates of the 15N
nuclei are determined by time correlation functions !TCFs"
of the form
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where !i!t" is a unit vector pointing along the NH bond of
residue i and P2! . " is the second order Legendre polynomial.
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parameters $H and $N are the gyromagnetic ratios of 15N and
1H atoms, respectively, %0 is the vacuum magnetic suscepti-
bility, & is the reduced Planck constant, and ()N is the 15N
chemical shift anisotropy. The NH distance is considered
constant and is fixed to its average value %rNH&.

The Redfield equations show that relaxation measure-
ments probe the relaxation dynamics of a selected nuclear
spin at only five selected frequencies. It is therefore not pos-
sible in practice to obtain a detailed picture about the internal
and global dynamics of proteins by a numerical reconstruc-
tion of Jii!"" from NMR data. In the model-free !MF" ap-
proach by Lipari and Szabo3 the assumption is made that the
internal reorientational correlation function decays exponen-
tially. Various studies of protein dynamics, spanning time
scales from picoseconds to hours4–10 give, however, evidence
that internal protein dynamics is characterized by strongly
nonexponential TCFs which may be described by non-
Markovian stochastic models, such as fractional Brownian
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!CTRW".11 The TCFs resulting from such models are char-
acterized by a superposition of exponential functions, with a
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a"Electronic mail: vania.calandrini@cnrs-orleans.fr.
b"Electronic mail: daniel.abergel@ens.fr.
c"Electronic mail: gerald.kneller@cnrs-orleans.fr.

THE JOURNAL OF CHEMICAL PHYSICS 133, 145101 !2010"

0021-9606/2010/133"14!/145101/9/$30.00 © 2010 American Institute of Physics133, 145101-1

Downloaded 12 Oct 2010 to 194.167.30.222. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

Relaxation rates

Model



N-H  reorientational correlations in the peptide 
planes of calbindin seen by MD simulation

trajectory 1 ns 
Δt=40 fs

0 20 40 60 80 100

t[ps]

0.5

0.6

0.7

0.8

0.9

1

c
(t
)

res2

res20

res40

res60

res80

res100

∼ 50-100 fs
localized motions

> 10 ps : increasingly 
collective motions

res 100 
res 2 

res 20

res 80
res 60

fast
S2 ∼ 0.8-0.9

slow

lysozyme

res 104

V. Calandrini, G.R. Kneller, manuscript in preparation



res 104

try fits with 1 & 2 exponentials

0 10 20 30 40

t [ps]

0.7

0.75

0.8

0.85

0.9

0.95

1
C

(t
)

1-Exp 
2-Exp

lysozyme

(“model free”, Liparo-Szabo)



Estimating correlation times in NMR
cii(t) = Cii,R(t)Cii,I(t)

global rotation internal dynamics

CI(t) = S2 + (1� S2)E� (� [t/� ]�)CR(t) = exp(�[t/�0])

�tot =
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0
dt c(t) = J(0)
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The form of CI(t)
matters !
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Self-similar protein dynamics
The phenomenon of self-similarity on the time scale can be modeled by stochastic processes with long-time 
memory. 
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Observation of a Power-Law Memory Kernel for Fluctuations
within a Single Protein Molecule
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The fluctuation of the distance between a fluorescein-tyrosine pair within a single protein complex was
directly monitored in real time by photoinduced electron transfer and found to be a stationary, time-
reversible, and non-Markovian Gaussian process. Within the generalized Langevin equation formalism,
we experimentally determine the memory kernel K!t", which is proportional to the autocorrelation
function of the random fluctuating force. K!t" is a power-law decay, t#0:51$0:07 in a broad range of
time scales (10#3–10 s). Such a long-time memory effect could have implications for protein functions.

DOI: 10.1103/PhysRevLett.94.198302 PACS numbers: 82.37.-j, 02.50.-r, 05.40.-a, 87.15.He

Understanding the role of a protein’s dynamic motions
on its function has been a problem of long-standing interest
[1]. Single-molecule experiments provide information
about protein dynamics otherwise hidden in ensemble-
averaged studies. Recent single-molecule investigations
of a flavin oxidoreductase [2] indicate that protein confor-
mational fluctuations occur over a broad range of time
scales. Such conformational motion is closely related to
the fluctuations of enzymatic rate constant [3,4]. Kou and
Xie recently showed that this conformational fluctuation
can be modeled by a generalized Langevin equation (GLE)
[5]. Here we report a new single-molecule experiment
probing equilibrium conformational fluctuation in a pro-
tein via photoinduced electron-transfer (ET). Distance
fluctuations between the ET donor (D) and acceptor (A)
within a protein molecule were observed over a broad
range of times (10#3–100 s), and their stationarity, time
reversibility, and Gaussian property were proved by statis-
tical analysis. In the GLE formalism, the autocorrelation
function of the distance fluctuation was used to determine
the memory kernel which turns out to be a remarkable
power-law decay K!t" / t#0:51$0:07. The broad range of
time scales for conformational fluctuations at which pro-
tein reactions normally occur has implications for its bio-
logical functions, such as catalysis and allostery.

The system under study is a protein complex formed
between fluorescein (FL) and monoclonal antifluorescein
4-4-20 (anti-FL). This complex is highly stable, with a
small dissociation constant Kd % 0:1 nM, allowing long-
time observations at the single-molecule level. Figure 1(a)
shows its crystal structure, adapted from Ref. [6]. In our
room temperature experiment, a single FL and anti-FL
complex was first formed in solution, immobilized onto a
quartz surface via the biotin-streptavidin linkage, and then
repetitively excited by a 490 nm, 76 MHz, 100 fs pulse
train from a frequency doubled Ti:sapphire laser.
Fluorescence lifetime !#1 measurements were carried
out using the time-correlated single photon counting tech-

nique. The detailed experimental setup has been described
previously in Ref. [2].

The fluorescence decay of a single FL molecule is
monoexponential, while that of a single FL and anti-FL
complex is faster and multiexponential [Fig. 1(b)]. The
shorter lifetime results from photoinduced ET from the
closest tyrosine residue (Tyr37, donor) to FL (acceptor)
[7] and is expressed by !#1 & !!0 ' !ET"#1 ( !ET

#1,
where !0 denotes the fluorescence decay rate constant in

FIG. 1 (color). (a) Schematic of the structure of the FL and
anti-FL complex, adapted from Ref. [6]. Tyr37 and FL, ET donor
and acceptor, are highlighted. (b) Monoexponential fluorescence
lifetime decay for a single FL molecule. Multiexponential fluo-
rescence decay for the FL and anti-FL complex at both ensemble
and single-molecule levels. The instrumental response function
with 60 ps FWHM. a.u., arbitrary units.
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ibility holds, we expect

hx3!0"x!t"i # hx3!$t"x!0"i # hx!0"x3!t"i; (2)

where the first equality is due to stationarity, and the
second to reversibility. Figure 3(a) plots the experimentally
determined hx3!0"x!t"i and hx!0"x3!t"i against each other.
The diagonal line proves the time reversal symmetry.

We now examine the Gaussian property of x!t". For a
Gaussian process, all correlation functions higher than
second order can be expressed by the second order corre-
lation function. For example, hx!0"x!t"x!2t"i # 0, and
hx!0"x!t"x!2t"x!3t"i# hx!0"x!3t"ihx!0"x!t"i% hx!0"x!t"i2%
hx!0"x!2t"i2. We calculated both hx!0"x!t"x!2t"i and
hx!0"x!t"x!2t"x!3t"i from the experimental x!t" tra-
jectory and found that hx!0"x!t"x!2t"i vanishes within
experimental error and that hx!0"x!t"x!2t"x!3t"i matches
well with hx!0"x!3t"ihx!0"x!t"i% hx!0"x!t"i2% hx!0"x!2t"i2
[Fig. 3(b)]. These results strongly suggest that x!t" is a
Gaussian process.

By virtue of the stationary and Gaussian properties of
x!t", Cx!t" & hx!t"x!0"i is related to the autocorrelation
function of fluorescence lifetime variations, C!$1!t", by

C!$1!t" & h"!$1!0""!$1!t"i
h!$1i2 # e#

2Cx!t" $ 1; (3)

where "!$1!t" # !$1!t" $ h!$1i. C!$1!t" can be obtained
with a high time resolution comparable to the reciprocal of
the average photon count rate (1–2 ms), using the photon-
by-photon method [11] instead of the conventional bin-
ning. Thus, Cx!t" can be obtained from Eq. (3) with the
same high time resolution. Figure 4 shows the averaged
Cx!t" of 13 molecules, and it clearly has fluctuations over a
wide range of time scales. No noticeable power depen-
dence of Cx!t" in the excitation power range from 0.5 to
5 $W was observed, implying that the distance fluctua-
tions are spontaneous rather than photoinduced.

To investigate the underlying dynamics, the fluctuation
was analyzed in the framework of GLE, which can be
derived from the Liouville equation using projection op-
erators [12]. x!t" is modeled as the coordinate of a fictitious
particle diffusing in a potential of mean force. The GLE
governing its equilibrium dynamics is

m
d2x!t"
dt2

# $%
Z t

0
d&K!t$&"dx!&"

d&
$dU!x"

dx
%F!t"; (4)

where m is the reduced mass of the particle, U!x" #
m!2x2=2 is the harmonic potential with an angular fre-
quency !, % is the friction coefficient, F!t" is the fluctuat-
ing force, and K!t" is the memory kernel related to F!t" by
the fluctuation-dissipation theorem:

K!t$ &" # !1=%kBT"hF!t"F!&"i: (5)

In the overdamped limit where acceleration can be ne-
glected, Eq. (4) can be rewritten as

m!2x!t" # $ %
Z t

0
d&K!t$ &" dx!&"

d&
% F!t": (6)

Equation (6) can be converted to an equation for the time
correlation function Cx!t" by multiplying by x!0" and
averaging over the initial equilibrium condition:

m!2Cx!t"# $%
Z t

0
d&K!t$&"dCx!&"

d!&" % hF!t"x!0"i: (7)

The last term hF!t"x!0"i # 0 because F is orthogonal to x
in the phase space [12,13]. The Laplace transform of
Eq. (7) gives

~K!s" # m!2

%

~Cx!s"
Cx!0" $ s ~Cx!s"

; (8)

where ~K!s" is the Laplace transform of K!t". By taking the
Laplace transform of Cx!t" in Fig. 4 (open circles) numeri-
cally, and plugging the resulting ~Cx!s" into Eq. (8) along
with Cx!0" # kBT=m!2 # ' # 0:22 !A2, one solves
!%=m!2" ~K!s", which is shown in Fig. 5 after normaliza-
tion. Over at least four decades of time, ~K!s" exhibits a
simple power-law decay, ~K!s" / s(, with ( # $ 0:49'
0:07. Inverse Laplace transform of ~K!s" gives the time
domain correspondence K!t" / t$($1 # t$0:51'0:07, which
is remarkably simple.

The above results have implications for the nature of
F!t". First, since x!t" is stationary, the fluctuations of F!t"
must likewise be stationary. Second, since GLE is a linear
equation of x!t", the Gaussianity of x!t" requires F!t" to be
a Gaussian process as well. Third, the long memory be-
havior indicates that F!t" is non-Markovian. Fourth, the
power-law decay of K!t" implies time scaling invariance of
hF!t"F!&"i [Eq. (5)]. Mathematically, the only process that

FIG. 4. Autocorrelation function of distance fluctuation Cx!t"
(open circles, average of 13 molecules under the same experi-
mental condition), determined with high time resolution using
Eq. (3), with Cx!0" # kBT=m!2 # ' # 0:22 !A2. The solid line
is a fit to Cx!t" # Cx!0"et=t0erfc!

!!!!!!!!!!

t=t0"
p

with parameter
%=m!2 # 0:7 s0:5. The error bounds (dashed line) were esti-
mated by the method described in Ref. [17].

PRL 94, 198302 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
20 MAY 2005

198302-3

seconds

Distance autocorrelation 
by single molecule fluorescence 
spectrocopy 
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G.R. Kneller,et al J Chem Phys 136, 
191101 (2012).



The model correlation functions have the experimentally 
observed power law decay, but they are not analytic and thus 
unphysical at t=0.

dnc(t)

dtn

����
t=0

= (�1)n1

Limit of fractional Brownian 
dynamics

The moments of the relaxation reate spectrum diverge.



Modeling diffusion in velocity space

x(t)� x(0) =

Z
t

0
dx(⌧)

v(t)=ẋ(t)
=

Z
t

0
d⌧v(⌧)

MSDs are computed via velocity autocorrelation 
functions (VACFs).

h(x(t)� x(0))2i| {z }
W (t)

= 2

Z t

0
d⌧ (t� ⌧) hv(⌧)v(0)i| {z }

cvv(⌧)

Distinguish

• Ballistic regime (t ! 0): W (t)
t!0⇠ h|v|2it2

• Asymptotic regime (t ! 1): W (t)
t!1⇠ 2nD↵t↵

�(1 + ↵)



Langevin’s stochastic equation of motion

6. THE LANGEVIN OSCILLATOR 15

FIGURE I.3. The normalised VACF  (t) of a Brownian particle
and the corresponding MSD.

6. The Langevin oscillator

6.1. Equation of motion. We consider now a Brownian particle which dif-
fuses under the influence of an external harmonic force, F (x) = �Kx. Here x
is the displacement of the Brownian particle with respect its equilibrium posi-
tion and K > 0 is the force constant describing the strength of the harmonic
force. The Langevin equation (I.1) reads thus

Mv̇ = �Kx� ↵v + Fs(t), K > 0,↵ > 0. (I.51)

The properties of the stochastic force are the same as for the freely diffusing
Brownian particle (see Eqs. (I.3) and (I.4)). For the following considerations it
is convenient to use the normalised form of (I.51),

ẍ+ �ẋ+ !2

0

x = fs(t) (I.52)

where !2

0

= K/M and � = ↵/M . In the following we will again consider the
VACF and the MSD.

6.2. Velocity autocorrelation function. In order to derive an equation in-
volving the VACF only Eq. (I.52) is first rewritten as5

v̇ + �v + !2

0

Z t

0

d⌧v(⌧) = fs(t) (I.53)

Multiplication with v(0) and averaging over time yields

ċvv + �cvv + !2

0

Z t

0

d⌧cvv(⌧) = 0 (I.54)

since hv(0)fs(t)i⌧ = 0.

5One may think that the integral could be avoided by a further differentiation, but this is
not so since the stochastic force is not a differentiable function.

white noise

P. Langevin, C. Rendus Acad. Sci. Paris 146, 530 (1908).

v̇ + �v = fs(t)

W (t)
t�1/�⇠ 6

kBT

m�| {z }
D

t

cvv(t) =
3kBT

m
exp(��t)

Asymptotic form of the MSD



VACF of an (anomalous) Rayleigh particle:
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Here exponential relaxation is obtained for � ! 1, i.e.

lim
�!1

pfOU(�;�) = �(�� 1). (37)

The relaxation function  (t;�) and the corresponding relaxation rate spec-
trum are shown in Fig. 1 for some values of �. One observes that pfOU(�;�)
develops a peak around � = 1 as � approaches one.

2.5. Anomalous Brownian motion in velocity space

Di↵usion processes may be as well described by stochastic processes in
velocity space. In this case on considers a conditional probability density
p(v, t|v0, 0) for a velocity change v0 ! v within time t. The process must
be constructed such that p(v, t|v0, 0) tends towards a Maxwell distribution
for long times, independently if the process is normal or anomalous. In case
of normal di↵usion one considers an Ornstein-Uhlenbeck process in velocity
space and the di↵using particle is referred to as Rayleigh particle [20]. To
account for anomalous di↵usion, Barkay and Silbey [32] proposed a corre-
sponding fFPE of the form

@

@t
p(v, t|v0, 0) = @1�⇢

t Lv p(v, t|v0, 0), 0 < ⇢ < 2. (38)

where the Fokker-Planck operatorLv has the form

Lv = ⌘⇢

⇢
@

@v
· v +

kBT

m

@

@v
· @
@v

�
. (39)

The parameter ⌘⇢ is a fractional relaxation constant with dimension 1/s⇢ in
SI units. Here the equilibrium solution of (38) is indeed the Maxwell distri-
bution, and, analogously to (23), one finds that the velocity autocorrelation
function (VACF) has the form

cvv(t) = h|v|2iE⇢(�[t/⌧v]
⇢). (40)

The time scale ⌧v is defined through

⌧v = (1/⌘⇢)
1/⇢ (41)

and h|v|2i = nkBT/M . In order to construct the MSD from the VACF of
a di↵using particle, one expresses displacements as integrals over velocities,

such that W (t) =
DR t

0

R t
0 d⌧1d⌧2 v(⌧1) · v(⌧2)

E
. Assuming stationarity of the

underlying process, this may be expressed in the form

W (t) = 2

Z 1

0
d⌧ (t� ⌧)cvv(⌧). (42)

Here one can again distinguish two regimes:
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Here one can again distinguish two regimes:

Consider a (f)OU process in velocity space
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a) The short time regime where t ⌧ ⌧v. This is the so-called “ballistic
regime”, corresponding to free flight, where cvv(t) ⇡ h|v|2i, such that

W (t)
t⌧⌧v⇠ h|v|2it2. (43)

b) The long time regime where t � ⌧v. Using the Laplace transform of
W (t) relation (42) becomes Ŵ (s) = 2ĉvv(s)/s2, where one may use
that (see Eq. (35))

ĉvv(s) =
h|v|2i

s(1 + (s⌧v)�⇢)
. (44)

The asymptotic form of the MSD reads therefore

W (t)
t�⌧v⇠ 2h|v|2⌧⇢v

�(3� ⇢)
t2�⇢. (45)

Setting
⇢ = 2� ↵, with 0 < ↵ < 2, (46)

the MSD takes the form (14), where

D↵ =
h|v|2i
n

⌘�1
2�↵ (47)

is the fractional di↵usion coe�cient.

2.6. Illustrations

In this section two examples are presented for anomalous di↵usion and
relaxation in biomolecular systems seen by molecular dynamics simulations.

2.6.1. Lateral di↵usion in lipid bilayers

As mentioned earlier, there is experimental evidence by fluorescence-
based techniques that the lateral di↵usion of molecules in lipid bilayers is
anomalous [10, 11, 12], and several groups have recently studied these mo-
tions by molecular dynamics simulations [34, 33, 35]. It must be emphasized
that the experimental data concern much longer time scales (micro- to mil-
liseconds) as those accessible by MD simulations, which are roughly limited
to 100 nanoseconds for all atom models and today’s standard computer
equipment. The interesting question is now if the experimentally found
subdi↵usion is also seen on the much shorter time scales of MD simulations
and if the fractional di↵usion constants are comparable.

10 Contribution-Kneller printed on May 9, 2015

a) The short time regime where t ⌧ ⌧v. This is the so-called “ballistic
regime”, corresponding to free flight, where cvv(t) ⇡ h|v|2i, such that

W (t)
t⌧⌧v⇠ h|v|2it2. (43)

b) The long time regime where t � ⌧v. Using the Laplace transform of
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E. Barkai and R. Silbey, J Phys Chem B 104, 3866 (2000).



Generalized (deterministic) Langevin Equation 
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is represented by the memory kernel and the fluctuating force f

(+)(t). The
latter is not a stochastic force, as in Langevin’s equation of motion for Brow-
nian particle [56] and other generalization of the latter [57, 58] but it can
be formally constructed on the basis of the exact Hamiltonian dynamics of
the total system, which consists of the tagged particle and its environment.
The memory function is defined as the ensemble-averaged autocorrelation
function f

(+)(t), (t) = hf (+)(0) · f (+)(t)i, assuming an isotropic system.
The details are not important here and can be found in the excellent book
by Zwanzig on non-equilibrium statistical physics [6]. Using that, by con-
struction, hv(0) · f (+)(t)i = 0, one can derive a closed equation of motion
for the velocity autocorrelation function (VACF),

@tcvv(t) = �
Z t

0
dt0 cvv(t� t0)(t0), (49)

where the VACF is defined through the ensemble average,

cvv(t) = hv(t) · v(0)i. (50)

The memory function equation (49) has been the starting point for the
development of numerous models for the dynamics of liquids [59, 60] and it
will be again useful to understand the mechanisms of anomalous di↵usion.

3.2. Asymptotic analysis of the di↵usion regime

Any stochastic model for normal or anomalous di↵usion implies an elim-
ination of fast motions which are represented by noise and for this reason
stochastic models can obviously not be applied on all time scales. Their
applicability depends on the coarse-graining of the underlying time scale.
If di↵usion is modeled in position space the MSD will for example not ex-
hibit the characteristic ballistic behavior W (t) ⇠ h|v|2i t2 for short times
which follows from Taylor expansion of Expression (42). A rigorous analy-
sis of di↵usion processes can be accomplished within the framework of non-
equilibrium statistical mechanics, which is based on deterministic equations
for motion for the constituents of a many-body system. In this context only
the asymptotic form of the MSD is needed, since only this regime is rele-
vant for di↵usion processes. This section resumes the essential steps and
results of two recent articles [61, 62] in which asymptotic analysis is used
to establish generalized Kubo formulae for transport coe�cients, conditions
for anomalous di↵usion, and the applicability of fractional Fokker-Planck
equations.

[1] R. Zwanzig. Statistical mechanics of irreversibility, pages 106–141. Lectures in  Theoretical Physics. !
     Wiley-Interscience, New York, 1961.!
[2] R. Zwanzig. Nonequilibrium statistical mechanics. Oxford University Press, 2001.!

The GLE is a deterministic equation of motion for a « tagged » 
particle. The external force f(+)(t) can be expressed in terms of the 
Liouville operator for the whole system and a projection operator 
on the selected dynamical variable (here v). 
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dcvv(t)

dt
= �

Z t

0
d⌧ (t� ⌧)cvv(⌧)

dv(t)

dt
= �

Z t

0
d⌧ (t� ⌧)v(⌧) + f (+)(t)
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The general solution of the Volterra-type integral equation (I.95) for a given
memory kernel can be obtained by Laplace transform. For this purpose one
uses

d+f

dt
= lim

h�0+

f(t + h)� f(t)

h
L⇥⇤ sf̂(s)� f(0). (I.101)

Using the above relation one finds from (I.95) that

ĉvv(s) =
cvv(0)

s + � + ⇥̂(s)
(I.102)

Eq. (I.102) is a starting point for developing analytical models for the VACF.
If the memory function takes the form (I.100) one finds that ⇥̂(s) = 0, yielding
thus a Laplace transform for the VACF which has a simple pole in the s-plane,

ĉvv(s) =
cvv(0)

s + �
. (I.103)

and an inverse Laplace transform yields thus a simple exponential, cvv(t) =
cvv(0) exp(��t).

8.3.2. Diffusion constant. We know from relation (I.74) that the diffusion
constant is obtained from the integral over the VACF, which is equivalent to
the Laplace transform at s = 0, D = ĉvv(0). Since cvv(0) = ⌅v2⇧, it follows
therefore from (I.102) that

D =
⌅v2⇧
�

, where � = � +

� ⇥

0

dt⇥(t) (I.104)

This is the generalisation of (I.49), where the constant � given above replaces
the phenomenological constant � in the Langevin equation.

8.3.3. Mori-Zwanzig approach. Following the idea of Mori [11], the
form (I.103) can be considered as the simplest form in a hierarchy which is
generated by considering that the memory satisfies itself the same type of in-
tegral equation as the VACF, defining in this way a memory function of second
order. To the latter one can again associate a memory function, and so on,

⇥̇n(t) + �n⇥n(t) +

� t

0

d⇤ ⇥n+1(t� ⇤)⇥n(⇤) = 0 (I.105)

At a certain order M the hierarchy ends by setting ⇥n(t) = 0 for n > M . This
leads to the continued fraction representation

⇥̂1(s) =
⇥1(0)

s + �1 +
⇥2(0)

s + �2 + . . .
⇥M(0)

s + �M

. (I.106)
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cvv(0)
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cvv(t) is multi-exponential

Mori-Zwanzig model for the memory function



Can such considerations be generalized ?

W (t) = 2

Z 1

0
d⌧ (t� ⌧)cvv(⌧) , Ŵ (s) =

2ĉvv(s)

s2

ˆf(s) =

Z t

0
dt exp(�st)f(t)Using the Laplace transform 

MSD for multi-exponential VACFs

If ĉvv(s) is a rational function, with poles sk such that <{sk} < 0,

and if ĉvv(0) is finite,

ˆW (s) has a pole of second order at s = 0

and it follows from the residue theorem

W (t) = lim

s!0

d

ds
{exp(st)ĉvv(s)}+ exponentially decaying terms.

Therefore W (t)
t!1⇠ 2Dt where D = ĉvv(0) =

R1
0 cvv(t).
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continuous time random walk model,30, 37 and an illustrative
interpretation of the memory kernel in FLEs for the descrip-
tion of subdiffusion in viscoelastic media can be found in
Ref. 38.

In this paper, a theoretical description of anomalous dif-
fusion processes is developed which combines a formally
exact description of single particle dynamics within the
framework of the generalized Langevin equation39, 40 with
an asymptotic analysis of the relevant observables for long
times. Memory effects enter here naturally through the mem-
ory function of the velocity autocorrelation function of the
diffusing particle, which is in turn related to the MSD. The
aim of the paper is to derive generalized Kubo relations for
the relevant transport coefficients, which hold for both normal
and anomalous diffusion, and to formulate general conditions
for anomalous diffusion, enabling a simple physical interpre-
tation without imposing a particular model.

The paper is organized as follows: Section II treats the
derivation of generalized Kubo relations, starting from a the-
orem for asymptotic analysis which is applied to the MSD of
a diffusing particle. In a second step general conditions for
anomalous diffusion are derived, where spatially unconfined
and confined diffusion are distinguished.

In Sec. III, the results are illustrated with semi-analytical
examples and the paper is concluded by a short résumé and
an outlook.

II. THEORY

A. Kubo relation for Dα

Kubo relations establish a connection between macro-
scopic transport coefficients and the microscopic Hamiltonian
dynamics of the system under consideration.41 Each trans-
port coefficient is expressed by an integral over a correspond-
ing time correlation function. In case of diffusion processes
one considers the velocity autocorrelation function (VACF),
cvv (t) = ⟨v(t) · v(0)⟩, and the diffusion coefficient is given by
the well-known relation

D =
∫ ∞

0
dt cvv (t), (2)

if one assumes unconfined normal diffusion.
A generalization of expression (2) covering both normal

and anomalous diffusion can be derived from an appropriate
asymptotic analysis of the MSD. Assuming isotropic diffu-
sion, its asymptotic form may be written as

W (t)
t→∞∼ 2Dα L(t)tα (0 ≤ α < 2), (3)

where L(t) fulfills the conditions

lim
t→∞

L(t) = 1, (4)

lim
t→∞

t
d L(t)

dt
= 0. (5)

For physical reasons L(t) must be positive. The ballistic
asymptotic regime, where α = 2, is not considered in the fol-
lowing. By construction, L(t) belongs to the class of slowly

varying functions,42, 43 which are defined through the weaker
condition limt→∞ L(λt)/L(t) = 1, with λ > 0.

The general asymptotic form (3) of the MSD yields a di-
rect link to a Tauberian theorem due to Hardy, Littlewood, and
Karamata (HLK),42, 43 which establishes a relation between
slowly growing functions and their Laplace transforms,

h(t)
t→∞∼ L(t)tρ ⇔ ĥ(s)

s→0∼ L(1/s)
$(ρ + 1)

sρ+1
(ρ > −1).

(6)
Here ĥ(s) =

∫ ∞
0 dt exp(−st)h(t) (ℜ{s} > 0) denotes the

Laplace transform of h(t). Noting that ĥ(0) =
∫ ∞

0 dt h(t), the
theorem can be intuitively understood. It states that the di-
vergence of the integral

∫ t
0 dτ h(τ ) as t approaches infinity is

reflected in the divergence of the Laplace transform of h(t), as
s approaches zero. From the asymptotic form (3) of the MSD
and the HLK theorem one can conclude that

Ŵ (s)
s→0∼ 2Dα L(1/s)

$(α + 1)
sα+1

. (7)

The relation of this expression to the VACF of the diffusing
particle follows from the convolution relation44

W (t) = 2
∫ t

0
dt ′ (t − t ′)cvv (t ′), (8)

which translates by Laplace transform into

Ŵ (s) = 2 ĉvv (s)
s2

. (9)

Comparison with Eq. (7) shows that

ĉvv (s)
s→0∼ Dα$(α + 1)L(1/s)s1−α. (10)

From expression (10) one can derive a generalized Kubo rela-
tion for the fractional diffusion constant which holds for both
normal and anomalous diffusion processes. The first step con-
sists in solving Eq. (10) for Dα . Using that lims→0 L(1/s) = 1
on account of Eq. (4), one obtains

Dα = lim
s→0

sα−1ĉvv (s)/$(1 + α). (11)

In a second step one recognizes that sα−1ĉvv (s) is the Laplace
transform of the fractional derivative of order α − 1 of
cvv (t) with respect to time. Writing ρ = n − β, where n
= 0, 1, 2, . . . is an integer number and β ≥ 0 is real, the frac-
tional Riemann-Liouville derivative of order ρ of an arbitrary
function g is defined through45

0∂
ρ
t g(t) = ∂

(−)n
t

∫ t

0
dt ′ (t − t ′)β−1

$(β)
g(t ′). (12)

The symbol ∂
(−)n
t denotes a normal left derivative of order n

and negative values of ρ indicate fractional integration. The
index “0” in the symbol for the fractional derivative on the
left-hand side in Eq. (12) refers to the lower limit in the inte-
gral on the right-hand side. Since lims→0 ĝ(s) =

∫ ∞
0 dt g(t),

one finds that the fractional diffusion coefficient is given by
the relation

Dα = 1
$(1 + α)

∫ ∞

0
dt 0∂

α−1
t cvv (t). (13)

For α = 1 the standard Kubo expression (2) for the diffusion
constant is retrieved and for the case α = 0, which describes
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continuous time random walk model,30, 37 and an illustrative
interpretation of the memory kernel in FLEs for the descrip-
tion of subdiffusion in viscoelastic media can be found in
Ref. 38.

In this paper, a theoretical description of anomalous dif-
fusion processes is developed which combines a formally
exact description of single particle dynamics within the
framework of the generalized Langevin equation39, 40 with
an asymptotic analysis of the relevant observables for long
times. Memory effects enter here naturally through the mem-
ory function of the velocity autocorrelation function of the
diffusing particle, which is in turn related to the MSD. The
aim of the paper is to derive generalized Kubo relations for
the relevant transport coefficients, which hold for both normal
and anomalous diffusion, and to formulate general conditions
for anomalous diffusion, enabling a simple physical interpre-
tation without imposing a particular model.

The paper is organized as follows: Section II treats the
derivation of generalized Kubo relations, starting from a the-
orem for asymptotic analysis which is applied to the MSD of
a diffusing particle. In a second step general conditions for
anomalous diffusion are derived, where spatially unconfined
and confined diffusion are distinguished.

In Sec. III, the results are illustrated with semi-analytical
examples and the paper is concluded by a short résumé and
an outlook.

II. THEORY

A. Kubo relation for Dα

Kubo relations establish a connection between macro-
scopic transport coefficients and the microscopic Hamiltonian
dynamics of the system under consideration.41 Each trans-
port coefficient is expressed by an integral over a correspond-
ing time correlation function. In case of diffusion processes
one considers the velocity autocorrelation function (VACF),
cvv (t) = ⟨v(t) · v(0)⟩, and the diffusion coefficient is given by
the well-known relation

D =
∫ ∞

0
dt cvv (t), (2)

if one assumes unconfined normal diffusion.
A generalization of expression (2) covering both normal

and anomalous diffusion can be derived from an appropriate
asymptotic analysis of the MSD. Assuming isotropic diffu-
sion, its asymptotic form may be written as

W (t)
t→∞∼ 2Dα L(t)tα (0 ≤ α < 2), (3)

where L(t) fulfills the conditions

lim
t→∞

L(t) = 1, (4)

lim
t→∞

t
d L(t)

dt
= 0. (5)

For physical reasons L(t) must be positive. The ballistic
asymptotic regime, where α = 2, is not considered in the fol-
lowing. By construction, L(t) belongs to the class of slowly

varying functions,42, 43 which are defined through the weaker
condition limt→∞ L(λt)/L(t) = 1, with λ > 0.

The general asymptotic form (3) of the MSD yields a di-
rect link to a Tauberian theorem due to Hardy, Littlewood, and
Karamata (HLK),42, 43 which establishes a relation between
slowly growing functions and their Laplace transforms,

h(t)
t→∞∼ L(t)tρ ⇔ ĥ(s)

s→0∼ L(1/s)
$(ρ + 1)

sρ+1
(ρ > −1).

(6)
Here ĥ(s) =

∫ ∞
0 dt exp(−st)h(t) (ℜ{s} > 0) denotes the

Laplace transform of h(t). Noting that ĥ(0) =
∫ ∞

0 dt h(t), the
theorem can be intuitively understood. It states that the di-
vergence of the integral

∫ t
0 dτ h(τ ) as t approaches infinity is

reflected in the divergence of the Laplace transform of h(t), as
s approaches zero. From the asymptotic form (3) of the MSD
and the HLK theorem one can conclude that

Ŵ (s)
s→0∼ 2Dα L(1/s)

$(α + 1)
sα+1

. (7)

The relation of this expression to the VACF of the diffusing
particle follows from the convolution relation44

W (t) = 2
∫ t

0
dt ′ (t − t ′)cvv (t ′), (8)

which translates by Laplace transform into

Ŵ (s) = 2 ĉvv (s)
s2

. (9)

Comparison with Eq. (7) shows that

ĉvv (s)
s→0∼ Dα$(α + 1)L(1/s)s1−α. (10)

From expression (10) one can derive a generalized Kubo rela-
tion for the fractional diffusion constant which holds for both
normal and anomalous diffusion processes. The first step con-
sists in solving Eq. (10) for Dα . Using that lims→0 L(1/s) = 1
on account of Eq. (4), one obtains

Dα = lim
s→0

sα−1ĉvv (s)/$(1 + α). (11)

In a second step one recognizes that sα−1ĉvv (s) is the Laplace
transform of the fractional derivative of order α − 1 of
cvv (t) with respect to time. Writing ρ = n − β, where n
= 0, 1, 2, . . . is an integer number and β ≥ 0 is real, the frac-
tional Riemann-Liouville derivative of order ρ of an arbitrary
function g is defined through45

0∂
ρ
t g(t) = ∂

(−)n
t

∫ t

0
dt ′ (t − t ′)β−1

$(β)
g(t ′). (12)

The symbol ∂
(−)n
t denotes a normal left derivative of order n

and negative values of ρ indicate fractional integration. The
index “0” in the symbol for the fractional derivative on the
left-hand side in Eq. (12) refers to the lower limit in the inte-
gral on the right-hand side. Since lims→0 ĝ(s) =

∫ ∞
0 dt g(t),

one finds that the fractional diffusion coefficient is given by
the relation

Dα = 1
$(1 + α)

∫ ∞

0
dt 0∂

α−1
t cvv (t). (13)

For α = 1 the standard Kubo expression (2) for the diffusion
constant is retrieved and for the case α = 0, which describes
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continuous time random walk model,30, 37 and an illustrative
interpretation of the memory kernel in FLEs for the descrip-
tion of subdiffusion in viscoelastic media can be found in
Ref. 38.

In this paper, a theoretical description of anomalous dif-
fusion processes is developed which combines a formally
exact description of single particle dynamics within the
framework of the generalized Langevin equation39, 40 with
an asymptotic analysis of the relevant observables for long
times. Memory effects enter here naturally through the mem-
ory function of the velocity autocorrelation function of the
diffusing particle, which is in turn related to the MSD. The
aim of the paper is to derive generalized Kubo relations for
the relevant transport coefficients, which hold for both normal
and anomalous diffusion, and to formulate general conditions
for anomalous diffusion, enabling a simple physical interpre-
tation without imposing a particular model.

The paper is organized as follows: Section II treats the
derivation of generalized Kubo relations, starting from a the-
orem for asymptotic analysis which is applied to the MSD of
a diffusing particle. In a second step general conditions for
anomalous diffusion are derived, where spatially unconfined
and confined diffusion are distinguished.

In Sec. III, the results are illustrated with semi-analytical
examples and the paper is concluded by a short résumé and
an outlook.

II. THEORY

A. Kubo relation for Dα

Kubo relations establish a connection between macro-
scopic transport coefficients and the microscopic Hamiltonian
dynamics of the system under consideration.41 Each trans-
port coefficient is expressed by an integral over a correspond-
ing time correlation function. In case of diffusion processes
one considers the velocity autocorrelation function (VACF),
cvv (t) = ⟨v(t) · v(0)⟩, and the diffusion coefficient is given by
the well-known relation

D =
∫ ∞

0
dt cvv (t), (2)

if one assumes unconfined normal diffusion.
A generalization of expression (2) covering both normal

and anomalous diffusion can be derived from an appropriate
asymptotic analysis of the MSD. Assuming isotropic diffu-
sion, its asymptotic form may be written as

W (t)
t→∞∼ 2Dα L(t)tα (0 ≤ α < 2), (3)

where L(t) fulfills the conditions

lim
t→∞

L(t) = 1, (4)

lim
t→∞

t
d L(t)

dt
= 0. (5)

For physical reasons L(t) must be positive. The ballistic
asymptotic regime, where α = 2, is not considered in the fol-
lowing. By construction, L(t) belongs to the class of slowly

varying functions,42, 43 which are defined through the weaker
condition limt→∞ L(λt)/L(t) = 1, with λ > 0.

The general asymptotic form (3) of the MSD yields a di-
rect link to a Tauberian theorem due to Hardy, Littlewood, and
Karamata (HLK),42, 43 which establishes a relation between
slowly growing functions and their Laplace transforms,

h(t)
t→∞∼ L(t)tρ ⇔ ĥ(s)

s→0∼ L(1/s)
$(ρ + 1)

sρ+1
(ρ > −1).

(6)
Here ĥ(s) =

∫ ∞
0 dt exp(−st)h(t) (ℜ{s} > 0) denotes the

Laplace transform of h(t). Noting that ĥ(0) =
∫ ∞

0 dt h(t), the
theorem can be intuitively understood. It states that the di-
vergence of the integral

∫ t
0 dτ h(τ ) as t approaches infinity is

reflected in the divergence of the Laplace transform of h(t), as
s approaches zero. From the asymptotic form (3) of the MSD
and the HLK theorem one can conclude that

Ŵ (s)
s→0∼ 2Dα L(1/s)

$(α + 1)
sα+1

. (7)

The relation of this expression to the VACF of the diffusing
particle follows from the convolution relation44

W (t) = 2
∫ t

0
dt ′ (t − t ′)cvv (t ′), (8)

which translates by Laplace transform into

Ŵ (s) = 2 ĉvv (s)
s2

. (9)

Comparison with Eq. (7) shows that

ĉvv (s)
s→0∼ Dα$(α + 1)L(1/s)s1−α. (10)

From expression (10) one can derive a generalized Kubo rela-
tion for the fractional diffusion constant which holds for both
normal and anomalous diffusion processes. The first step con-
sists in solving Eq. (10) for Dα . Using that lims→0 L(1/s) = 1
on account of Eq. (4), one obtains

Dα = lim
s→0

sα−1ĉvv (s)/$(1 + α). (11)

In a second step one recognizes that sα−1ĉvv (s) is the Laplace
transform of the fractional derivative of order α − 1 of
cvv (t) with respect to time. Writing ρ = n − β, where n
= 0, 1, 2, . . . is an integer number and β ≥ 0 is real, the frac-
tional Riemann-Liouville derivative of order ρ of an arbitrary
function g is defined through45

0∂
ρ
t g(t) = ∂

(−)n
t

∫ t

0
dt ′ (t − t ′)β−1

$(β)
g(t ′). (12)

The symbol ∂
(−)n
t denotes a normal left derivative of order n

and negative values of ρ indicate fractional integration. The
index “0” in the symbol for the fractional derivative on the
left-hand side in Eq. (12) refers to the lower limit in the inte-
gral on the right-hand side. Since lims→0 ĝ(s) =

∫ ∞
0 dt g(t),

one finds that the fractional diffusion coefficient is given by
the relation

Dα = 1
$(1 + α)

∫ ∞

0
dt 0∂

α−1
t cvv (t). (13)

For α = 1 the standard Kubo expression (2) for the diffusion
constant is retrieved and for the case α = 0, which describes
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3.2.1. A Tauberian theorem for the mean square displacement

Referring to [61], a relation between the asymptotic regimes of the MSD
and the VACF can be established through a theorem from asymptotic anal-
ysis, which falls into the category of Tauberian theorems. The Hardy–
Littlewood–Karamata (HLK) theorem [63] yields a relation between the
asymptotic form of functions h(t) for which the integral

R1
0 dt h(t) diverges

and their Laplace transforms for small arguments s,

h(t)
t!1⇠ L(t)t⇢ , ĥ(s)

s!0⇠ L(1/s)
�(⇢+ 1)

s⇢+1
(⇢ > �1). (51)

Here is a slowly growing function, limt!1 L(�t)/L(t) = 1 for any � > 0,
and ĥ(s) =

R1
0 dt exp(�st)h(t) (<{s} > 0) denotes the Laplace transform of

h(t). In the following L(t) is a slowly growing function fulfilling the stronger
conditions limt!1 L(t) = 1 and limt!1 t dL(t)/dt = 0. The theorem (51)
may be applied to relate the asymptotic form of the MSD for long times to
the asymptotic form of its Laplace transform for small s (compared to [61]
the definition of D↵ is here adapted),

W (t)
t!1⇠ 2nD↵

�(1 + ↵)
L(t)t↵ , Ŵ (s)

s!0⇠ 2nD↵L(1/s)
1

s↵+1
. (52)

Here one may set L(t) = 1, but the possibility to make more sophisti-
cated choices for L(t) is explicitly maintained at this point. The very useful
Laplace transform technique permits here to express (42) in the form

Ŵ (s) =
2 ĉvv(s)

s2
(53)

and it follows from the memory function equation (49) that

ĉvv(s) =
h|v|2i

s+ ̂(s)
, (54)

noting that h|v|2i = cvv(0).

3.2.2. Generalized Kubo formula for D↵

Comparing to (52) provides us with the asymptotic form for the Laplace-
transformed VACF for small values of s,

ĉvv(s)
s!0⇠ nD↵L(1/s)s

1�↵ (55)

and this relation may be solved for D↵ to give

D↵ = lim
s!0

s↵�1ĉvv(s)

n
. (56)
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reduces to the normal Kubo relation for ↵ = 1
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asymptotic form of functions h(t) for which the integral

R1
0 dt h(t) diverges

and their Laplace transforms for small arguments s,

h(t)
t!1⇠ L(t)t⇢ , ĥ(s)

s!0⇠ L(1/s)
�(⇢+ 1)

s⇢+1
(⇢ > �1). (51)

Here is a slowly growing function, limt!1 L(�t)/L(t) = 1 for any � > 0,
and ĥ(s) =

R1
0 dt exp(�st)h(t) (<{s} > 0) denotes the Laplace transform of

h(t). In the following L(t) is a slowly growing function fulfilling the stronger
conditions limt!1 L(t) = 1 and limt!1 t dL(t)/dt = 0. The theorem (51)
may be applied to relate the asymptotic form of the MSD for long times to
the asymptotic form of its Laplace transform for small s (compared to [61]
the definition of D↵ is here adapted),

W (t)
t!1⇠ 2nD↵

�(1 + ↵)
L(t)t↵ , Ŵ (s)

s!0⇠ 2nD↵L(1/s)
1

s↵+1
. (52)

Here one may set L(t) = 1, but the possibility to make more sophisti-
cated choices for L(t) is explicitly maintained at this point. The very useful
Laplace transform technique permits here to express (42) in the form

Ŵ (s) =
2 ĉvv(s)

s2
(53)

and it follows from the memory function equation (49) that

ĉvv(s) =
h|v|2i

s+ ̂(s)
, (54)

noting that h|v|2i = cvv(0).

3.2.2. Generalized Kubo formula for D↵

Comparing to (52) provides us with the asymptotic form for the Laplace-
transformed VACF for small values of s,

ĉvv(s)
s!0⇠ nD↵L(1/s)s

1�↵ (55)

and this relation may be solved for D↵ to give

D↵ = lim
s!0

s↵�1ĉvv(s)

n
. (56)

Contribution-Kneller printed on May 9, 2015 17

3.2.1. A Tauberian theorem for the mean square displacement

Referring to [61], a relation between the asymptotic regimes of the MSD
and the VACF can be established through a theorem from asymptotic anal-
ysis, which falls into the category of Tauberian theorems. The Hardy–
Littlewood–Karamata (HLK) theorem [63] yields a relation between the
asymptotic form of functions h(t) for which the integral

R1
0 dt h(t) diverges

and their Laplace transforms for small arguments s,

h(t)
t!1⇠ L(t)t⇢ , ĥ(s)
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Knowing that s↵�1ĉvv(s) is the Laplace transform of a fractional derivative
of order ↵�1 and that the limit s ! 0 of the Laplace transform of a function
f(t) is just its integral

R1
0 dt f(t), it follows that

D↵ =
1

n

Z 1

0
dt @↵�1

t cvv(t) (0  ↵ < 2), (57)

where the explicit form of the fractional derivative is

@↵�1
t cvv(t) =

d

dt

Z t

0
dt

(t� ⌧)1�↵

�(2� ↵)
cvv(⌧). (58)

For ↵ = 1 the standard Kubo formula,

D =
1

n

Z 1

0
dt cvv(t), (59)

is retrieved, but there is an important di↵erence in the derivation. Kubo’s
derivation of transport coe�cients [7] is based on linear response theory,
whereas (57) relies on purely mathematical arguments.

3.2.3. Generalized fluctuation-dissipation theorem

Combining the relations (52), (53) and (54) leads to a direct relation
between the Laplace-transformed MSD and the memory function of the
VACF,

Ŵ (s)
s!0⇠ h|v|2i

s2̂(s)
. (60)

Here the assumption s3 ⌧ s2̂(s) has been made, which is correct for s ! 0
if ballistic di↵usion is excluded. Equating expressions (52) and (60) leads
then to the asymptotic form of the memory kernel for small values of s,

̂(s)
s!0⇠

⌦
|v|2

↵

nD↵

s↵�1

L(1/s)
. (61)

As for the fractional di↵usion coe�cient one can define a fractional relax-
ation constant through

⌘↵ = lim
s!0

s1�↵̂(s), (62)

which translates as

⌘↵ =

Z 1

0
dt @1�↵

t (t) (63)

in the time domain, where

@1�↵
t (t) =

d

dt

Z t

0
d⌧

(t� ⌧)↵�1

�(↵)
(t).
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spatially limited diffusion where limt→∞ W (t) = 2D0, one
obtains

D0 = lim
T →∞

∫ T

0
dt

∫ t

0
dτ cvv (τ )

= lim
T →∞

∫ T

0
dτ (T −τ )cvv (τ ) = lim

T →∞
W (T )/2. (14)

Since limT →∞ W (T ) = 2⟨u2⟩, where ⟨u2⟩ = ⟨x2⟩ − ⟨x⟩2 is
the mean square position fluctuation of the particle, it follows
that

D0 = ⟨u2⟩. (15)

B. Generalized fluctuation-dissipation theorem

In the framework of the generalized Langevin equation
developed by Zwanzig,39, 40 the motion of a tagged particle in
an isotropic solvent is described by an equation of motion of
the form

v̇(t) = −
∫ t

0
dt ′ κ(t − t ′)v(t ′) + f(+)(t), (16)

where v(t) is the velocity of the particle, κ(t) is the corre-
sponding memory function, and f(+)(t) a generalized acceler-
ation fulfilling the orthogonality relation ⟨v(t) · f(+)(t ′)⟩ = 0.
In contrast to a full Hamiltonian description of the system,
the solvent is not described explicitly, but both κ(t) and f(+)(t)
can be, in principle, expressed by the microscopic dynamical
variables describing the full system. They are thus fully de-
terministic quantities. For details the reader is referred to the
monograph by Zwanzig.40 Due to the orthogonality between
v and f(+), the time evolution of the VACF is described by the
integro-differential equation

∂t cvv (t) = −
∫ t

0
dt ′ cvv (t − t ′)κ(t ′). (17)

The Laplace transform of this integral equation can be solved
for the Laplace transformed VACF,

ĉvv (s) = ⟨v2⟩
s + κ̂(s)

, (18)

which may be inserted into Eq. (9) to yield

Ŵ (s)
s→0∼ ⟨v2⟩

s2κ̂(s)
. (19)

Here ⟨v2⟩ = cvv (0) and the assumption s3 ≪ s2κ̂(s) has been
made, which is correct for s → 0 if ballistic diffusion is ex-
cluded. In the latter case one would have W (t)

t→∞∼ t2 and

therefore Ŵ (s)
s→0∼ s−3. Equating expressions (7) and (19)

leads then to

κ̂(s)
s→0∼

〈
v2

〉

Dα%(α + 1)
sα−1

L(1/s)
. (20)

Analogously to a fractional diffusion coefficient one can de-
fine a fractional relaxation constant through

ηα = %(1 + α) lim
s→0

s1−ακ̂(s), (21)

which becomes in the time domain

ηα = %(1 + α)
∫ ∞

0
dt 0∂

1−α
t κ(t), (22)

and leads to the fractional version of the fluctuation-
dissipation theorem,

Dα = ⟨v2⟩
ηα

. (23)

It should be noted that the same relation for phenomenologi-
cal constants Dα and ηα has been found in Ref. 28. For α = 1
one retrieves the standard definition η =

∫ ∞
0 dt κ(t) for the

relaxation constant and for spatially confined diffusion one
obtains

η0 =
∫ ∞

0
dt ∂

(−)
t κ(t) = κ(∞). (24)

Here is has been used that ∂
(−)
t is a left derivative and that

κ(t) = θ (t)κ(t) (θ (t) is the Heaviside function) since the
memory function is causal. On the other hand, it follows from
D0 = ⟨v2⟩/η0 = ⟨u2⟩ that

η0 = κ(∞) = ⟨v2⟩
⟨u2⟩

. (25)

C. Conditions for anomalous diffusion in the time
domain

A further application of the HLK theorem permits the
derivation of conditions for the asymptotic form of the VACF
and its memory function in the time domain. To derive these
conditions we introduce the functions

f (t) =
∫ t

0
dτ cvv (τ ), (26)

g(t) =
∫ t

0
dτ κ(τ ). (27)

One recognizes that f (∞) = D and g(∞) = η in case of nor-
mal unconfined diffusion. Defining the slowly varying func-
tions

L f (t) = αDα L(t), (28)

Lg(t) =
〈
v2

〉

Dα%(2 − α)%(α + 1)L(t)
, (29)

and using that f̂ (s) = ĉvv (s)/s and ĝ(s) = κ̂(s)/s, we obtain
the following equivalences from Eqs. (10) and (20), and from
the HLK theorem (6),

f̂ (s)
s→0∼ L f (1/s)

%(α)
sα

⇔ f (t)
t→∞∼ L f (t)tα−1, (30)

ĝ(s)
s→0∼ Lg(1/s)

%(2 − α)
s2−α

⇔ g(t)
t→∞∼ Lg(t)t1−α. (31)

Note that if L(t) is a slowly varying function, the same is true
for 1/L(t). On account of Eqs. (26) and (27), differentiation of
f (t) and g(t) for large times leads to necessary conditions for
the asymptotic forms of the VACF and its memory function.
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Knowing that s↵�1ĉvv(s) is the Laplace transform of a fractional derivative
of order ↵�1 and that the limit s ! 0 of the Laplace transform of a function
f(t) is just its integral

R1
0 dt f(t), it follows that

D↵ =
1

n

Z 1

0
dt @↵�1

t cvv(t) (0  ↵ < 2), (57)

where the explicit form of the fractional derivative is

@↵�1
t cvv(t) =

d

dt

Z t

0
dt

(t� ⌧)1�↵

�(2� ↵)
cvv(⌧). (58)

For ↵ = 1 the standard Kubo formula,

D =
1

n

Z 1

0
dt cvv(t), (59)

is retrieved, but there is an important di↵erence in the derivation. Kubo’s
derivation of transport coe�cients [7] is based on linear response theory,
whereas (57) relies on purely mathematical arguments.

3.2.3. Generalized fluctuation-dissipation theorem

Combining the relations (52), (53) and (54) leads to a direct relation
between the Laplace-transformed MSD and the memory function of the
VACF,

Ŵ (s)
s!0⇠ h|v|2i

s2̂(s)
. (60)

Here the assumption s3 ⌧ s2̂(s) has been made, which is correct for s ! 0
if ballistic di↵usion is excluded. Equating expressions (52) and (60) leads
then to the asymptotic form of the memory kernel for small values of s,

̂(s)
s!0⇠

⌦
|v|2

↵

nD↵

s↵�1

L(1/s)
. (61)

As for the fractional di↵usion coe�cient one can define a fractional relax-
ation constant through

⌘↵ = lim
s!0

s1�↵̂(s), (62)

which translates as

⌘↵ =

Z 1

0
dt @1�↵

t (t) (63)

in the time domain, where

@1�↵
t (t) =

d

dt

Z t

0
d⌧

(t� ⌧)↵�1

�(↵)
(t).
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Knowing that s↵�1ĉvv(s) is the Laplace transform of a fractional derivative
of order ↵�1 and that the limit s ! 0 of the Laplace transform of a function
f(t) is just its integral

R1
0 dt f(t), it follows that

D↵ =
1

n

Z 1

0
dt @↵�1

t cvv(t) (0  ↵ < 2), (57)

where the explicit form of the fractional derivative is

@↵�1
t cvv(t) =

d

dt

Z t

0
dt

(t� ⌧)1�↵

�(2� ↵)
cvv(⌧). (58)

For ↵ = 1 the standard Kubo formula,

D =
1

n

Z 1

0
dt cvv(t), (59)

is retrieved, but there is an important di↵erence in the derivation. Kubo’s
derivation of transport coe�cients [7] is based on linear response theory,
whereas (57) relies on purely mathematical arguments.

3.2.3. Generalized fluctuation-dissipation theorem

Combining the relations (52), (53) and (54) leads to a direct relation
between the Laplace-transformed MSD and the memory function of the
VACF,
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Referring to Kubo

Here transport coefficients are derived on the basis of 
linear response theory.



also su�cient for 1 < ↵ < 2

also su�cient for 0 < ↵ < 1

lim
t!1

L(t) = 1 lim
t!1

t
dL(t)

dt
= 0

Long-time tails
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Fig. 6. ↵-dependence of the long-time tails of
the VACF and its memory function.

Negative velocity correlations
in general are referred to as
“cage e↵ect” in the theory
of liquids and subdi↵usion
indicates a persisting cage.
In the case of superdi↵usion
one finds exactly the oppo-
site. Here positive autocorre-
lations between velocities for
two di↵erent lag times per-
sist and reflect a sort of “anti-
cage”, namely that the di↵us-
ing particle is essentially re-
pelled from its local environ-
ment, leading to an accelerated di↵usion. It should be noted the the signs
of of the long-time tails for the VACF and its memory function are opposite
and that they vanish for ↵ = 1, i.e. in case of normal di↵usion.

3.3. Anomalous Brownian motion and time scale separation

In Section 2.5 it has been reported that a particle whose velocity follows
a fractional Ornstein Uhlenbeck process in velocity space exhibits anomalous
free di↵usion in position space [32]. According to Eq. (40) the corresponding
VACF has the form of a “stretched” Mittag-Le✏er function. The anomaly
of the di↵usion process is steered by the parameter ⇢, which varies between
0 and 2. For ⇢ = 1 normal di↵usion is retrieved and the VACF becomes
an exponential function. Since the first computer simulation of simple liq-
uids [24] it is known that the VACF of a molecule is not an exponential
function, but exhibits a regime of negative values, which reflects a caging
e↵ect through the neighboring molecules which make the di↵using particle
invert its direction. An exponentially relaxing VACF indicates a time scale
separation between the slowly di↵using tagged particle and the fast motions
of the surrounding liquid molecules. Such a time scale separation is charac-
teristic for Brownian motion, where one considers the di↵usion of a heavy
particle in a bath of light particles. Molecular Dynamics simulations are a
beautiful tool to investigate the e↵ect of time scale separation empirically,
increasing gradually the mass of the di↵using particle with respect to the
mass of the solvent molecules [64]. When the mass of a selected tracer par-
ticle is increased, one sees, indeed, that its VACF takes a more and more
exponential form and varies at the same time more and more slowly. In
Ref. [65] it has been shown that this can be understood on the basis of a
scaling of the memory function, which scales inverse proportional to the
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It should be noted that the order of the derivative is here 1� ↵, whereas it
is ↵� 1 in case of the fractional di↵usion constant (57).

Expressions (57) and (63) may be connected in form of a generalized
fluctuation-dissipation theorem,

D↵ =
h|v|2i
n ⌘↵

. (64)

3.2.4. Long-time tails for the VACF and its memory function

A closer look to the expressions (55) and (61) shows that ĉvv(s)/s / s�↵

and that ̂(s)/s / s↵�2. Both s�↵ and s↵�2 diverge if 0  ↵ < 2 and
knowing that the Laplace transform of an integral of the

R t
0 d⌧ f(⌧) is f̂(s)/s

it follows from the HLK theorem that

f(t) =

Z t

0
d⌧cvv(⌧)

t!1⇠ nD↵L(t)

�(↵)
, (65)

g(t) =

Z t

0
d⌧(⌧)

t!1⇠
⌦
|v|2

↵

D↵n�(2� ↵)L(t)
t1�↵. (66)

Here it has been used that if L(t) is a slowly growing function the same is
true for 1/L(t). Di↵erentiating f(t) and g(t) yields then necessary condi-
tions for the long-time tails of the VACF and its memory function

cvv(t)
t!1⇠ nD↵L(t)t↵�2

�(↵� 1)
, (67)

(t)
t!1⇠

t�↵
⌦
|v|2

↵

n�(1� ↵)D↵L(t)
. (68)

The HLK theorem shows that these conditions are also su�cient for the
VACF if 1 < ↵ < 2 (superdi↵usion) and for the corresponding memory
functions if 0  ↵ < 1. This means that subdi↵usion is is equivalent with
the asymptotic form (68) if the memory function and that superdi↵usion is
equivalent with the asymptotic form (67) of the VACF.

Figure 6 displays the ↵-dependent weights of the long-time tails. One
recognizes that the VACF has a negative long-time tail for subdi↵usion
(0 < ↵ < 1) and a positive long-time tail for superdi↵usion (1 <
↵ < 2). This can be understood as follows. In a case of subdi↵u-
sion anticorrelations between the velocities at times ⌧ and ⌧ + t, respec-
tively, persist ben for long lag times t, indicating that the di↵using par-
ticle tends to invert its velocity to go back to the point of departure.
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III. ILLUSTRATIONS

In the following some examples for spatially unconfined and confined diffusion will be

discussed which illustrate how the various asymptotic forms of the MSD can be generated

from a simple model for the memory function associated to the VACF, i.e. from different

types of “cages”.

A. Free diffusion

The memory function for confined diffusion is assumed to have the form

κf (t) = Ω2M(α, 1,−t/τ), (39)

where M(a, b, z) is Kummer’s hypergeometric function,47 Ω has the dimension of a frequency

and τ > 0 sets the time scale. The Kummer function is regular in the whole complex plane

and it has the properties M(0, b, z) = 1 and M(a, a, z) = exp(z). If α is varied between

0 and 1, the model thus interpolates between a constant and an exponentially decaying

memory function. It is worthwhile noting that the latter model has been proposed long time

ago by Berne et al.48 to qualitatively describe the VACF of simple liquids obtained from

molecular dynamics simulations.49

Due to the analytical properties of the Kummer function the Laplace transform of κf(t)

has a particularly simple form,

κ̂f (s) = Ω2

{

τα

s1−α

1

(sτ + 1)α

}

, (40)

showing that

κ̂f (s)
s→0
∼ Ω2ταsα−1. (41)

From the general form (20) of the Laplace transformed memory function one can thus

conclude that α is the exponent for the asymptotic growth of the MSD with time, W (t) ∼

2Dαtα, and that the fractional diffusion constant for the model is given by

Dα =
⟨v2⟩

Γ(1 + α)Ω2τα
. (42)

It follows, moreover, from the asymptotic form of the Kummer function for large arguments z
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that

κf(t)
t→∞

∼

⎧

⎪

⎨

⎪

⎩

Ω2 (t/τ)−α

Γ(1−α) , α ̸= 1,

Ω2 exp(−t/τ), α = 1.
(43)

These properties are compatible with condition (33), noting that an exponential decay

amounts to saying that κ(t) ∼ 0 for large times. Fig. 1 shows the normalized model memory

function, κf (t)/κf(0), for α = 1/2, 1, 3/2 (dashed, solid, and dotted line, respectively). One

notices the positive log time tail in case of subdiffusion and the negative long time tail in

case of superdiffusion. Here and in the following τ is set to one arbitrary time unit.

The VACFs and the MSDs corresponding to (39) have been computed by inverse Laplace

transform of expressions (18) and (9), respectively, using computer aided symbolic calcu-

lation.50 For this purpose the analytical expression (40) for κ̂(s) was replaced by a Padé

approximation,

κ̂f (s) ≈

∑Ma

k=0 ak(s − s0)k

∑Mb

k=0 bk(s − s0)k
, (44)

in order to obtain rational expressions for ĉvv(s) and Ŵ (s). Choosing s0 = 1 and Ma =

Mb = 7, the relative error of the inverse Laplace transform of (44) compared to the exact

form (39) is smaller than 5 × 10−3 for 0 ≤ t < 50 τ . The calculations were performed with

Ω = 1.5/τ and ⟨v2⟩ = 1/τ 2. Fig. 2 show the results for the VACFs, where the positive long

time tail in the VACF corresponding to superdiffusive motion (dotted line) is well visible.

The corresponding MSDs are displayed in Fig. 3 (solid lines), together with the the limiting

forms, W∞(t) = 2Dαtα and the common ballistic short time form, Wb(t) = ⟨v2⟩t2 (dotted

lines). The above results demonstrate that the model memory function generates all regimes

for unconfined diffusion and that the general conditions (32) and (33) for the asymptotic

forms of the VACF and the memory function, respectively, are fulfilled.

B. Spatially confined diffusion

The memory function for spatially confined diffusion is chosen to be

κc(t) = Ω2 {r + (1 − r)M(β, 1,−t/τ)} , (45)

where 0 < r < 1 and 0 < β ≤ 1. It resembles the one for unconfined subdiffusion, but in

contrast to the latter it decays to a finite plateau value, κc(∞) = Ω2r. Its asymptotic form

12

G. Kneller, J. Chem. Phys., vol. 134, p. 224106, 2011.

Model memory function

asymptotic form

Kummer function

Simple model for anomalous diffusion
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FIG. 1. Simulated system consisting of a bilayer of 2 × 64 DOPC lipid
molecules and 3840 water molecules (light-grey).

Here Nmol denotes the number of lipid molecules, Nt is the
number of time steps in the MD trajectory, and x(n) ≡ x(n!t),
with !t being the sampling time step. The results for two dif-
ferent lag time scales (1 ns and 30 ns) are shown in Figs. 2 and
3, respectively, where dots correspond to the simulated MSDs
and solid lines to the fits of expression (1). The fit parame-
ters are α = 0.52, Dα = 0.107 nm2/nsα for the fit in Fig. 2
and α = 0.61, Dα = 0.101 nm2/nsα for the fit in Fig. 3. We
have also performed an analysis for an intermediate lag time
scale of 5 ns (not shown here), which lead to α = 0.56, Dα

= 0.110 nm2/nsα . The insets of Figs. 2 and 3 show the spread
of the MSDs for the individual molecules. The rapid increase
of the latter with the lag time spots the problem of statistical
reliability, if the lag time becomes comparable with the length
of the simulation trajectory. The form of the spread gives
also a hint to appropriate stochastic models describing the
observed subdiffusion, such as (ergodic) fractional Brownian
motion (fBM) and the (non-ergodic) continuous time random
walk.18 Here, one has to make the assumption that the average
over all molecules corresponds to a true ensemble average.
The observed Gaussian shape of the distribution functions
shown in Figs. 2 and 3 supports that the lateral subdiffusion
of the DOPC molecules can be described by fBM. In recent
experimental studies, both models have been used to describe
experimental data for trajectories of diffusing molecules.7–9

We note finally that the fractional diffusion constant found
for the lateral diffusion of lipid molecules in the giant vesi-
cles studied in Ref. 4 is Dα = 0.088 ± 0.007 nm2/nsα for
α = 0.74 ± 0.08. Although the lipid bilayer considered in
this study consisted of different lipid molecules (dilauroyl-sn-
glycero-3-phosphocholine or DLPC), the measured diffusion
coefficient shows that the results for Dα obtained in our sim-
ulation study of DOPC are of the right order of magnitude.

In the following, we further analyze the lateral center-of-
mass dynamics of the DOPC molecules in the framework of
the GLE.12 The velocity autocorrelation function (VACF) of a
tagged molecule, c(t) ≡ ⟨v(0) · v(t)⟩, fulfills then the integro-

FIG. 2. Simulated molecule-averaged MSD for the lateral CM diffusion of
the DOPC molecules (dots) and fit of model (1) (solid line). The fitted frac-
tional diffusion coefficient is Dα = 0.107 nm2/nsα for α = 0.52. The inset
shows the distribution of δW(t) = Wj(t) − W(t) for t = 0.1 ns, t = 0.5 ns,
and t = 1 ns (with increasing width). In the main figure the corresponding
average MSD values are indicated by triangles.

differential equation

∂t c(t) = −
∫ t

0
dt ′ κ(t − t ′)c(t ′), (4)

where κ(t) is the corresponding memory kernel. Formally,
the latter can be derived from the microscopic Hamiltonian
dynamics of the system under consideration (tagged particle
plus the environment). Using that the MSD and the VACF are
related through19

W (t) = 2
∫ t

0
dτ (t − τ )c(τ ), (5)

one can derive characteristic long-time tails for the VACF and
its memory function,20

c(t) t→∞
∼ Dαα(α − 1)tα−2, (6)

κ(t) t→∞
∼

⟨v2⟩
Dα

sin(πα)
πα

t−α, (7)

FIG. 3. As Fig. 2, but for a maximum time lag of 30 ns. Here, the fitted
fractional diffusion coefficient is Dα = 0.101 nm2/nsα for α = 0.61 and the
inset shows the spread of the molecular MSDs at t = 5 ns, t = 15 ns, and
t = 30 ns.
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FIG. 4. Normalized simulated VACF for the lateral CM motion of the DOPC
molecules. The inset shows the superposition of the simulated VACF (dots)
with the long-time tail (6) (solid line). Here it is taken into account that c(0)
= 1, and the characteristic time scale defined according to Eq. (11) is τVACF
= 0.35 ps.

which are to be considered as necessary conditions for anoma-
lous diffusion. Expressions (6) and (7) are also sufficient con-
ditions in case of super- and subdiffusion, respectively. For
subdiffusion, the theory predicts thus a negative long-time
tail for the VACF and a positive long-time tail for the mem-
ory function. Negative values of the VACF for large time lags
indicate a persistent tendency of the diffusing molecules to
invert their direction of motion and thus a tendency to stay lo-
calized. In agreement with this interpretation, Eq. (4) shows
that the inversion of the direction of motion is favored by posi-
tive values of the memory function. In this context, it is worth-
while noting that the VACF for fBM, which can be defined for
a coarse-grained velocity, decays asymptotically also as tα − 2,
with c(t) < 0.9

To investigate the existence of a long-time tail in the
VACF, we estimated the contributions of the individual
molecules again through time averages

cj (n) ≈ 1
Nt − n

Nt−n−1∑

k=0

vj (k) · vj (k + n) (8)

and calculated the VACF as an average over the individual
contributions,

c(n) = 1
Nmol

Nmol∑

j=1

cj (n). (9)

The results are shown in Fig. 4, where the VACF has been nor-
malized such that c(0) = 1. The inset shows that the computed
VACF (dots) is in good agreement with the long-time tail (6)
(solid line) if t > 1 ps. In this comparison, the normalization
of the VACF has been taken into account. The asymptotic
regime of the VACF is defined with respect to a correspond-
ing typical time scale, τVACF. For normal diffusion, this time
scale can be obtained via τVACF =

∫ ∞
0 dt c(t)/c(0). To gener-

alize this estimation for arbitrary α we use that the fractional
diffusion constant can be written as20

Dα = 1
#(1 + α)

∫ ∞

0
dt 0∂

α−1
t c(t), (10)

FIG. 5. Memory function associated with the VACF shown in Fig. 4. The
inset shows the superposition of the calculated memory function (dots) with
the corresponding long-time tail (7) (solid line). The characteristic time scale
defined according to Eq. (14) is τmem = 2.4 fs.

where #(.) is the Gamma function21 and 0∂
α−1
t c(t)

= d/dt
∫ t

0 dt ′ #(α)−1(t − t ′)α−1c(t ′) is the fractional Rieman-
Liouville derivative22 of order 1 − α of c(t). Noting that c(0)
= ⟨v2⟩, we define

τVACF =
(

Dα

⟨v2⟩

)1/(2−α)

. (11)

Using α = 0.61, Dα = 0.101 nm2/nsα , and a thermal mean
square velocity of ⟨v2⟩ = kBT /M = 6.55 × 10−3 nm2/ps2 at
T = 310 K, yields τVACF = 0.35 ps. Here kB is the Boltzmann
constant, T is the absolute temperature in Kelvin, and M is
the mass of a single DOPC molecule. What exactly means t

≫ τVACF can be seen from Fig. 4, which shows that the
asymptotic regime starts at t ≈ 1 ps, corresponding to t ≈
3 τVACF. On account of relation Eq. (5), this time scale also
defines the onset of the asymptotic regime of the MSD. Since
τVACF is much smaller than the time scale on which the MSD
varies notably, expression (1) can be in practice fitted for the
whole time scale, 0 ≤ t < ∞. This has been tacitly assumed
in the fits of the MSDs described earlier.

To compute the memory function, we started from the
discretized form of Eq. (4),

c(n + 1) − c(n)
%t

= −
n∑

k=0

%t wkc(n − k)κ(k), (12)

where w0 = wn = 1/2 and wk = 1 for k = 1, . . . , n − 1
(Simpson integration scheme). Equation (12) can be consid-
ered as a linear of system of equations for κ(0), κ(1), κ(2),
etc., which can be solved recursively. The result is shown in
Fig. 5, where the inset shows the long-time tail (dots) together
with the analytical form (7) (solid line). Although the mem-
ory function decays very rapidly to almost zero compared to
its initial value, it is exactly the remaining positive long-time
tail which makes the diffusion process subdiffusive. We note
that the agreement between the long-time tail of the memory
function and the theoretical prediction is less good as for the
VACF. A reason might be that the memory function is not well
resolved for short times and that errors in the VACF are accu-
mulated through the recursive calculation of κ(n). The typical
time scale for the memory function can be defined along the
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experimental studies, both models have been used to describe
experimental data for trajectories of diffusing molecules.7–9

We note finally that the fractional diffusion constant found
for the lateral diffusion of lipid molecules in the giant vesi-
cles studied in Ref. 4 is Dα = 0.088 ± 0.007 nm2/nsα for
α = 0.74 ± 0.08. Although the lipid bilayer considered in
this study consisted of different lipid molecules (dilauroyl-sn-
glycero-3-phosphocholine or DLPC), the measured diffusion
coefficient shows that the results for Dα obtained in our sim-
ulation study of DOPC are of the right order of magnitude.

In the following, we further analyze the lateral center-of-
mass dynamics of the DOPC molecules in the framework of
the GLE.12 The velocity autocorrelation function (VACF) of a
tagged molecule, c(t) ≡ ⟨v(0) · v(t)⟩, fulfills then the integro-

FIG. 2. Simulated molecule-averaged MSD for the lateral CM diffusion of
the DOPC molecules (dots) and fit of model (1) (solid line). The fitted frac-
tional diffusion coefficient is Dα = 0.107 nm2/nsα for α = 0.52. The inset
shows the distribution of δW(t) = Wj(t) − W(t) for t = 0.1 ns, t = 0.5 ns,
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average MSD values are indicated by triangles.

differential equation

∂t c(t) = −
∫ t

0
dt ′ κ(t − t ′)c(t ′), (4)

where κ(t) is the corresponding memory kernel. Formally,
the latter can be derived from the microscopic Hamiltonian
dynamics of the system under consideration (tagged particle
plus the environment). Using that the MSD and the VACF are
related through19

W (t) = 2
∫ t

0
dτ (t − τ )c(τ ), (5)

one can derive characteristic long-time tails for the VACF and
its memory function,20

c(t) t→∞
∼ Dαα(α − 1)tα−2, (6)

κ(t) t→∞
∼

⟨v2⟩
Dα

sin(πα)
πα

t−α, (7)

FIG. 3. As Fig. 2, but for a maximum time lag of 30 ns. Here, the fitted
fractional diffusion coefficient is Dα = 0.101 nm2/nsα for α = 0.61 and the
inset shows the spread of the molecular MSDs at t = 5 ns, t = 15 ns, and
t = 30 ns.
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(reduced) mass of the di↵using particle,

(t) ! �(t), (69)

m ! m/�, (70)

where � ! 0. In a recent article [62] I have shown that the same scaling
procedure leads to VACFs of the form (40) if the starting point is a simple
liquid in which all molecules perform anomalous free di↵usion. The details
of this somewhat more tricky scaling approach can be found in [62] and here
only the results are given. As a result of the scaling process (69/70) the
VACF approaches

 �(t) ⇡ E2�↵

⇣
�[t/⌧ (�v )]2�↵

⌘
, (71)

where ⌧ (�v ) is the time scale of the “slow” tracer particles

⌧ (�v ) =
⌧v

�1/(2�↵)
� ⌧v (72)

with ⌧v being the velocity time scale of the “fast” solvent molecules. Using
the definition (14) to define the fractional di↵usion constant, the velocity
time scale is set through

⌧v =

✓
nD↵

h|v|2i

◆1/(2�↵)

. (73)

Fig. 7 shows the result of the scaling procedure for a numerical example,
in which the memory function has the form

(t) = ⌦2M(↵, 1,�t/⌧m). (74)

Here M(a, b, z) is Kummer’s hypergeometric function [16], (0) = ⌦2, and
⌦ has the dimension of a frequency. The parameter ⌧m sets the time scale
of the memory function. The model has been chosen since its Laplace
transform behaves ⇠ s1�↵, as in Eq. (68). The model di↵usion constant is
here

D↵ =

⌦
|v|2

↵
⌧�↵
m

n⌦2
(75)

and the characteristic velocity time reads

⌧v =

✓
⌧�↵
m

⌦2

◆ 1
2�↵

. (76)
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Fig. 9. Left: Normalized VACF for the lateral CM motion of the DOPC molecules.
The inset shows the the simulated VACF (dots) together with the long-time tail (67)
with L(t) = 1 (solid line). Right: The corresponding memory function. The
inset shows the superposition of the simulated memory function (dots) with the
corresponding long-time tail (68) with L(t) = 1 (solid line).

Fig. 8 displays the relaxation function (98) for several values of � and the
the corresponding relaxation rate spectra. These curves should be compared
to their counterparts for the fOU process, which have been presented in
Fig. 1. The initial decay of the relaxation function in the latter case is
visibly steeper. It follows, in fact, from (34) that all derivatives of  fOU(t;�)

diverge at t = 0, (�1)k (k)
fOU(0;�) = +1. Therefore all moments �k diverge

for k � 1 according to Relation (86).

3.5. Illustrations

3.5.1. VACF for lateral motions of lipid molecules

In the following we go briefly back to Section 2.6.1 in which two examples
for subdi↵usion in lipid bilayers have been given. A more detailed analysis
of the VACF describing the lateral center-of-mass motion of the DOPC
illustrates expressions (67) and (68) for, respectively, the long-time tail of
the VACF and its memory function. The left part of Fig. 9 shows first of all
the the VACF of a lipid molecule has a negative long time tail and the inset
shows that the theoretical form (67) superposes well the simulated VACF
for t > 1ps. We note here that, according to (73), the relaxation time of
the VACF is

⌧v ⇡ 0.23 ps (94)

if the definition (14) for D↵ is used. The concrete value of ⌧ gives an
indication of what “asymptotically” means in practice and one sees that the
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• Consider a tagged particle in a liquid whose

MSD grows as W (t) ⇠ t↵

• Scale its memory function according to

(t) ! �(t)

where � ! 0. This corresponds to increasing
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is worthwhile mentioning that the underlying assumptions of
different models for subdiffusion maybe quite different. The
stochastic processes described by the generalized Langevin
equations presented in Refs. 18–20 are, for example,
Gaussian, whereas the FFPE (2) describes a non-gaussian pro-
cess. An overview of stochastic models for anomalous diffu-
sion can be found in Refs. 10 and 21.

Any stochastic model for a dynamical system encodes a
separation of time scales corresponding to “slow” and “fast”
dynamical variables, where the latter are modeled as noise.
This is true for normal and anomalous diffusion. Computer
simulation experiments on a simple liquid22 have shown that
the exponentially decaying VACF of a normally diffusing
Rayleigh particle emerges if the mass of a tagged “solute” is
systematically increased, slowing its motions down with re-
spect to those of the solvent molecules. A formal proof for
this observation has been given a posteriori23 in the frame-
work of the generalized Langevin equation (GLE) introduced
by Zwanzig,14, 24–26 turning the mass scaling into an ampli-
tude scaling of the memory function. The aim of the present
paper is to extend the scope of the latter work and to derive
the VACF of an anomalously diffusing heavy particle in a bath
of light solvent molecules from “first principles.” The starting
point is again the GLE

v̇(t) +
∫ t

0
dτ κ(t − τ )v(τ ) = f +(t), (6)

which is an exact, deterministic equation of motion for a
tagged particle in an interacting many-body system. It is not to
be confused with the generalizations of the Langevin equation
mentioned earlier (see, e.g., Refs. 18–20), which are stochas-
tic equations of motion implying a model for the solvent. In
the GLE (6), the memory kernel, κ , and the projected accel-
eration, f+, fully represent the effect of the environment on
the dynamics of the tagged particle. Assuming that the time
evolution of the total system is described by Hamiltonian dy-
namics, the projected acceleration has the form

f +(t) = exp((1 − P)Lt)(1 − P)Lv, (7)

where L is the Liouville operator and P is a projector whose
action on an arbitrary phase function f is defined through
Pf = (⟨vf ⟩/⟨v2⟩)v. In this context, the brackets ⟨. . . ⟩ repre-
sent an ensemble average over the phase space variables. With
the above definitions, the memory kernel can be expressed as
autocorrelation function of f+,

κ(t) = ⟨f +(0)f +(t)⟩
⟨v2⟩

. (8)

Since ⟨v(0)f +(t)⟩ = 0 by construction, it follows from (6)
that the time evolution of the VACF is described by the in-
tegral equation

ċ(t) +
∫ t

0
dτ κ(t − τ )c(τ ) = 0. (9)

The memory kernel is to be considered as a purely formal
quantity, since its calculation is in practice as impossible as
the explicit solution of the equations of motions for the solute
and the solvent molecules. For the following considerations
its exact form is, however, not needed and it only matters that

the VACF verifies an equation of motion of the form (9). The
normalized solution,

ψ(t) = c(t)/c(0), (10)

of this integro-differential equation can be expressed by the
contour integral

ψ(t) = 1
2π i

∮
ds

exp(st)
s + κ̂(s)

, (11)

where κ̂(s) =
∫ ∞

0 dt exp(−st)κ(t) (R{s} > 0) denotes the
Laplace-transformed memory function. Expression (11) is
simply the inverse Laplace transform of the solution of (9)
in Laplace space, setting c(0) = 1.

We consider now the situation that the memory function
is scaled according to

κ(t) → λκ(t), (12)

where λ → 0 and λ > 0. Under the assumptions to be dis-
cussed in the following, the above scaling corresponds to
changing the mass of the tagged particle as

m → m/λ. (13)

In case that t = 0, the equivalence of (12) and (13) is
strictly valid if one assumes that the Hamiltonian of the
full system has the standard form H =

∑n
i=1 p2

i /(2mi)
+ V (x1, . . . , xn), where n is the total number of degrees
of freedom of the system, xi are the particle coordi-
nates, and pi the associated momenta. This is seen by
using that the Liouville operator has the general form,
L =

∑n
i=1{(∂H/∂pi)∂/∂xi − (∂H/∂xi)∂/∂pi}, such that

Lv = −(1/m)∂V/∂x. Since ⟨v2⟩ = kBT /m, it follows then
from relations (7) and (8) that κ(0)∝1/m. Defining k to be the
index of the tagged particle, the Hamiltonian takes the form
H = λ p2

k/(2mk) +
∑

i ̸=k p2
i /(2mi) + V (x1, . . . , xn), which

shows that the dynamics of the tagged particle is frozen out
in the limit λ → 0. If one can assume that the dynamics of
the remaining particles is not affected by this process, as far
as the calculation of ensemble averages is concerned, relation
(13) is also true for t > 0.

Since the Laplace transform is a linear integral transform,
the VACF corresponding to the scaled memory kernel (12) is
given by

ψλ(t) = 1
2π i

∮
ds

exp(st)
s + λκ̂(s)

= 1
2π i

∮
ds

exp(sλt)
s + κ̂(λs)

, (14)

where the variable change s → s/λ has been performed to go
from the first to the second line. In the limit λ → 0 one thus
needs only the asymptotic form of κ̂(s) for small arguments
s. Using a theorem from asymptotic analysis,27 it has been
shown in Ref. 28 that this form is entirely determined by the
MSD for large times. If the latter has the form (1) the Laplace
transformed memory function behaves as

κ̂(s)
s→0∼

〈
v2

〉

Dα((α + 1)
sα−1. (15)
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ċ(t) +
∫ t

0
dτ κ(t − τ )c(τ ) = 0. (9)

The memory kernel is to be considered as a purely formal
quantity, since its calculation is in practice as impossible as
the explicit solution of the equations of motions for the solute
and the solvent molecules. For the following considerations
its exact form is, however, not needed and it only matters that

the VACF verifies an equation of motion of the form (9). The
normalized solution,

ψ(t) = c(t)/c(0), (10)

of this integro-differential equation can be expressed by the
contour integral

ψ(t) = 1
2π i

∮
ds

exp(st)
s + κ̂(s)

, (11)

where κ̂(s) =
∫ ∞

0 dt exp(−st)κ(t) (R{s} > 0) denotes the
Laplace-transformed memory function. Expression (11) is
simply the inverse Laplace transform of the solution of (9)
in Laplace space, setting c(0) = 1.

We consider now the situation that the memory function
is scaled according to

κ(t) → λκ(t), (12)

where λ → 0 and λ > 0. Under the assumptions to be dis-
cussed in the following, the above scaling corresponds to
changing the mass of the tagged particle as

m → m/λ. (13)

In case that t = 0, the equivalence of (12) and (13) is
strictly valid if one assumes that the Hamiltonian of the
full system has the standard form H =

∑n
i=1 p2

i /(2mi)
+ V (x1, . . . , xn), where n is the total number of degrees
of freedom of the system, xi are the particle coordi-
nates, and pi the associated momenta. This is seen by
using that the Liouville operator has the general form,
L =

∑n
i=1{(∂H/∂pi)∂/∂xi − (∂H/∂xi)∂/∂pi}, such that

Lv = −(1/m)∂V/∂x. Since ⟨v2⟩ = kBT /m, it follows then
from relations (7) and (8) that κ(0)∝1/m. Defining k to be the
index of the tagged particle, the Hamiltonian takes the form
H = λ p2

k/(2mk) +
∑

i ̸=k p2
i /(2mi) + V (x1, . . . , xn), which

shows that the dynamics of the tagged particle is frozen out
in the limit λ → 0. If one can assume that the dynamics of
the remaining particles is not affected by this process, as far
as the calculation of ensemble averages is concerned, relation
(13) is also true for t > 0.

Since the Laplace transform is a linear integral transform,
the VACF corresponding to the scaled memory kernel (12) is
given by

ψλ(t) = 1
2π i

∮
ds

exp(st)
s + λκ̂(s)

= 1
2π i

∮
ds

exp(sλt)
s + κ̂(λs)

, (14)

where the variable change s → s/λ has been performed to go
from the first to the second line. In the limit λ → 0 one thus
needs only the asymptotic form of κ̂(s) for small arguments
s. Using a theorem from asymptotic analysis,27 it has been
shown in Ref. 28 that this form is entirely determined by the
MSD for large times. If the latter has the form (1) the Laplace
transformed memory function behaves as

κ̂(s)
s→0∼

〈
v2

〉

Dα((α + 1)
sα−1. (15)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  195.221.0.3
On: Tue, 29 Jul 2014 18:43:08

Here

Infinitely repeated scaling

 �(t)
�!0⇠ 1

2⇡i

I
du

exp

�
�1/(2�↵)u[t/⌧VACF]

�

u+ u↵�1

= E2�↵

�
��[t/⌧VACF]

2�↵
�

Mittag-Leffler function

E↵(z) =
1X

n=0

zn

�(1 + n↵)

⌧VACF =

✓
D↵�(1 + ↵)

hv2i

◆1/(2�↵)VACF of an anomalous Rayleigh 
particle

@t (t) = �
Z 1

0
d⌧ (t� ⌧) (⌧) !  (t) =

1

2⇡i

I
ds

exp(st)

s+ ̂(s)



041105-4 Gerald R. Kneller J. Chem. Phys. 141, 041105 (2014)

1 2, 1
asympt .

5 10 15 20
t

0.5

0.5

1.0
t

1 2, 0.2
asympt .

10 20 30 40 50
t

0.4

0.4
0.6
0.8
1.0

t

1 2, 0.02
asympt .

50 100 150 200
t

0.4
0.6
0.8
1.0

t

1, 1
asympt .

5 10 15 20
t

0.2
0.4
0.6
0.8
1.0

t

1, 0.2
asympt .

10 20 30 40 50
t

0.2
0.4
0.6
0.8
1.0

t

1, 0.02
asympt .

50 100 150 200
t

0.2
0.4
0.6
0.8
1.0

t

3 2, 1
asympt .

5 10 15 20
t

0.2
0.4
0.6
0.8
1.0

t
3 2, 0.2

asympt .

10 20 30 40 50
t

0.2
0.4
0.6
0.8
1.0

t

3 2, 0.02
asympt .

50 100 150 200
t

0.2
0.4
0.6
0.8
1.0

t

FIG. 2. Velocity autocorrelation functions ψλ(t) for different scaling fac-
tors λ (solid lines) and corresponding asymptotic approximations (23)
(dashed lines). From top to bottom α = 1/2, 1, 3/2, from left to right λ =
1, 0.2, 0.02. The amplitude of the memory function (Eq. (24)) is chosen as
$ = 1/τm, such that τ = τm.

counterpart for normal diffusion, and that the model leads to
a nearly perfect approximation of the “real” VACF if the time
scales τλ and τ are separated by about two orders of magni-
tude. Computer simulations of lipid bilayers, where the lipid
molecules exhibit anomalous lateral diffusion, have shown
that τ is of the order of picoseconds,30 which is extremely
short compared to the millisecond time scale on which these
motions are usually studied experimentally.31 In this situa-
tion the anomalously diffusing Rayleigh article is an excel-
lent model, but it should be kept in mind that it cannot be
valid on arbitrarily short time scales, where it becomes even
unphysical since the derivatives c(k)(0) all diverge, although
they represent physical quantities.14, 26

In this Communication, an exact model-free derivation of
the VACF for an anomalously diffusing particle has been pre-
sented for the case that the motions of the particle are much
more slower than those of the molecules in the surrounding
solvent. Here the asymptotic form of its MSD is supposed to
be known. The effect of the time scale separation on the VACF

has been illustrated for a simple model system. At present,
the prediction of anomalous diffusion on the basis of general
physical properties of a solute–solvent system is still a chal-
lenge.
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times,

W (t)
t!1⇠ 2nD0L(t). (77)

As discussed earlier, one considers e↵ectively the MSD of u(t) = x(t)� hxi
in this case and the corresponding fractional di↵usion coe�cient D0 can be
formally obtained from the generalized Kubo relation (57)

D0 =
1

n
h|u|2i, (78)

in agreement with the general physical dimension of D↵, which
is length2/time↵. It follows from Expression (68) that the memory func-
tion has the general asymptotic form

(t)
t!1⇠

⌦
|v|2

↵

h|u|2i
1

L(t)
. (79)

This expression can be understood by setting L(t) = 1. In this case the
memory function is simply a constant, (t) = ⌦2, where ⌦ is defined through
⌦ =

p
h|v|2i /h|u|2i, and the resulting VACF is simply a cosine function,

cvv(t) = h|v|2i cos(⌦t). This describes a “rattling” of the di↵using parti-
cle in the cage represented by its environment, which is in turn formally
represented by the memory function. This is, of course, to some extent an
unphysical picture since the rattling motion is undamped and one expects
demoing e↵ects by collisions with the neighbors. A more refined description
of the di↵usion process is obtained by taking into account the function L(t)
and normal and anomalous di↵usion must be distinguished on the basis of
the asymptotic form of L(t). Following [61], confined di↵usion is said to be
anomalous if the relaxation time

⌧c =

Z 1

0
dt

(t)� (1)

(0)� (1)
(80)

diverges. This is the case if

1

L(t)
� 1

t!1⇠ C t�� and 0 < �  1, (81)

where C > 0 is a constant. Relation (81) is obtained if L(t) has the form

L(t)
t!1⇠ 1�Ct�� and with (15) this corresponds to saying that the DACF

decays anomalously slowly,

cuu(t)

cuu(0)
t!1⇠ Ct�� . (82)

Contribution-Kneller printed on May 9, 2015 23

times,

W (t)
t!1⇠ 2nD0L(t). (77)

As discussed earlier, one considers e↵ectively the MSD of u(t) = x(t)� hxi
in this case and the corresponding fractional di↵usion coe�cient D0 can be
formally obtained from the generalized Kubo relation (57)

D0 =
1

n
h|u|2i, (78)

in agreement with the general physical dimension of D↵, which
is length2/time↵. It follows from Expression (68) that the memory func-
tion has the general asymptotic form

(t)
t!1⇠

⌦
|v|2

↵

h|u|2i
1

L(t)
. (79)

This expression can be understood by setting L(t) = 1. In this case the
memory function is simply a constant, (t) = ⌦2, where ⌦ is defined through
⌦ =

p
h|v|2i /h|u|2i, and the resulting VACF is simply a cosine function,

cvv(t) = h|v|2i cos(⌦t). This describes a “rattling” of the di↵using parti-
cle in the cage represented by its environment, which is in turn formally
represented by the memory function. This is, of course, to some extent an
unphysical picture since the rattling motion is undamped and one expects
demoing e↵ects by collisions with the neighbors. A more refined description
of the di↵usion process is obtained by taking into account the function L(t)
and normal and anomalous di↵usion must be distinguished on the basis of
the asymptotic form of L(t). Following [61], confined di↵usion is said to be
anomalous if the relaxation time

⌧c =

Z 1

0
dt

(t)� (1)

(0)� (1)
(80)

diverges. This is the case if

1

L(t)
� 1

t!1⇠ C t�� and 0 < �  1, (81)

where C > 0 is a constant. Relation (81) is obtained if L(t) has the form

L(t)
t!1⇠ 1�Ct�� and with (15) this corresponds to saying that the DACF

decays anomalously slowly,

cuu(t)

cuu(0)
t!1⇠ Ct�� . (82)

Contribution-Kneller printed on May 9, 2015 23

times,

W (t)
t!1⇠ 2nD0L(t). (77)

As discussed earlier, one considers e↵ectively the MSD of u(t) = x(t)� hxi
in this case and the corresponding fractional di↵usion coe�cient D0 can be
formally obtained from the generalized Kubo relation (57)

D0 =
1

n
h|u|2i, (78)

in agreement with the general physical dimension of D↵, which
is length2/time↵. It follows from Expression (68) that the memory func-
tion has the general asymptotic form

(t)
t!1⇠

⌦
|v|2

↵

h|u|2i
1

L(t)
. (79)

This expression can be understood by setting L(t) = 1. In this case the
memory function is simply a constant, (t) = ⌦2, where ⌦ is defined through
⌦ =

p
h|v|2i /h|u|2i, and the resulting VACF is simply a cosine function,

cvv(t) = h|v|2i cos(⌦t). This describes a “rattling” of the di↵using parti-
cle in the cage represented by its environment, which is in turn formally
represented by the memory function. This is, of course, to some extent an
unphysical picture since the rattling motion is undamped and one expects
demoing e↵ects by collisions with the neighbors. A more refined description
of the di↵usion process is obtained by taking into account the function L(t)
and normal and anomalous di↵usion must be distinguished on the basis of
the asymptotic form of L(t). Following [61], confined di↵usion is said to be
anomalous if the relaxation time

⌧c =

Z 1

0
dt

(t)� (1)

(0)� (1)
(80)

diverges. This is the case if

1

L(t)
� 1

t!1⇠ C t�� and 0 < �  1, (81)

where C > 0 is a constant. Relation (81) is obtained if L(t) has the form

L(t)
t!1⇠ 1�Ct�� and with (15) this corresponds to saying that the DACF

decays anomalously slowly,

cuu(t)

cuu(0)
t!1⇠ Ct�� . (82)

The slowly growing function L(t) defines 
the asymptotic approach of the MSD to 
its plateau value.

The « diffusion constant » is the mean-
square position fluctuation (MSPF).

The memory function approaches a 
plateau value, too. 

The condition for anomalous diffusion is that 

diverges
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B. Spatially confined diffusion

The memory function for spatially confined diffusion is
chosen to be

κc(t) = "2 {r + (1 − r )M(β, 1,−t/τ )} , (45)

where 0 < r < 1 and 0 < β ≤ 1. It resembles the one for un-
confined subdiffusion, but in contrast to the latter it decays
to a finite plateau value, κc(∞) = "2r . Its asymptotic form is
given by

κc(t) − κc(∞)
t→∞∼

⎧
⎨

⎩
"2(1 − r ) (t/τ )−β

%(1−β) , 0 < β < 1,

"2(1 − r ) exp(−t/τ ), β = 1.

(46)
For 0 < β < 1 we have thus anomalous diffusion, in the
sense that the relaxation constant τc introduced in Eq. (34)
diverges. Figure 4 displays the normalized model memory
function for β = 1 and β = 1/2 (solid and dashed line, re-
spectively), fixing r = 0.3. The corresponding VACFs and
MSDs are shown in Figs. 5 and 6, respectively. They have
been calculated in the same way as for unconfined diffusion,
setting again " = 1.5/τ and ⟨v2⟩ = 1. Figure 6 displays in
addition the fits of two stochastic models for the MSD: the
normal Ornstein-Uhlenbeck (OU) process and the fractional
Ornstein-Uhlenbeck (fOU) process. The first one describes
the normal, markovian diffusion of a particle in a harmonic
potential,51 and the latter is the corresponding generalization
to a non-markovian process.30 The mean square displacement
for both the OU and the fOU process can be expressed by the
formula,

W(f)OU(t) = 2⟨u2⟩(1 − Eb(−[t/t0]b)), 0 < b ≤ 1, (47)

where Eb(z) denotes the Mittag-Leffler (ML) function and t0
is a time scale parameter. The ML function is an entire func-
tion in the complex plane and it can be represented by the
power series

Eb(z) =
∞∑

k=0

zk

%(1 + bk)
, (48)

which shows that Eb(z) = exp(z) for b = 1. The latter choice
for b in Eq. (47) corresponds to the normal Ornstein-

FIG. 4. Normalized memory functions according to model (45) for β = 1/2
and β = 1 (dashed line and solid line). The grey horizontal line shows the
plateau value.

FIG. 5. Normalized VACFs corresponding to the memory functions shown
in Fig. 4.

Uhlenbeck process, where the MSD converges exponentially
to its plateau value. The model (47) has been fitted to the
MSDs displayed in Fig. 6, leading to b = 0.521 ≈ β, t0
= 5.537 τ for the fOU process and to t0 = 2.126 τ for the OU
process. Both fits represent well the long time form of the
MSDs corresponding to model (45) for β = 1/2 and β = 1,
respectively. In this context, it is worthwhile to compare the
L-functions corresponding to the (f)OU process to the one re-
sulting from the memory function (44). It follows from the
asymptotic form of the ML function,

Eb(−tb)
t→∞∼ t−b

%(1 − b)
, (β ̸= 1), (49)

and from W (t)
t→∞∼ 2⟨u2⟩L(t) that the function L fOU(t) is

given by

L fOU(t) =

⎧
⎨

⎩
1 − (t/t0)−b

%(1−b) , if 0 < b < 1,

1 − exp(−t/t0), if b = 1.
(50)

On the other hand, one obtains from Eqs. (35) and (46)

L(t) =

⎧
⎨

⎩
1 −

( 1−r
r

) (t/τ )−β

%(1−β) , if 0 < β < 1,

1 −
( 1−r

r

)
exp(−t/τ ), if β = 1,

(51)

FIG. 6. MSDs derived from the memory functions shown in Fig. 4 (black
dashed line for β = 1/2 and black solid line for β = 1). In addition the
figure displays fits of model (47) for anomalous diffusion (grey dashed
line, βfOU = 0.521, τfOU = 5.537 τ ) and normal diffusion (grey solid line,
τOU = 2.126 τ ). More explanations are given in the text.
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The memory function for spatially confined diffusion is
chosen to be

κc(t) = "2 {r + (1 − r )M(β, 1,−t/τ )} , (45)

where 0 < r < 1 and 0 < β ≤ 1. It resembles the one for un-
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FIG. 5. Normalized VACFs corresponding to the memory functions shown
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Uhlenbeck process, where the MSD converges exponentially
to its plateau value. The model (47) has been fitted to the
MSDs displayed in Fig. 6, leading to b = 0.521 ≈ β, t0
= 5.537 τ for the fOU process and to t0 = 2.126 τ for the OU
process. Both fits represent well the long time form of the
MSDs corresponding to model (45) for β = 1/2 and β = 1,
respectively. In this context, it is worthwhile to compare the
L-functions corresponding to the (f)OU process to the one re-
sulting from the memory function (44). It follows from the
asymptotic form of the ML function,

Eb(−tb)
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FIG. 6. MSDs derived from the memory functions shown in Fig. 4 (black
dashed line for β = 1/2 and black solid line for β = 1). In addition the
figure displays fits of model (47) for anomalous diffusion (grey dashed
line, βfOU = 0.521, τfOU = 5.537 τ ) and normal diffusion (grey solid line,
τOU = 2.126 τ ). More explanations are given in the text.
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confined subdiffusion, but in contrast to the latter it decays
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spectively), fixing r = 0.3. The corresponding VACFs and
MSDs are shown in Figs. 5 and 6, respectively. They have
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Uhlenbeck process, where the MSD converges exponentially
to its plateau value. The model (47) has been fitted to the
MSDs displayed in Fig. 6, leading to b = 0.521 ≈ β, t0
= 5.537 τ for the fOU process and to t0 = 2.126 τ for the OU
process. Both fits represent well the long time form of the
MSDs corresponding to model (45) for β = 1/2 and β = 1,
respectively. In this context, it is worthwhile to compare the
L-functions corresponding to the (f)OU process to the one re-
sulting from the memory function (44). It follows from the
asymptotic form of the ML function,
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On the other hand, one obtains from Eqs. (35) and (46)
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FIG. 6. MSDs derived from the memory functions shown in Fig. 4 (black
dashed line for β = 1/2 and black solid line for β = 1). In addition the
figure displays fits of model (47) for anomalous diffusion (grey dashed
line, βfOU = 0.521, τfOU = 5.537 τ ) and normal diffusion (grey solid line,
τOU = 2.126 τ ). More explanations are given in the text.
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B. Spatially confined diffusion

The memory function for spatially confined diffusion is
chosen to be

κc(t) = "2 {r + (1 − r )M(β, 1,−t/τ )} , (45)

where 0 < r < 1 and 0 < β ≤ 1. It resembles the one for un-
confined subdiffusion, but in contrast to the latter it decays
to a finite plateau value, κc(∞) = "2r . Its asymptotic form is
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(46)
For 0 < β < 1 we have thus anomalous diffusion, in the
sense that the relaxation constant τc introduced in Eq. (34)
diverges. Figure 4 displays the normalized model memory
function for β = 1 and β = 1/2 (solid and dashed line, re-
spectively), fixing r = 0.3. The corresponding VACFs and
MSDs are shown in Figs. 5 and 6, respectively. They have
been calculated in the same way as for unconfined diffusion,
setting again " = 1.5/τ and ⟨v2⟩ = 1. Figure 6 displays in
addition the fits of two stochastic models for the MSD: the
normal Ornstein-Uhlenbeck (OU) process and the fractional
Ornstein-Uhlenbeck (fOU) process. The first one describes
the normal, markovian diffusion of a particle in a harmonic
potential,51 and the latter is the corresponding generalization
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tion in the complex plane and it can be represented by the
power series
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which shows that Eb(z) = exp(z) for b = 1. The latter choice
for b in Eq. (47) corresponds to the normal Ornstein-

FIG. 4. Normalized memory functions according to model (45) for β = 1/2
and β = 1 (dashed line and solid line). The grey horizontal line shows the
plateau value.

FIG. 5. Normalized VACFs corresponding to the memory functions shown
in Fig. 4.

Uhlenbeck process, where the MSD converges exponentially
to its plateau value. The model (47) has been fitted to the
MSDs displayed in Fig. 6, leading to b = 0.521 ≈ β, t0
= 5.537 τ for the fOU process and to t0 = 2.126 τ for the OU
process. Both fits represent well the long time form of the
MSDs corresponding to model (45) for β = 1/2 and β = 1,
respectively. In this context, it is worthwhile to compare the
L-functions corresponding to the (f)OU process to the one re-
sulting from the memory function (44). It follows from the
asymptotic form of the ML function,
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On the other hand, one obtains from Eqs. (35) and (46)
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FIG. 6. MSDs derived from the memory functions shown in Fig. 4 (black
dashed line for β = 1/2 and black solid line for β = 1). In addition the
figure displays fits of model (47) for anomalous diffusion (grey dashed
line, βfOU = 0.521, τfOU = 5.537 τ ) and normal diffusion (grey solid line,
τOU = 2.126 τ ). More explanations are given in the text.
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B. Spatially confined diffusion

The memory function for spatially confined diffusion is
chosen to be

κc(t) = "2 {r + (1 − r )M(β, 1,−t/τ )} , (45)

where 0 < r < 1 and 0 < β ≤ 1. It resembles the one for un-
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sense that the relaxation constant τc introduced in Eq. (34)
diverges. Figure 4 displays the normalized model memory
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Uhlenbeck process, where the MSD converges exponentially
to its plateau value. The model (47) has been fitted to the
MSDs displayed in Fig. 6, leading to b = 0.521 ≈ β, t0
= 5.537 τ for the fOU process and to t0 = 2.126 τ for the OU
process. Both fits represent well the long time form of the
MSDs corresponding to model (45) for β = 1/2 and β = 1,
respectively. In this context, it is worthwhile to compare the
L-functions corresponding to the (f)OU process to the one re-
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FIG. 6. MSDs derived from the memory functions shown in Fig. 4 (black
dashed line for β = 1/2 and black solid line for β = 1). In addition the
figure displays fits of model (47) for anomalous diffusion (grey dashed
line, βfOU = 0.521, τfOU = 5.537 τ ) and normal diffusion (grey solid line,
τOU = 2.126 τ ). More explanations are given in the text.
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and therefore p(�) must have the general form [66]

p(�) = f(�)
sin(⇡�)

⇡

�(1� �)

�1��
(0 < � < 1). (84)

The function f(�) is yet undetermined and must be chosen such that
lim�!0 f(�) = const. and that

R1
0 p(�;�) = 1. The special choice [66]

f(�) = exp(���) (85)

ensures that all moments of the relaxation spectra exist, which are defined
through

�k =

Z 1

0
d��kp(�) = (�1)k (k)(0). (86)

The correctly normalized relaxation rate spectrum for corresponding to the
choice (85) is

p(�;�) =
���1�� exp(���)

�(�)
, (87)

and the corresponding relaxation function  (t) reads

 (t;�) =
1

(1 + t/�)�
. (88)

It is worthwhile noting that  (t;�) yields the Tsallis exponential function
by setting � = 1/(1� q) [67, 68, 69]. One realizes that

lim
�!1

 (t;�) = exp(�t) (89)

and therefore

lim
�!1

p(�;�) = �(�� 1). (90)

The cumulants of p(�;�), which are defined through

c
(k)
� = (�1)k

dk

dtk
ln( (t;�))

����
t=0+

, (91)

have a particularly simple form

c
(1)
↵,� =1, (92)

c
(k)
↵,� =

(k � 1)!

�k�1
, (k = 2, 3, . . .). (93)
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Fig. 8. Left: Normalized DACF  (t;�) for � = 0.5, 1.5, . . . , 4.5 (red to blue).
Right: Corresponding relaxation spectra p(�;�).

The above considerations show that anomalous relaxation in position space
is a direct consequence of the slow power law approach of the memory
kernel to its plateau value. Using the cage picture for the environment of
the di↵using particle, Relation (81) reflects a slowly decaying cage towards
its plateau value. The persistence of the latter for arbitrarily long times
prevents the di↵using particle to escape to infinity.

3.4.2. Relaxation rate spectra

The relaxation rate spectrum of a slowly decaying DACF has a par-
ticular form, which can be used to build relaxation models. Referring to
Section 2.4.3, the relaxation function  (t) = cuu(t)/cuu(0) is represented in
the form

 (t) =

Z 1

0
d� p(�) exp(��t),

and the relation between the relaxation function and its relaxation spectrum
is given by the Stieljes transform pair

 ̂(s) =

Z 1

0
dµ

p(µ)

s+ µ
,

p(�) =
1

⇡
lim
✏!0

={ ̂(��� i✏)}.

In case of anomalous relaxation, where the DACF decays asymptotically
as in (82), it follows from the HLK-theorem (51) that

 (t)
t!1⇠ t�� ,  ̂(s)

s!0⇠ �(1� �)

s1��
, (83)

Systematic construction of relaxation rate spectra
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Fig. 8. Left: Normalized DACF  (t;�) for � = 0.5, 1.5, . . . , 4.5 (red to blue).
Right: Corresponding relaxation spectra p(�;�).
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f(�) = exp(���) (85)
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through
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0
d��kp(�) = (�1)k (k)(0). (86)

The correctly normalized relaxation rate spectrum for corresponding to the
choice (85) is

p(�;�) =
���1�� exp(���)

�(�)
, (87)

and the corresponding relaxation function  (t) reads

 (t;�) =
1

(1 + t/�)�
. (88)

It is worthwhile noting that  (t;�) yields the Tsallis exponential function
by setting � = 1/(1� q) [67, 68, 69]. One realizes that

lim
�!1

 (t;�) = exp(�t) (89)

and therefore

lim
�!1

p(�;�) = �(�� 1). (90)

The cumulants of p(�;�), which are defined through

c
(k)
� = (�1)k

dk

dtk
ln( (t;�))

����
t=0+

, (91)

have a particularly simple form

c
(1)
↵,� =1, (92)
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(k)
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(k � 1)!

�k�1
, (k = 2, 3, . . .). (93)

This is the general form of p(λ):

G.R. Kneller, K. Hinsen, and P. Calligari, J Chem Phys 136, 191101 (2012).
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asymptotic regime starts already in the picosecond range. The right part
of Fig. 9 displays the simulated memory function, where the inset shows
again the theoretical longtime tail superposed to the simulated function.
The decay of the memory function is extremely steep, of the order of a
few integration time steps, and the dynamics is probably not well enough
resolved for a detailed analysis, but the figure shows clearly a qualitative
agreement between the simulated function and the theoretical long-time tail
(68). It should in particular be noted that the simulated long-time tails of
the VACF and its memory function have opposite signs, as requested by the
theoretical considerations for the case of subdi↵usion

3.5.2. Backbone relaxation in proteins

This section is devoted to the presentation of a model for the relax-
ation and di↵usion dynamics for the main chain of proteins, which has been
recently published [66]. The idea was here to test a model based on the
theoretical considerations presented in Section 3.4.2, which would in partic-
ular lead to finite moments of the relaxation rate spectrum and therefore
to displacement autocorrelation functions which are di↵erentiable at t = 0.

Fig. 10. Protein main chain
of Lysozyme and four se-
lected residues.

It has been mentioned in Section 3.4.2 that this
is not the case if the fOU process is the underly-
ing dynamical model. The dynamical model to
be briefly discussed in the following is a coarse-
grained model in the which a protein is repre-
sented only by the so-called C↵-atoms along the
protein main chain, which are the anchor points
of the side chains. The model proposed in [66]
expresses the displacement autocorrelation func-
tions for the C↵-atoms in the form

cuu(t) = h|u|2i (t), (95)

where the relaxation function is expressed
through a relaxation spectrum,

 (t) =

Z 1

0
d� p(�) exp(��t),

where
p(�;�;↵) = p0(�� ↵;�;↵) (96)

with p0(�� ↵;�;↵) given by Expression (87),

p0(�;�) =
���1�� exp(���)

�(�)
. (97)
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Fig. 8. Left: Normalized DACF  (t;�) for � = 0.5, 1.5, . . . , 4.5 (red to blue).
Right: Corresponding relaxation spectra p(�;�).

The above considerations show that anomalous relaxation in position space
is a direct consequence of the slow power law approach of the memory
kernel to its plateau value. Using the cage picture for the environment of
the di↵using particle, Relation (81) reflects a slowly decaying cage towards
its plateau value. The persistence of the latter for arbitrarily long times
prevents the di↵using particle to escape to infinity.

3.4.2. Relaxation rate spectra

The relaxation rate spectrum of a slowly decaying DACF has a par-
ticular form, which can be used to build relaxation models. Referring to
Section 2.4.3, the relaxation function  (t) = cuu(t)/cuu(0) is represented in
the form

 (t) =

Z 1

0
d� p(�) exp(��t),

and the relation between the relaxation function and its relaxation spectrum
is given by the Stieljes transform pair

 ̂(s) =

Z 1

0
dµ

p(µ)

s+ µ
,

p(�) =
1

⇡
lim
✏!0

={ ̂(��� i✏)}.

In case of anomalous relaxation, where the DACF decays asymptotically
as in (82), it follows from the HLK-theorem (51) that

 (t)
t!1⇠ t�� ,  ̂(s)

s!0⇠ �(1� �)

s1��
, (83)

A special choice for f(λ)
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and therefore p(�) must have the general form [66]

p(�) = f(�)
sin(⇡�)

⇡

�(1� �)

�1��
(0 < � < 1). (84)

The function f(�) is yet undetermined and must be chosen such that
lim�!0 f(�) = const. and that

R1
0 p(�;�) = 1. The special choice [66]

f(�) = exp(���) (85)

ensures that all moments of the relaxation spectra exist, which are defined
through

�k =

Z 1

0
d��kp(�) = (�1)k (k)(0). (86)

The correctly normalized relaxation rate spectrum for corresponding to the
choice (85) is

p(�;�) =
���1�� exp(���)

�(�)
, (87)

and the corresponding relaxation function  (t) reads

 (t;�) =
1

(1 + t/�)�
. (88)

It is worthwhile noting that  (t;�) yields the Tsallis exponential function
by setting � = 1/(1� q) [67, 68, 69]. One realizes that

lim
�!1

 (t;�) = exp(�t) (89)

and therefore

lim
�!1

p(�;�) = �(�� 1). (90)

The cumulants of p(�;�), which are defined through

c
(k)
� = (�1)k

dk

dtk
ln( (t;�))

����
t=0+

, (91)

have a particularly simple form

c
(1)
↵,� =1, (92)

c
(k)
↵,� =

(k � 1)!

�k�1
, (k = 2, 3, . . .). (93)
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All cumulants exist
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asymptotic regime starts already in the picosecond range. The right part
of Fig. 9 displays the simulated memory function, where the inset shows
again the theoretical longtime tail superposed to the simulated function.
The decay of the memory function is extremely steep, of the order of a
few integration time steps, and the dynamics is probably not well enough
resolved for a detailed analysis, but the figure shows clearly a qualitative
agreement between the simulated function and the theoretical long-time tail
(68). It should in particular be noted that the simulated long-time tails of
the VACF and its memory function have opposite signs, as requested by the
theoretical considerations for the case of subdi↵usion

3.5.2. Backbone relaxation in proteins

This section is devoted to the presentation of a model for the relax-
ation and di↵usion dynamics for the main chain of proteins, which has been
recently published [66]. The idea was here to test a model based on the
theoretical considerations presented in Section 3.4.2, which would in partic-
ular lead to finite moments of the relaxation rate spectrum and therefore
to displacement autocorrelation functions which are di↵erentiable at t = 0.

Fig. 10. Protein main chain
of Lysozyme and four se-
lected residues.

It has been mentioned in Section 3.4.2 that this
is not the case if the fOU process is the underly-
ing dynamical model. The dynamical model to
be briefly discussed in the following is a coarse-
grained model in the which a protein is repre-
sented only by the so-called C↵-atoms along the
protein main chain, which are the anchor points
of the side chains. The model proposed in [66]
expresses the displacement autocorrelation func-
tions for the C↵-atoms in the form

cuu(t) = h|u|2i (t), (95)

where the relaxation function is expressed
through a relaxation spectrum,

 (t) =

Z 1

0
d� p(�) exp(��t),

where
p(�;�;↵) = p0(�� ↵;�;↵) (96)

with p0(�� ↵;�;↵) given by Expression (87),

p0(�;�) =
���1�� exp(���)

�(�)
. (97)

Backbone relaxation dynamics in proteins

G.R. Kneller, K. Hinsen, and P. Calligari, J Chem Phys 136, 191101 (2012).
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at least as fast as p(λ) ∼ λ−(k + 1 + ϵ), with ϵ > 0. In this con-
text it is worthwhile noting that the relaxation rate spectrum
corresponding to the stretched Mittag-Leffler function, ψ(t)
= Eβ(− tβ), which describes the PACF of the fOU process1, 14

behaves for large λ as pfOU(λ) ∼ λ−(β+1). For this reason none
of moments λk with k > 0 exist and ψ(t) is non-analytic at
t = 0.

To construct a model for p(λ), we make the following
assumptions:
(a) For a protein of finite size, the PACF of each Cα-atom is

characterized by a smallest relaxation rate, ηmin. In ther-
mal equilibrium, a protein performs fluctuations about its
equilibrium structure, and to a first approximation pro-
tein dynamics can be described by diffusion in an effec-
tive multidimensional harmonic potential energy.23, 24 If
ωmin is the smallest normal frequency for this harmonic
potential, then ηmin = γ −1ω2

min is the minimal relaxation
rate for the PACF of a given Cα-atom, where γ > 0 is a
positive friction constant which is essentially determined
by the atomic density of the nearest neighbors. With in-
creasing system size ωmin and thus ηmin tend to zero.

(b) In the limit of infinite protein size, the PACF of each
Cα-atom exhibits anomalous relaxation,

ψ(t)
t→∞∼ t−β 0 < β < 1, (5)

which is characteristic for relaxation processes in large
scale polymeric networks.2 Due to the slow decay of
the PACFs, the corresponding average relaxation times,
τ exp =

∫ ∞
0 dt ψ(t), diverge.

(c) The PACFs should be analytical in t = 0, i.e., they should
representable by a Taylor series in this point. Since ψ(t)
is the moment generating function for p(λ), all moments
λk must exist.

In order to fulfill the above requirements, the relaxation
rate spectrum must have the general form

p(λ; α,β) = θ (λ − α)p(λ − α; β), (6)

where θ (.) is the Heaviside unit step function, α is a di-
mensionless minimal relaxation rate (α = ηminτ ), and p(λ; β)
must be constructed such that ψ(t) has the asymptotic form
(5) if α = 0. For this purpose, one can rely on the fact that the
Laplace transform of ψ(t) is the Stieltjes transform of p(λ),

ψ̂(s) =
∫ ∞

0
dµ

p(µ)
s + µ

, (7)

p(λ) = 1
π

lim
ϵ→0

ℑ{ψ̂(−λ − iϵ)}, (8)

where ψ̂(s) =
∫ ∞

0 dt exp(−st)ψ(t) (R{s} > 0), and on a
Tauberian theorem,25, 26 according to which

ψ̂(s)
s→0∼ ,(1 − β)

s1−β
(9)

follows from relation (5) and vice versa. Combining relations
(8) and (9), one can conclude that p(λ; β) must have the gen-
eral form

p(λ; β) = f (λ)
sin(πβ)

π

,(1 − β)
λ1−β

(0 < β < 1), (10)

where f(λ) is a yet undetermined function fulfilling
limλ → 0f(λ) = C. The constant C must be chosen such
that

∫ ∞
0 p(λ; β) = 1. We note that limβ → 1sin (πβ),(1 − β)

= π . Relation (10) is a necessary and sufficient condition for a
slowly decaying PACF with the asymptotic form (5). To con-
struct p(λ) such that the existence of all moments λk and thus
the analyticity of ψ(t) in t = 0 is guaranteed we set

f (λ) = C exp(−βλ). (11)

The properly normalized relaxation rate spectrum then reads

p(λ; β) = λβ−1ββ exp(−βλ)
,(β)

, (12)

and ψ(t) is given by

ψ(t ; α,β) = exp(−αt)
(1 + t/β)β

. (13)

The corresponding cumulants, which are defined through

c
(k)
α,β = (−1)k

dk

dtk
ln(ψ(t ; α,β))

∣∣∣∣
t=0+

(14)

have the particularly simple form

c
(1)
α,β =1 + α, (15)

c
(k)
α,β = (k − 1)!

βk−1
, (k = 2, 3, . . .). (16)

From the form of ψ(t; α, β) and its cumulants, one derives the
consistent limits

lim
β→∞

ψ(t ; α,β) = exp(−[1 + α]t), (17)

lim
β→∞

p(λ; α,β) = δ(λ − [1 + α]), (18)

and we note in this context that ψ(t; 0, 1/(1 − q)) is the “Tsal-
lis q-exponential” which is considered in non-extensive sta-
tistical mechanics.27–29

To test our model, we performed a molecular dynam-
ics simulation of a lysozyme molecule in water for a subse-
quent analysis of the Cα PACFs with our model. The sim-
ulated system was set up by starting with the initial structure
193L of the Protein Data Bank (PDB).30 A total of 6775 water
molecules were added, resulting in a system of 22 295 atoms.
The simulations were performed using the NAMD program31

with the all-atom force field AMBER99SB (Ref. 32) and with
periodic boundary conditions. Electrostatic interactions were
computed using the particle mesh Ewald method.33 The inte-
gration time step was set to 1 fs and coordinates were saved
every 50 fs for further analysis. After a preliminary minimiza-
tion of the PDB structure, the system was first equilibrated at
constant temperature (298 K) and constant pressure (1 bar)
using a Langevin thermostat34 coupled with a Nose-Hoover
barostat.35 The equilibrated system was used for a production
run of 10 ns from which the PACFs of the Cα-atoms were
calculated. The normalized PACFs were fitted according to

c(t)
c(0)

≈ ψ(t/τ ; α,β). (19)
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at least as fast as p(λ) ∼ λ−(k + 1 + ϵ), with ϵ > 0. In this con-
text it is worthwhile noting that the relaxation rate spectrum
corresponding to the stretched Mittag-Leffler function, ψ(t)
= Eβ(− tβ), which describes the PACF of the fOU process1, 14

behaves for large λ as pfOU(λ) ∼ λ−(β+1). For this reason none
of moments λk with k > 0 exist and ψ(t) is non-analytic at
t = 0.

To construct a model for p(λ), we make the following
assumptions:
(a) For a protein of finite size, the PACF of each Cα-atom is

characterized by a smallest relaxation rate, ηmin. In ther-
mal equilibrium, a protein performs fluctuations about its
equilibrium structure, and to a first approximation pro-
tein dynamics can be described by diffusion in an effec-
tive multidimensional harmonic potential energy.23, 24 If
ωmin is the smallest normal frequency for this harmonic
potential, then ηmin = γ −1ω2

min is the minimal relaxation
rate for the PACF of a given Cα-atom, where γ > 0 is a
positive friction constant which is essentially determined
by the atomic density of the nearest neighbors. With in-
creasing system size ωmin and thus ηmin tend to zero.

(b) In the limit of infinite protein size, the PACF of each
Cα-atom exhibits anomalous relaxation,

ψ(t)
t→∞∼ t−β 0 < β < 1, (5)

which is characteristic for relaxation processes in large
scale polymeric networks.2 Due to the slow decay of
the PACFs, the corresponding average relaxation times,
τ exp =

∫ ∞
0 dt ψ(t), diverge.

(c) The PACFs should be analytical in t = 0, i.e., they should
representable by a Taylor series in this point. Since ψ(t)
is the moment generating function for p(λ), all moments
λk must exist.

In order to fulfill the above requirements, the relaxation
rate spectrum must have the general form

p(λ; α,β) = θ (λ − α)p(λ − α; β), (6)

where θ (.) is the Heaviside unit step function, α is a di-
mensionless minimal relaxation rate (α = ηminτ ), and p(λ; β)
must be constructed such that ψ(t) has the asymptotic form
(5) if α = 0. For this purpose, one can rely on the fact that the
Laplace transform of ψ(t) is the Stieltjes transform of p(λ),

ψ̂(s) =
∫ ∞

0
dµ

p(µ)
s + µ

, (7)

p(λ) = 1
π

lim
ϵ→0

ℑ{ψ̂(−λ − iϵ)}, (8)

where ψ̂(s) =
∫ ∞

0 dt exp(−st)ψ(t) (R{s} > 0), and on a
Tauberian theorem,25, 26 according to which

ψ̂(s)
s→0∼ ,(1 − β)

s1−β
(9)

follows from relation (5) and vice versa. Combining relations
(8) and (9), one can conclude that p(λ; β) must have the gen-
eral form

p(λ; β) = f (λ)
sin(πβ)

π

,(1 − β)
λ1−β

(0 < β < 1), (10)

where f(λ) is a yet undetermined function fulfilling
limλ → 0f(λ) = C. The constant C must be chosen such
that

∫ ∞
0 p(λ; β) = 1. We note that limβ → 1sin (πβ),(1 − β)

= π . Relation (10) is a necessary and sufficient condition for a
slowly decaying PACF with the asymptotic form (5). To con-
struct p(λ) such that the existence of all moments λk and thus
the analyticity of ψ(t) in t = 0 is guaranteed we set

f (λ) = C exp(−βλ). (11)

The properly normalized relaxation rate spectrum then reads

p(λ; β) = λβ−1ββ exp(−βλ)
,(β)

, (12)

and ψ(t) is given by

ψ(t ; α,β) = exp(−αt)
(1 + t/β)β

. (13)

The corresponding cumulants, which are defined through

c
(k)
α,β = (−1)k

dk

dtk
ln(ψ(t ; α,β))

∣∣∣∣
t=0+

(14)

have the particularly simple form

c
(1)
α,β =1 + α, (15)

c
(k)
α,β = (k − 1)!

βk−1
, (k = 2, 3, . . .). (16)

From the form of ψ(t; α, β) and its cumulants, one derives the
consistent limits

lim
β→∞

ψ(t ; α,β) = exp(−[1 + α]t), (17)

lim
β→∞

p(λ; α,β) = δ(λ − [1 + α]), (18)

and we note in this context that ψ(t; 0, 1/(1 − q)) is the “Tsal-
lis q-exponential” which is considered in non-extensive sta-
tistical mechanics.27–29

To test our model, we performed a molecular dynam-
ics simulation of a lysozyme molecule in water for a subse-
quent analysis of the Cα PACFs with our model. The sim-
ulated system was set up by starting with the initial structure
193L of the Protein Data Bank (PDB).30 A total of 6775 water
molecules were added, resulting in a system of 22 295 atoms.
The simulations were performed using the NAMD program31

with the all-atom force field AMBER99SB (Ref. 32) and with
periodic boundary conditions. Electrostatic interactions were
computed using the particle mesh Ewald method.33 The inte-
gration time step was set to 1 fs and coordinates were saved
every 50 fs for further analysis. After a preliminary minimiza-
tion of the PDB structure, the system was first equilibrated at
constant temperature (298 K) and constant pressure (1 bar)
using a Langevin thermostat34 coupled with a Nose-Hoover
barostat.35 The equilibrated system was used for a production
run of 10 ns from which the PACFs of the Cα-atoms were
calculated. The normalized PACFs were fitted according to

c(t)
c(0)

≈ ψ(t/τ ; α,β). (19)
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at least as fast as p(λ) ∼ λ−(k + 1 + ϵ), with ϵ > 0. In this con-
text it is worthwhile noting that the relaxation rate spectrum
corresponding to the stretched Mittag-Leffler function, ψ(t)
= Eβ(− tβ), which describes the PACF of the fOU process1, 14

behaves for large λ as pfOU(λ) ∼ λ−(β+1). For this reason none
of moments λk with k > 0 exist and ψ(t) is non-analytic at
t = 0.

To construct a model for p(λ), we make the following
assumptions:
(a) For a protein of finite size, the PACF of each Cα-atom is

characterized by a smallest relaxation rate, ηmin. In ther-
mal equilibrium, a protein performs fluctuations about its
equilibrium structure, and to a first approximation pro-
tein dynamics can be described by diffusion in an effec-
tive multidimensional harmonic potential energy.23, 24 If
ωmin is the smallest normal frequency for this harmonic
potential, then ηmin = γ −1ω2

min is the minimal relaxation
rate for the PACF of a given Cα-atom, where γ > 0 is a
positive friction constant which is essentially determined
by the atomic density of the nearest neighbors. With in-
creasing system size ωmin and thus ηmin tend to zero.

(b) In the limit of infinite protein size, the PACF of each
Cα-atom exhibits anomalous relaxation,

ψ(t)
t→∞∼ t−β 0 < β < 1, (5)

which is characteristic for relaxation processes in large
scale polymeric networks.2 Due to the slow decay of
the PACFs, the corresponding average relaxation times,
τ exp =

∫ ∞
0 dt ψ(t), diverge.

(c) The PACFs should be analytical in t = 0, i.e., they should
representable by a Taylor series in this point. Since ψ(t)
is the moment generating function for p(λ), all moments
λk must exist.

In order to fulfill the above requirements, the relaxation
rate spectrum must have the general form

p(λ; α,β) = θ (λ − α)p(λ − α; β), (6)

where θ (.) is the Heaviside unit step function, α is a di-
mensionless minimal relaxation rate (α = ηminτ ), and p(λ; β)
must be constructed such that ψ(t) has the asymptotic form
(5) if α = 0. For this purpose, one can rely on the fact that the
Laplace transform of ψ(t) is the Stieltjes transform of p(λ),

ψ̂(s) =
∫ ∞

0
dµ

p(µ)
s + µ

, (7)

p(λ) = 1
π

lim
ϵ→0

ℑ{ψ̂(−λ − iϵ)}, (8)

where ψ̂(s) =
∫ ∞

0 dt exp(−st)ψ(t) (R{s} > 0), and on a
Tauberian theorem,25, 26 according to which

ψ̂(s)
s→0∼ ,(1 − β)

s1−β
(9)

follows from relation (5) and vice versa. Combining relations
(8) and (9), one can conclude that p(λ; β) must have the gen-
eral form

p(λ; β) = f (λ)
sin(πβ)

π

,(1 − β)
λ1−β

(0 < β < 1), (10)

where f(λ) is a yet undetermined function fulfilling
limλ → 0f(λ) = C. The constant C must be chosen such
that

∫ ∞
0 p(λ; β) = 1. We note that limβ → 1sin (πβ),(1 − β)

= π . Relation (10) is a necessary and sufficient condition for a
slowly decaying PACF with the asymptotic form (5). To con-
struct p(λ) such that the existence of all moments λk and thus
the analyticity of ψ(t) in t = 0 is guaranteed we set

f (λ) = C exp(−βλ). (11)

The properly normalized relaxation rate spectrum then reads

p(λ; β) = λβ−1ββ exp(−βλ)
,(β)

, (12)

and ψ(t) is given by

ψ(t ; α,β) = exp(−αt)
(1 + t/β)β

. (13)

The corresponding cumulants, which are defined through

c
(k)
α,β = (−1)k

dk

dtk
ln(ψ(t ; α,β))

∣∣∣∣
t=0+

(14)

have the particularly simple form

c
(1)
α,β =1 + α, (15)

c
(k)
α,β = (k − 1)!

βk−1
, (k = 2, 3, . . .). (16)

From the form of ψ(t; α, β) and its cumulants, one derives the
consistent limits

lim
β→∞

ψ(t ; α,β) = exp(−[1 + α]t), (17)

lim
β→∞

p(λ; α,β) = δ(λ − [1 + α]), (18)

and we note in this context that ψ(t; 0, 1/(1 − q)) is the “Tsal-
lis q-exponential” which is considered in non-extensive sta-
tistical mechanics.27–29

To test our model, we performed a molecular dynam-
ics simulation of a lysozyme molecule in water for a subse-
quent analysis of the Cα PACFs with our model. The sim-
ulated system was set up by starting with the initial structure
193L of the Protein Data Bank (PDB).30 A total of 6775 water
molecules were added, resulting in a system of 22 295 atoms.
The simulations were performed using the NAMD program31

with the all-atom force field AMBER99SB (Ref. 32) and with
periodic boundary conditions. Electrostatic interactions were
computed using the particle mesh Ewald method.33 The inte-
gration time step was set to 1 fs and coordinates were saved
every 50 fs for further analysis. After a preliminary minimiza-
tion of the PDB structure, the system was first equilibrated at
constant temperature (298 K) and constant pressure (1 bar)
using a Langevin thermostat34 coupled with a Nose-Hoover
barostat.35 The equilibrated system was used for a production
run of 10 ns from which the PACFs of the Cα-atoms were
calculated. The normalized PACFs were fitted according to

c(t)
c(0)

≈ ψ(t/τ ; α,β). (19)
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at least as fast as p(λ) ∼ λ−(k + 1 + ϵ), with ϵ > 0. In this con-
text it is worthwhile noting that the relaxation rate spectrum
corresponding to the stretched Mittag-Leffler function, ψ(t)
= Eβ(− tβ), which describes the PACF of the fOU process1, 14

behaves for large λ as pfOU(λ) ∼ λ−(β+1). For this reason none
of moments λk with k > 0 exist and ψ(t) is non-analytic at
t = 0.

To construct a model for p(λ), we make the following
assumptions:
(a) For a protein of finite size, the PACF of each Cα-atom is

characterized by a smallest relaxation rate, ηmin. In ther-
mal equilibrium, a protein performs fluctuations about its
equilibrium structure, and to a first approximation pro-
tein dynamics can be described by diffusion in an effec-
tive multidimensional harmonic potential energy.23, 24 If
ωmin is the smallest normal frequency for this harmonic
potential, then ηmin = γ −1ω2

min is the minimal relaxation
rate for the PACF of a given Cα-atom, where γ > 0 is a
positive friction constant which is essentially determined
by the atomic density of the nearest neighbors. With in-
creasing system size ωmin and thus ηmin tend to zero.

(b) In the limit of infinite protein size, the PACF of each
Cα-atom exhibits anomalous relaxation,

ψ(t)
t→∞∼ t−β 0 < β < 1, (5)

which is characteristic for relaxation processes in large
scale polymeric networks.2 Due to the slow decay of
the PACFs, the corresponding average relaxation times,
τ exp =

∫ ∞
0 dt ψ(t), diverge.

(c) The PACFs should be analytical in t = 0, i.e., they should
representable by a Taylor series in this point. Since ψ(t)
is the moment generating function for p(λ), all moments
λk must exist.

In order to fulfill the above requirements, the relaxation
rate spectrum must have the general form

p(λ; α,β) = θ (λ − α)p(λ − α; β), (6)

where θ (.) is the Heaviside unit step function, α is a di-
mensionless minimal relaxation rate (α = ηminτ ), and p(λ; β)
must be constructed such that ψ(t) has the asymptotic form
(5) if α = 0. For this purpose, one can rely on the fact that the
Laplace transform of ψ(t) is the Stieltjes transform of p(λ),

ψ̂(s) =
∫ ∞

0
dµ

p(µ)
s + µ

, (7)

p(λ) = 1
π

lim
ϵ→0

ℑ{ψ̂(−λ − iϵ)}, (8)

where ψ̂(s) =
∫ ∞

0 dt exp(−st)ψ(t) (R{s} > 0), and on a
Tauberian theorem,25, 26 according to which

ψ̂(s)
s→0∼ ,(1 − β)

s1−β
(9)

follows from relation (5) and vice versa. Combining relations
(8) and (9), one can conclude that p(λ; β) must have the gen-
eral form

p(λ; β) = f (λ)
sin(πβ)

π

,(1 − β)
λ1−β

(0 < β < 1), (10)

where f(λ) is a yet undetermined function fulfilling
limλ → 0f(λ) = C. The constant C must be chosen such
that

∫ ∞
0 p(λ; β) = 1. We note that limβ → 1sin (πβ),(1 − β)

= π . Relation (10) is a necessary and sufficient condition for a
slowly decaying PACF with the asymptotic form (5). To con-
struct p(λ) such that the existence of all moments λk and thus
the analyticity of ψ(t) in t = 0 is guaranteed we set

f (λ) = C exp(−βλ). (11)

The properly normalized relaxation rate spectrum then reads

p(λ; β) = λβ−1ββ exp(−βλ)
,(β)

, (12)

and ψ(t) is given by

ψ(t ; α,β) = exp(−αt)
(1 + t/β)β

. (13)

The corresponding cumulants, which are defined through

c
(k)
α,β = (−1)k

dk

dtk
ln(ψ(t ; α,β))

∣∣∣∣
t=0+

(14)

have the particularly simple form

c
(1)
α,β =1 + α, (15)

c
(k)
α,β = (k − 1)!

βk−1
, (k = 2, 3, . . .). (16)

From the form of ψ(t; α, β) and its cumulants, one derives the
consistent limits

lim
β→∞

ψ(t ; α,β) = exp(−[1 + α]t), (17)

lim
β→∞

p(λ; α,β) = δ(λ − [1 + α]), (18)

and we note in this context that ψ(t; 0, 1/(1 − q)) is the “Tsal-
lis q-exponential” which is considered in non-extensive sta-
tistical mechanics.27–29

To test our model, we performed a molecular dynam-
ics simulation of a lysozyme molecule in water for a subse-
quent analysis of the Cα PACFs with our model. The sim-
ulated system was set up by starting with the initial structure
193L of the Protein Data Bank (PDB).30 A total of 6775 water
molecules were added, resulting in a system of 22 295 atoms.
The simulations were performed using the NAMD program31

with the all-atom force field AMBER99SB (Ref. 32) and with
periodic boundary conditions. Electrostatic interactions were
computed using the particle mesh Ewald method.33 The inte-
gration time step was set to 1 fs and coordinates were saved
every 50 fs for further analysis. After a preliminary minimiza-
tion of the PDB structure, the system was first equilibrated at
constant temperature (298 K) and constant pressure (1 bar)
using a Langevin thermostat34 coupled with a Nose-Hoover
barostat.35 The equilibrated system was used for a production
run of 10 ns from which the PACFs of the Cα-atoms were
calculated. The normalized PACFs were fitted according to

c(t)
c(0)

≈ ψ(t/τ ; α,β). (19)
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at least as fast as p(λ) ∼ λ−(k + 1 + ϵ), with ϵ > 0. In this con-
text it is worthwhile noting that the relaxation rate spectrum
corresponding to the stretched Mittag-Leffler function, ψ(t)
= Eβ(− tβ), which describes the PACF of the fOU process1, 14

behaves for large λ as pfOU(λ) ∼ λ−(β+1). For this reason none
of moments λk with k > 0 exist and ψ(t) is non-analytic at
t = 0.

To construct a model for p(λ), we make the following
assumptions:
(a) For a protein of finite size, the PACF of each Cα-atom is

characterized by a smallest relaxation rate, ηmin. In ther-
mal equilibrium, a protein performs fluctuations about its
equilibrium structure, and to a first approximation pro-
tein dynamics can be described by diffusion in an effec-
tive multidimensional harmonic potential energy.23, 24 If
ωmin is the smallest normal frequency for this harmonic
potential, then ηmin = γ −1ω2

min is the minimal relaxation
rate for the PACF of a given Cα-atom, where γ > 0 is a
positive friction constant which is essentially determined
by the atomic density of the nearest neighbors. With in-
creasing system size ωmin and thus ηmin tend to zero.

(b) In the limit of infinite protein size, the PACF of each
Cα-atom exhibits anomalous relaxation,

ψ(t)
t→∞∼ t−β 0 < β < 1, (5)

which is characteristic for relaxation processes in large
scale polymeric networks.2 Due to the slow decay of
the PACFs, the corresponding average relaxation times,
τ exp =

∫ ∞
0 dt ψ(t), diverge.

(c) The PACFs should be analytical in t = 0, i.e., they should
representable by a Taylor series in this point. Since ψ(t)
is the moment generating function for p(λ), all moments
λk must exist.

In order to fulfill the above requirements, the relaxation
rate spectrum must have the general form

p(λ; α,β) = θ (λ − α)p(λ − α; β), (6)

where θ (.) is the Heaviside unit step function, α is a di-
mensionless minimal relaxation rate (α = ηminτ ), and p(λ; β)
must be constructed such that ψ(t) has the asymptotic form
(5) if α = 0. For this purpose, one can rely on the fact that the
Laplace transform of ψ(t) is the Stieltjes transform of p(λ),

ψ̂(s) =
∫ ∞

0
dµ

p(µ)
s + µ

, (7)

p(λ) = 1
π

lim
ϵ→0

ℑ{ψ̂(−λ − iϵ)}, (8)

where ψ̂(s) =
∫ ∞

0 dt exp(−st)ψ(t) (R{s} > 0), and on a
Tauberian theorem,25, 26 according to which

ψ̂(s)
s→0∼ ,(1 − β)

s1−β
(9)

follows from relation (5) and vice versa. Combining relations
(8) and (9), one can conclude that p(λ; β) must have the gen-
eral form

p(λ; β) = f (λ)
sin(πβ)

π

,(1 − β)
λ1−β

(0 < β < 1), (10)

where f(λ) is a yet undetermined function fulfilling
limλ → 0f(λ) = C. The constant C must be chosen such
that

∫ ∞
0 p(λ; β) = 1. We note that limβ → 1sin (πβ),(1 − β)

= π . Relation (10) is a necessary and sufficient condition for a
slowly decaying PACF with the asymptotic form (5). To con-
struct p(λ) such that the existence of all moments λk and thus
the analyticity of ψ(t) in t = 0 is guaranteed we set

f (λ) = C exp(−βλ). (11)

The properly normalized relaxation rate spectrum then reads

p(λ; β) = λβ−1ββ exp(−βλ)
,(β)

, (12)

and ψ(t) is given by

ψ(t ; α,β) = exp(−αt)
(1 + t/β)β

. (13)

The corresponding cumulants, which are defined through

c
(k)
α,β = (−1)k

dk

dtk
ln(ψ(t ; α,β))

∣∣∣∣
t=0+

(14)

have the particularly simple form

c
(1)
α,β =1 + α, (15)

c
(k)
α,β = (k − 1)!

βk−1
, (k = 2, 3, . . .). (16)

From the form of ψ(t; α, β) and its cumulants, one derives the
consistent limits

lim
β→∞

ψ(t ; α,β) = exp(−[1 + α]t), (17)

lim
β→∞

p(λ; α,β) = δ(λ − [1 + α]), (18)

and we note in this context that ψ(t; 0, 1/(1 − q)) is the “Tsal-
lis q-exponential” which is considered in non-extensive sta-
tistical mechanics.27–29

To test our model, we performed a molecular dynam-
ics simulation of a lysozyme molecule in water for a subse-
quent analysis of the Cα PACFs with our model. The sim-
ulated system was set up by starting with the initial structure
193L of the Protein Data Bank (PDB).30 A total of 6775 water
molecules were added, resulting in a system of 22 295 atoms.
The simulations were performed using the NAMD program31

with the all-atom force field AMBER99SB (Ref. 32) and with
periodic boundary conditions. Electrostatic interactions were
computed using the particle mesh Ewald method.33 The inte-
gration time step was set to 1 fs and coordinates were saved
every 50 fs for further analysis. After a preliminary minimiza-
tion of the PDB structure, the system was first equilibrated at
constant temperature (298 K) and constant pressure (1 bar)
using a Langevin thermostat34 coupled with a Nose-Hoover
barostat.35 The equilibrated system was used for a production
run of 10 ns from which the PACFs of the Cα-atoms were
calculated. The normalized PACFs were fitted according to

c(t)
c(0)

≈ ψ(t/τ ; α,β). (19)
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FIG. 1. Four selected residues in the lysozyme molecule.

All fits show an excellent agreement with the simulation
data and we show here the results for four selected residues
which have been chosen according to their exposure to sol-
vent (see Fig. 1). Residues Ala 9 and Val 29 are buried in
α-helices, whereas Thr 47 and Gly 104 are located in loop re-
gions. Figure 2 shows the superposition of the simulated nor-
malized PACFs (dots) with the fits of ψ(t/τ ; α, β) (solid lines)
in form of a log-log plot. The fit parameters are given in the
plot. A coherent view of the results is obtained by correlating
the mean relaxation rate,

λ = (1 + α)τ−1, (20)

of all Cα-atoms and its spread,

σλ = (λ2 − λ
2
)1/2 = β−1/2τ−1, (21)

FIG. 2. Log-log plot of the simulated position autocorrelation functions for
the Cα-atoms of the residues shown in Figure 1 (dots) and fits of model (13)
(solid lines). For the simulated PACFs the smallest positive time argument is
t = 0.05 ps.

FIG. 3. Upper panel: Solvent accessible surface for the Cα-atoms in
lysozyme. Middle panel: Mean relaxation rate λ (blue line) and correspond-
ing standard deviation σλ (green line). Lower panel: Mean square position
fluctuation ⟨u2⟩ (blue line) and short time diffusion coefficient Ds (green
line). The additional graphics on top of the figure locates the secondary struc-
ture elements. Black rectangles indicate α-helices, grey rectangles short heli-
coidal motifs, and arrows beta sheets.

with the solvent-accessible surface of the respective residue.
Here, the total solvent-accessible surface of all atoms is con-
sidered. The fitted quantities λ and σλ for our model are, re-
spectively, given in the upper and middle panels of Fig. 3,
combining λ (blue line) and σλ (green line) in the middle
panel. On top of the figure we indicate the location of sec-
ondary structure elements and the vertical lines locate the four
selected residues displayed in Fig. 1. The results show that
the PACFs of Cα-atoms in solvent-exposed loop regions re-
lax one or two orders of magnitude more slowly than those
buried in helices, and the spread of the relaxation rates fol-
lows exactly the same trend, which is not trivial since the
mean relaxation and its spread are not described by the same
parameters. The backbone relaxation dynamics in secondary
structure elements is thus faster than the one in the more
floppy, solvent-exposed loop regions, and has a much stronger
non-exponential character. In this context, it is interesting to
look at the static position fluctuations of the Cα-atoms and at
the corresponding short-time diffusion coefficients, which de-
pend on both the amplitudes of the atomic motions and on the

Downloaded 15 May 2012 to 86.193.143.163. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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Anomalous diffusion in frequency space
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Fig. 3. Left: Molecule-averaged MSD for the lateral center-of-mass di↵usion of
POPC molecules from the coarse-grained model, where circles refer to the NPT -
ensemble and square to the the NApzT -ensemble, and the fit of model (14) (solid
line). The inset displays the MSD for the all-atom model on the same time scale
(circles) together with the fit of model (14) (solid line). Right: Molecule averaged
lateral MSDs for POPC from the coars-grained model on a longer time scale. The
legend is the same as in the left part of the figure. The inset shows that the MSDs
for the NV T -ensemble and the NApzT -ensemble cannot be distinguished on short
time scales.

converted) in Ref. [10] is approximately D↵ = 0.02 nm2/ns↵ and thus
clearly of the same order of magnitude. This is an interesting result since
fluorescence correlation spectroscopy explores the millisecond to second time
scale, which is about 7 orders of magnitude larger than than time scale of
MD simulations.

AA CG

Fig. 4. Simulated all-atom and coarse-
grained systems for a POPC bilayer.

The accessible time scale to
simulations can be extended by
using coarse-grained models, in
which several atoms are grouped
into one “pseudo-atom”, and such
simulations for fully hydrated
POPC (1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine) bilayers
have been recently performed [36],
comparing the results obtained
from MD simulations with the
all-atom OPLS force field [37, 38]
and the coarse-grained MARTINI
force field [39, 40]. All simulation
details can be found in Ref. [36]
and here only the most important
parameters are reported. The all-atom system comprises a bilayer of 274

Compare the DOS for POPC simulations with an all-atom 
(OPLS) and a coarse-grained (MARTINI) force field:

S. Stachura and G.R. Kneller, Mol Sim. 40, 245 (2013) and work in progress.

g(!) =

Z 1

0
dt cos(!t)cvv(t)

!⌧1/⌧v⇠ nD↵ !1�↵
sin

⇣⇡↵
2

⌘

↵ ⇡ 0.46

↵ ⇡ 0.56



CONCLUSIONS

• The combination of physical models (GLE) and asymptotic analysis 
allows for a rigorous definition of transport coefficients and yields 
insight into the diffusion process in terms of « caging effects ».	


- Free and confined diffusion can be handled	


- Relaxation spectra can be constructed systematically	


- Yields the asymptotic form for tha DOS at low frequencies	


- Compatible with quantum description	


• Develop simple models to interpolate between the (known) short 
time and the long time regime of time correlation functions
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Fractional Smoluchowski equation
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where peq(r0) is the equilibrium distribution. Using molecular trajectories
from experiments, such as Single Particle Tracking (SPT) of fluorescently
labeled molecules [21, 22, 23] and molecular dynamics simulations [24, 25],
MSDs may be approximated by (t > 0)

W (t) ⇡ 1

T � t

Z T�t

0
d⌧ |r(⌧ + t)� r(⌧)|2 , (9)

where T is the length of the trajectory.
In case of normal di↵usion the time evolution of the transition prob-

abilities is described by Fokker-Planck equations [26], which are derived
by assuming that the underlying stochastic process is Markovian and that
small-step di↵usion process are considered. In order to include anomalous
di↵usion, these FPEs can be generalized to corresponding fractional counter-
parts, applying the same “recipe” as for the fractional di↵usion equation (4),

@

@t
p(r, t|r0, 0) = @1�⇢

t Lp(r, t|r0, 0) (10)

where ⇢ depends on the context. Two cases must be distinguished.

1. Free anomalous di↵usion. Here V = 0 and the MSD behaves asymp-
totically as W (t) ⇠ t↵, with 0  ↵ < 2, and ⇢ ⌘ ↵.

2. Confined anomalous di↵usion. Here V 6= 0 leads to a confinement,
such that asymptotically W (t) ⇠ const. and therefore ↵ = 0. In this
case ⇢ ⌘ � and 0 < �  1 describes how the MSD converges to the
plateau. The parameters ↵ and � are thus intrinsically di↵erent and
we come back to this point in Section 3.4.

The Fokker-Planck operator L has Smoluchowski form,

L = D⇢
@

@r
·
⇢

@

@r
+

1

kBT

@V (r)

@r

�
, (11)

if the di↵using particle feels an external potential V (r). The fFPE (10) is
to be solved with the initial condition p(r, 0|r0, 0) = �(r� r0) and for long
times the resulting solution tends to the equilibrium probability density,
limt!1 p(r, t|r0, 0) = peq(r).

Similarly to the di↵usion equation, the fFPE (10) can be written in
form of an equation of continuity, @tf +r · j = 0, which expresses here the
conservation of probability, and where j has the form

j(r, t) = �D⇢@
1�⇢
t

⇢
@f(r, t)

@r
+

1

kBT

@V (r)

@r

�
. (12)
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if the di↵using particle feels an external potential V (r). The fFPE (10) is
to be solved with the initial condition p(r, 0|r0, 0) = �(r� r0) and for long
times the resulting solution tends to the equilibrium probability density,
limt!1 p(r, t|r0, 0) = peq(r).

Similarly to the di↵usion equation, the fFPE (10) can be written in
form of an equation of continuity, @tf +r · j = 0, which expresses here the
conservation of probability, and where j has the form

j(r, t) = �D⇢@
1�⇢
t

⇢
@f(r, t)

@r
+

1

kBT

@V (r)

@r

�
. (12)

1. Free anomalous diffusion. Here V = 0, ⇢ ⌘ ↵, 0  ↵ < 2

2. Confined anomalous diffusion. Here V 6= 0, ⇢ ⌘ �, and ↵ = 0
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Compared to Fick’s first law, there are two generalizations to be mentioned.
Firstly there is a drift term due to the external potential and secondly it
follows from Eq. (5) that the fractional derivative induces memory e↵ects in
the response of j to the concentration gradient and the potential gradient.
It must be emphasized that the above phenomenological interpretation of
anomalous di↵usion is not the only route to anomalous di↵usion and fFPEs,
but it is conceptually close to the framework of non-equilibrium statistical
physics which will be used in the following discussion.

2.3. Fractional Wiener process

In case of free di↵usion, i.e. for V (r) = 0, p(r, t|r0, 0) describes a Wiener
process, which is generalized to a fractional variant if anomalous di↵usion
is considered. The corresponding fFPE reads

@

@t
p(r, t|r0, 0) = @1�↵

t D↵�p(r, t|r0, 0) (0 < ↵ < 2) (13)

and the MSD can be easily computed by using that the equilibrium distri-
bution is here peq(r) = 1/V , where V is the macroscopic volume in which
the free di↵usion process takes place,

W (t) =
2nD↵t

↵

�(1 + ↵)
. (14)

The MSD has thus exactly the same form as the particle spread for the
generalized Fick model (see Eq. (7)). It should be noted that (13) does not
only include the subdi↵usive regime mentioned earlier, where 0 < ↵ < 1,
but also a superdi↵usive regime, where 0 < ↵ < 2. The latter has for
example been found in experiments on chemotaxis [27].

2.4. Fractional Ornstein-Uhlenbeck process

2.4.1. Confined motions – di↵usion and relaxation

We consider now a di↵using particle whose motions are confined in space.
Due to the confinement, it has a well-defined mean position and introducing
u(t) = r(t)� hri, it follows that

W (t) = 2{cuu(0)� cuu(t)}, (15)

where
cuu(t) = hu(t) · u(0)i (16)

is the displacement autocorrelation function (DACF) of the di↵using parti-
cle. Relation (15) reflects thus at the same time di↵usion and relaxation in
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position space. Knowing that limt!1 cuu(t) = 0 and that cuu(0) = h|u|2i,
it follows moreover that the MSD tends to a plateau value for long times,

lim
t!1

W (t) = 2h|u|2i. (17)

2.4.2. The model

A simple example for a concrete dynamical model is the fractional
Ornstein-Uhlenbeck (fOU) process [3, 28, 29] which describes anomalous
di↵usion of a Brownian particle in a harmonic potential,

V (u) =
K

2
|u|2 (18)

The corresponding transition probability density is described by the fFPE

@

@t
p(u, t|u0, 0) = @1��

t L p(u, t|u0, 0), 0 < �  1, (19)

and the Fokker-Planck operator reads

L = D�
@

@u
·
⇢

@

@u
+

Ku

kBT

�
. (20)

Here D� is again a fractional di↵usion constant and kB and T denote, re-
spectively, the Boltzmann constant and the absolute temperature. Due to
the Hookean force �Ku the equilibrium probability density tends here for
long times to a Gaussian function of finite width,

peq(u) =

r
K

2⇡kBT

n

exp

✓
�K|u|2

2kBT

◆
. (21)

With these definitions the DACF for the fOU process is defined as

cuu(t) ⌘
Z 1

�1

Z 1

�1
dnu0d

nuu · u0 p(u, t|u0, 0)peq(u0), (22)

but the full solution is not required for its computation. One can, in fact,
apply a similar trick as for the MSD of anomalous free di↵usion and establish
a fractional di↵erential equation for cuu(t), whose solution is found to be [29]

cuu(t) = h|u|2iE�(�[t/⌧ ]�). (23)

Here E�(z) denotes the Mittag-Le✏er function [16],

E�(z) =
1X

k=0

zk

�(1 + �k)
(24)

MSD tends to a plateau
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generalized Fick model (see Eq. (7)). It should be noted that (13) does not
only include the subdi↵usive regime mentioned earlier, where 0 < ↵ < 1,
but also a superdi↵usive regime, where 0 < ↵ < 2. The latter has for
example been found in experiments on chemotaxis [27].

2.4. Fractional Ornstein-Uhlenbeck process

2.4.1. Confined motions – di↵usion and relaxation

We consider now a di↵using particle whose motions are confined in space.
Due to the confinement, it has a well-defined mean position and introducing
u(t) = r(t)� hri, it follows that

W (t) = 2{cuu(0)� cuu(t)}, (15)

where
cuu(t) = hu(t) · u(0)i (16)

is the displacement autocorrelation function (DACF) of the di↵using parti-
cle. Relation (15) reflects thus at the same time di↵usion and relaxation in

The diffusion is 
determined by the 
relaxation of 
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2.3. Fractional Wiener process

In case of free di↵usion, i.e. for V (r) = 0, p(r, t|r0, 0) describes a Wiener
process, which is generalized to a fractional variant if anomalous di↵usion
is considered. The corresponding fFPE reads

@

@t
p(r, t|r0, 0) = @1�↵

t D↵�p(r, t|r0, 0) (0 < ↵ < 2) (13)

and the MSD can be easily computed by using that the equilibrium distri-
bution is here peq(r) = 1/V , where V is the macroscopic volume in which
the free di↵usion process takes place,

W (t) =
2nD↵t

↵

�(1 + ↵)
. (14)

The MSD has thus exactly the same form as the particle spread for the
generalized Fick model (see Eq. (7)). It should be noted that (13) does not
only include the subdi↵usive regime mentioned earlier, where 0 < ↵ < 1,
but also a superdi↵usive regime, where 0 < ↵ < 2. The latter has for
example been found in experiments on chemotaxis [27].

2.4. Fractional Ornstein-Uhlenbeck process

2.4.1. Confined motions – di↵usion and relaxation

We consider now a di↵using particle whose motions are confined in space.
Due to the confinement, it has a well-defined mean position and introducing
u(t) = r(t)� hri, it follows that

W (t) = 2{cuu(0)� cuu(t)}, (15)

where
cuu(t) = hu(t) · u(0)i (16)

is the displacement autocorrelation function (DACF) of the di↵using parti-
cle. Relation (15) reflects thus at the same time di↵usion and relaxation in
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FIGURE I.4. The normalised VACF of a Langevin oscillator
and the corresponding MSD. The solid line corresponds to !

0

=

1, � = 1/2 (underdamped) and the dashed line to ! = 1, � = 3

(overdamped). The MSD is normalised to 2hx2i⌧ .

it follows that
lim

t!1
D(t) = 0, (I.62)

since W (t) approaches a plateau value for long times.
Since the MSD is confined in space one can write

W (t) = h[x(t)� x(0)]2i⌧ = hx2

(t) + x2

(0)� 2x(t)x(0)i⌧ = 2hx2i⌧ � 2hx(t)x(0)i⌧ ,
and since limt!1hx(t)x(0)i⌧ = 0 one finds that

lim

t!1
W (t) = 2hx2i⌧ . (I.63)

The position fluctuation is thus given by

hx2i⌧ =

kBT

M!2

0

(I.64)

The Wiener-Khintchine theorem (I.23) shows that the Fourier spectrum of
the VACF represents a distribution of the kinetic energy as a function of angu-
lar frequency. One defines the density of states (DOS) through

g(!) ⌘ 1

⇡

Z 1

0

dt cos(!t) (t) (I.65)

With this definition it follows that the DOS is normalised to one,
Z 1

0

d! g(!) = 1 (I.66)

Note that g(!) = ˜ (!)/⇡.

MSD for confined (anomalous) diffusion (α=0)


