
Some insights into the microscopic 
origin of anomalous diffusion in 

biomolecular systems

Gerald Kneller
Centre de Biophysique Moléculaire, CNRS Orléans

Université d’Orléans
Synchrotron Soleil, St Aubin

 

jeudi 24 octobre 13
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In the case of the anomalous subdiffusion, following
(9,36), the time dependence of the mean square displace-
ment is no longer linear but is given by %&r2' " (!), with
temporal exponent 0 % ) % 1 and ( being the transport
coefficient. For the following probability distribution
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FIG. 1. Measurement principle in the IM-35 inverted microscope. The
cells are attached to coverslips and illuminated from below. Detection is
performed by placing the objective focal spot to the upper cell membrane
and imaging the fluorescent area to an avalanche photodiode for fluores-
cence correlation spectroscopy (FCS) analysis.

FIG. 3. Fluorescence correlation spectroscopic detection specificity on
the cell membrane. Only labeled membranes (position , 0) contribute to
the signal, which can be verified by loss in autocorrelation and fluorescence
count rate bursts if the focal spot is moved away from the cell surface.

FIG. 2. Confocal images of rat basophilic leukemia cells labeled with
diI-C12 to show the specificity of labeling the plasma membrane only
(equatorial layer, upper panel). For fluorescence correlation spectro-
scopic measurements, 20 times less dye was used. Single molecule
measurements were performed at the upper cell surface (lower panel).
Scale bar " 10 µm.
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We report on the successful application of fluorescence
correlation spectroscopy (FCS) to the analysis of single
fluorescently labeled lipid analogue molecules diffusing
laterally in lipid bilayers, as exemplified by time traces of
fluorescence bursts of individual molecules entering and
leaving the excitation area. FCS measurements performed
on lipid probes in rat basophilic leukemia cell membranes
showed deviations from two-dimensional Brownian mo-
tion with a single uniform diffusion constant. Giant unila-
mellar vesicles were employed as model systems to charac-
terize diffusion of fluorescent lipid analogues in both
homogeneous and mixed lipid phases with diffusion
heterogeneity. Comparing the results of cell membrane

diffusion with the findings on the model systems suggests
possible explanations for the observations: (a) anomalous
subdiffusion in which evanescent attractive interactions
with disparate mobile molecules modifies the diffusion
statistics; (b) alternatively, probe molecules are localized
in microdomains of submicroscopic size, possibly in
heterogeneous membrane phases. Cytometry 36:176–
182, 1999. ! 1999 Wiley-Liss, Inc.

Key terms: anomalous subdiffusion; giant unilamellar
vesicles; lipid membrane diffusion; lipid phases; single
molecule detection

Fluorescence correlation spectroscopy (FCS), intro-
duced to study diffusion and reaction dynamics of fluoro-
phores at thermodynamic equilibrium (1–3), has in recent
years been frequently discussed in the context of single
molecule detection (4–7). Although its principle is intrinsi-
cally statistical and the conventional performance of FCS
measurements requires averaging over large numbers of
molecular events, it is the need for ultimate sensitivity
achieved by high-performance confocal microscopy set-
ups and ultrasensitive detectors that does justify the
connection with other ‘‘true’’ single-molecule techniques.
Moreover, the striving for maximum sensitivity in FCS is
not only quantitatively motivated by pushing the limit of
detectability but is indispensable for the method to func-
tion at all. This can easily be rationalized by considering
the basic concept, i.e., to derive fundamental thermody-
namic and kinetic parameters by analyzing small spontane-
ous deviations from equilibrium in an ensemble of fluores-
centmolecules that give rise to fluctuations in fluorescence
emission. Such spontaneous deviations occur only on a
molecular scale; consequently, all data not being averaged
out by fluctuation correlation analysis must be related to
single-molecule events. Thus, FCS measurements are com-
fortably performed in volume elements of some 10!16

liters at nanomolar concentrations.
This characteristic clearly distinguishes FCS from the

technically related method fluorescence photobleaching

recovery (FPR), widely used for determining diffusion
characteristics in solutions and on membranes (8,9). In
FPR (also known as FRAP, or fluorescence recovery after
photobleaching), the diffusion-mediated restoration of
fluorescence in a previously photobleached volume ele-
ment by replacement with fresh fluorophores is followed
in time. Convenient concentrations are millimoles and
higher, so that thousands of particles in the measurement
volume are contributing to the signal at any time. The
information derived from conventional applications of FPR
on membranes includes diffusion coefficients and reaction
rates (10) and a quantity due to incomplete recovery called
‘‘immobile fraction’’. The origin of the phenomenon
usually represented by an immobile fraction remains
obscure in most applications; it may in certain systems be
associated with anomalous subdiffusion, where the time
dependence of the mean square displacements is not
linear (9). More detailed information about actual particle
trajectories and about the deviations from Brownian mo-
tion may be shown by single-particle tracking (SPT)

Grant sponsors: NIH, NSF; Grant numbers: NIH-P412 RR04224, and
NSF-B1R 8800278.

*Correspondence to: Dr. Petra Schwille, Cornell University, School of
Applied and Engineering Physics, 212 Clark Hall, Ithaca, NY 14853.

E-mail: ps73@cornell.edu

! 1999 Wiley-Liss, Inc. Cytometry 36:176–182 (1999)

Fluorescence Corr elation Spectroscopy
With Single-Molecule Sensitivity on Cell

and Model Membranes
Petra Schwille,* Jonas Kor lach, and Watt W. Webb

Cornell University, School of Applied and Engineering Physics, Ithaca, New York

Received 15 October 1998; Accepted 23 November 1998

We report on the successful application of fluorescence
correlation spectroscopy (FCS) to the analysis of single
fluorescently labeled lipid analogue molecules diffusing
laterally in lipid bilayers, as exemplified by time traces of
fluorescence bursts of individual molecules entering and
leaving the excitation area. FCS measurements performed
on lipid probes in rat basophilic leukemia cell membranes
showed deviations from two-dimensional Brownian mo-
tion with a single uniform diffusion constant. Giant unila-
mellar vesicles were employed as model systems to charac-
terize diffusion of fluorescent lipid analogues in both
homogeneous and mixed lipid phases with diffusion
heterogeneity. Comparing the results of cell membrane

diffusion with the findings on the model systems suggests
possible explanations for the observations: (a) anomalous
subdiffusion in which evanescent attractive interactions
with disparate mobile molecules modifies the diffusion
statistics; (b) alternatively, probe molecules are localized
in microdomains of submicroscopic size, possibly in
heterogeneous membrane phases. Cytometry 36:176–
182, 1999. ! 1999 Wiley-Liss, Inc.

Key terms: anomalous subdiffusion; giant unilamellar
vesicles; lipid membrane diffusion; lipid phases; single
molecule detection

Fluorescence correlation spectroscopy (FCS), intro-
duced to study diffusion and reaction dynamics of fluoro-
phores at thermodynamic equilibrium (1–3), has in recent
years been frequently discussed in the context of single
molecule detection (4–7). Although its principle is intrinsi-
cally statistical and the conventional performance of FCS
measurements requires averaging over large numbers of
molecular events, it is the need for ultimate sensitivity
achieved by high-performance confocal microscopy set-
ups and ultrasensitive detectors that does justify the
connection with other ‘‘true’’ single-molecule techniques.
Moreover, the striving for maximum sensitivity in FCS is
not only quantitatively motivated by pushing the limit of
detectability but is indispensable for the method to func-
tion at all. This can easily be rationalized by considering
the basic concept, i.e., to derive fundamental thermody-
namic and kinetic parameters by analyzing small spontane-
ous deviations from equilibrium in an ensemble of fluores-
centmolecules that give rise to fluctuations in fluorescence
emission. Such spontaneous deviations occur only on a
molecular scale; consequently, all data not being averaged
out by fluctuation correlation analysis must be related to
single-molecule events. Thus, FCS measurements are com-
fortably performed in volume elements of some 10!16

liters at nanomolar concentrations.
This characteristic clearly distinguishes FCS from the

technically related method fluorescence photobleaching

recovery (FPR), widely used for determining diffusion
characteristics in solutions and on membranes (8,9). In
FPR (also known as FRAP, or fluorescence recovery after
photobleaching), the diffusion-mediated restoration of
fluorescence in a previously photobleached volume ele-
ment by replacement with fresh fluorophores is followed
in time. Convenient concentrations are millimoles and
higher, so that thousands of particles in the measurement
volume are contributing to the signal at any time. The
information derived from conventional applications of FPR
on membranes includes diffusion coefficients and reaction
rates (10) and a quantity due to incomplete recovery called
‘‘immobile fraction’’. The origin of the phenomenon
usually represented by an immobile fraction remains
obscure in most applications; it may in certain systems be
associated with anomalous subdiffusion, where the time
dependence of the mean square displacements is not
linear (9). More detailed information about actual particle
trajectories and about the deviations from Brownian mo-
tion may be shown by single-particle tracking (SPT)

Grant sponsors: NIH, NSF; Grant numbers: NIH-P412 RR04224, and
NSF-B1R 8800278.

*Correspondence to: Dr. Petra Schwille, Cornell University, School of
Applied and Engineering Physics, 212 Clark Hall, Ithaca, NY 14853.

E-mail: ps73@cornell.edu

! 1999 Wiley-Liss, Inc. Cytometry 36:176–182 (1999)

changes to

Gi(!) "
1

N
# !

i

Yi

1 $ !/!d,i
. (4)

In the case of the anomalous subdiffusion, following
(9,36), the time dependence of the mean square displace-
ment is no longer linear but is given by %&r2' " (!), with
temporal exponent 0 % ) % 1 and ( being the transport
coefficient. For the following probability distribution

Panom[r!, (t $ !) 0r, t] "
1

(*(!))n/2
e

+(r+r!)2

(!) (5)

the correlation function is in the two-dimensional case

G(!) "
1

N
#

1

1 $ (!)/w2
. (6)

FIG. 1. Measurement principle in the IM-35 inverted microscope. The
cells are attached to coverslips and illuminated from below. Detection is
performed by placing the objective focal spot to the upper cell membrane
and imaging the fluorescent area to an avalanche photodiode for fluores-
cence correlation spectroscopy (FCS) analysis.

FIG. 3. Fluorescence correlation spectroscopic detection specificity on
the cell membrane. Only labeled membranes (position , 0) contribute to
the signal, which can be verified by loss in autocorrelation and fluorescence
count rate bursts if the focal spot is moved away from the cell surface.

FIG. 2. Confocal images of rat basophilic leukemia cells labeled with
diI-C12 to show the specificity of labeling the plasma membrane only
(equatorial layer, upper panel). For fluorescence correlation spectro-
scopic measurements, 20 times less dye was used. Single molecule
measurements were performed at the upper cell surface (lower panel).
Scale bar " 10 µm.

178 SCHWILLE ET AL.

changes to

Gi(!) "
1

N
# !

i

Yi

1 $ !/!d,i
. (4)

In the case of the anomalous subdiffusion, following
(9,36), the time dependence of the mean square displace-
ment is no longer linear but is given by %&r2' " (!), with
temporal exponent 0 % ) % 1 and ( being the transport
coefficient. For the following probability distribution

Panom[r!, (t $ !) 0r, t] "
1

(*(!))n/2
e

+(r+r!)2

(!) (5)

the correlation function is in the two-dimensional case

G(!) "
1

N
#

1

1 $ (!)/w2
. (6)

FIG. 1. Measurement principle in the IM-35 inverted microscope. The
cells are attached to coverslips and illuminated from below. Detection is
performed by placing the objective focal spot to the upper cell membrane
and imaging the fluorescent area to an avalanche photodiode for fluores-
cence correlation spectroscopy (FCS) analysis.

FIG. 3. Fluorescence correlation spectroscopic detection specificity on
the cell membrane. Only labeled membranes (position , 0) contribute to
the signal, which can be verified by loss in autocorrelation and fluorescence
count rate bursts if the focal spot is moved away from the cell surface.

FIG. 2. Confocal images of rat basophilic leukemia cells labeled with
diI-C12 to show the specificity of labeling the plasma membrane only
(equatorial layer, upper panel). For fluorescence correlation spectro-
scopic measurements, 20 times less dye was used. Single molecule
measurements were performed at the upper cell surface (lower panel).
Scale bar " 10 µm.

178 SCHWILLE ET AL.

α = 0.74 ± 0.08.

ms to s time scale

jeudi 24 octobre 13



141105-2 Kneller, Baczynski, and Pasenkiewicz-Gierula J. Chem. Phys. 135, 141105 (2011)

FIG. 1. Simulated system consisting of a bilayer of 2 × 64 DOPC lipid
molecules and 3840 water molecules (light-grey).

Here Nmol denotes the number of lipid molecules, Nt is the
number of time steps in the MD trajectory, and x(n) ≡ x(n!t),
with !t being the sampling time step. The results for two dif-
ferent lag time scales (1 ns and 30 ns) are shown in Figs. 2 and
3, respectively, where dots correspond to the simulated MSDs
and solid lines to the fits of expression (1). The fit parame-
ters are α = 0.52, Dα = 0.107 nm2/nsα for the fit in Fig. 2
and α = 0.61, Dα = 0.101 nm2/nsα for the fit in Fig. 3. We
have also performed an analysis for an intermediate lag time
scale of 5 ns (not shown here), which lead to α = 0.56, Dα

= 0.110 nm2/nsα . The insets of Figs. 2 and 3 show the spread
of the MSDs for the individual molecules. The rapid increase
of the latter with the lag time spots the problem of statistical
reliability, if the lag time becomes comparable with the length
of the simulation trajectory. The form of the spread gives
also a hint to appropriate stochastic models describing the
observed subdiffusion, such as (ergodic) fractional Brownian
motion (fBM) and the (non-ergodic) continuous time random
walk.18 Here, one has to make the assumption that the average
over all molecules corresponds to a true ensemble average.
The observed Gaussian shape of the distribution functions
shown in Figs. 2 and 3 supports that the lateral subdiffusion
of the DOPC molecules can be described by fBM. In recent
experimental studies, both models have been used to describe
experimental data for trajectories of diffusing molecules.7–9

We note finally that the fractional diffusion constant found
for the lateral diffusion of lipid molecules in the giant vesi-
cles studied in Ref. 4 is Dα = 0.088 ± 0.007 nm2/nsα for
α = 0.74 ± 0.08. Although the lipid bilayer considered in
this study consisted of different lipid molecules (dilauroyl-sn-
glycero-3-phosphocholine or DLPC), the measured diffusion
coefficient shows that the results for Dα obtained in our sim-
ulation study of DOPC are of the right order of magnitude.

In the following, we further analyze the lateral center-of-
mass dynamics of the DOPC molecules in the framework of
the GLE.12 The velocity autocorrelation function (VACF) of a
tagged molecule, c(t) ≡ 〈v(0) · v(t)〉, fulfills then the integro-

FIG. 2. Simulated molecule-averaged MSD for the lateral CM diffusion of
the DOPC molecules (dots) and fit of model (1) (solid line). The fitted frac-
tional diffusion coefficient is Dα = 0.107 nm2/nsα for α = 0.52. The inset
shows the distribution of δW(t) = Wj(t) − W(t) for t = 0.1 ns, t = 0.5 ns,
and t = 1 ns (with increasing width). In the main figure the corresponding
average MSD values are indicated by triangles.

differential equation

∂t c(t) = −
∫ t

0
dt ′ κ(t − t ′)c(t ′), (4)

where κ(t) is the corresponding memory kernel. Formally,
the latter can be derived from the microscopic Hamiltonian
dynamics of the system under consideration (tagged particle
plus the environment). Using that the MSD and the VACF are
related through19

W (t) = 2
∫ t

0
dτ (t − τ )c(τ ), (5)

one can derive characteristic long-time tails for the VACF and
its memory function,20

c(t) t→∞
∼ Dαα(α − 1)tα−2, (6)

κ(t) t→∞
∼

〈v2〉
Dα

sin(πα)
πα

t−α, (7)

FIG. 3. As Fig. 2, but for a maximum time lag of 30 ns. Here, the fitted
fractional diffusion coefficient is Dα = 0.101 nm2/nsα for α = 0.61 and the
inset shows the spread of the molecular MSDs at t = 5 ns, t = 15 ns, and
t = 30 ns.
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Lipid bilayers are quasi-two-dimensional, highly packed
systems made up of phospholipid molecules, which
undergo thermally driven lateral diffusion and thus con-
stantly reorganize the membrane. The lateral MSD of
membrane lipids typically spans three distinct regimes:
short-time ballistic (! ¼ 2), intermediate subdiffusive
(0< !< 1), and long-time Brownian motion (! ¼ 1)
[23,24]. The long-time diffusive motion of various kinds
of phospholipid molecules in lipid bilayers has been
extensively studied [25,26]. Diffusion of lipids in pure
bilayers occurs in both the liquid disordered and the gel
phases below the melting temperature, the latter with
decreased diffusivity. Moreover, in bilayers mixed with
cholesterols, the diffusivity of the lipids tends to decrease
with higher cholesterol concentration.

Lipid subdiffusion at shorter time scales is compara-
tively poorly understood. In the traditional microscopic
picture, the lateral movement of lipid molecules is assumed
to occur through jumps when sufficient void space is ther-
mally activated at nearest sites [26,27]. Between jumps,
the molecule, caged by its neighbors, undergoes rattling
motion. This CTRW-type jump-diffusion model has been
used to estimate the diffusivities of lipids in the liquid
disordered phase and in bilayers containing cholesterol
[25,26]. However, atomistic simulations [28] and a quasi-
elastic neutron scattering experiment [29] showed that such
jumplike displacements rarely occur, and the lipids move
concertedly with their neighbors as loosely defined clusters.
Moreover, conflicting results were reported on the stochas-
tic nature of the lipid diffusion: References [23,30] demon-
strated that the lipid motion is consistent with FLE
dynamics, whereas Ref. [31] claimed to observe CTRW-
type motion governed by non-Gaussian fluctuations and
scale-free rattling dynamics.

Lipid bilayers of 128 phospholipid molecules were
studied by molecular dynamics simulations under periodic
boundary conditions; for details, see the Supplemental
Material [32]. We used three pure single component lipid
bilayers composed of DSPC, SOPC, and DOPC phospho-
lipids in the liquid disordered phase [33]. We also studied
these systems with additional 32 cholesterols (20% molar
concentration) in the liquid ordered phase. A pure mem-
brane of 288 DSPCmolecules was also simulated in the gel
phase. Figure 1 shows typical snapshots in the three phases.
In this work, we focus on the characterization of the lipid
diffusion. To that end, we note that during the simulation
the centers of mass of the upper and lower lipid layers
undergo free, independent translational motion (Fig. S1),
as reported previously [31,34]. Free center of mass diffu-
sion causes apparent normal diffusion of individual lipid
molecules at longer times, irrespective of their actual
diffusion characteristics. To avoid this, we analyze the
relative motion rðtÞ from the center of mass of lipids and
cholesterols. Figures S2, S5, and S11 in the Supplemental
Material show sample trajectories.

From individual trajectories rðtÞ, we obtained the time-
averaged MSD of lipids typically defined as [3,4,17]

"2ð!Þ ¼ 1

T $ !

Z T$!

0
½rðtþ!Þ $ rðtÞ'2dt; (3)

where ! is the lag time and T the length of the trajectory

(measurement time). Figure 2 shows the mean h"2ð!Þi
taken over the trajectories of all phospholipids, for the
cases of DSPC, SOPC, and DOPC in the absence and
presence of cholesterol. In each case, the result was fitted

by h"2ð!Þi ¼ 4K!!
! at short and long times, respectively.

The corresponding diffusion exponents ! and diffusivities
K! are summarized in Table I. In Fig. 2, the scaling
behaviors for pure DSPC and DOPC at short (solid line)
and long (dashed line) times are indicated. In the absence of
cholesterol, all three types of lipid molecules show similar

FIG. 1 (color online). Final configurations of simulations of
DOPC 338 K (left), DSPC and cholesterols 338 K (middle), and
DSPC 310 K (right) in the liquid disordered, liquid ordered, and
gel phases, respectively (note the difference in packing states).
Each color (gray scale) represents a different phospholipid.
Explicit water molecules correspond to the upper and lower
transparent coatings. Cholesterols appear in white (middle) and
Naþ and Cl$ ions as blue (darker) spheres (right).

(
)

(
)

FIG. 2 (color online). Time-averaged MSDs h"2ð!Þi of DSPC,
SOPC, and DOPC in liquid phase bilayers. Each curve repre-

sents the mean of individual "2ð!Þ taken over all trajectories of
128 phospholipids in the bilayer. (a) Cholesterol-free case.
(b) With cholesterol. The results were fitted separately to

h"2ð!Þi ¼ 4K!!
! in the regimes of short [0:01 . . . 1 ns] and

long times [10; . . . ; 100 ns]. Fit results for ! and K! are sum-
marized in Table I.
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7. FREE DIFFUSION – WIENER PROCESS 39

7. Free diffusion – Wiener process

7.1. Definition. The most simple Fokker-Planck equation is obtained for
the case

a1(y) = 0, a2(y) = 2D = const. (II.55)
With this definition for the coefficients ak(y) the Fokker-Planck equation (II.29)
takes the form of the well-known diffusion equation,

⌃P (y, t)

⌃t
= D

⌃2P (y, t)

⌃y2
(II.56)

which is to be solved with the initial condition
P (y, 0) = �(y � y0) (II.57)

The corresponding stochastic equation of motion has the simple form

y(t0 + �t) = y(0) + ⇥ (II.58)

where the displacement ⇥ is Gaussian white noise with

⇥ = 0 and ⇥2 = 2D�t (II.59)

The equations (II.58) and (II.59) define the Wiener process1.

7.2. Solution of the Fokker-Planck equation. A simple way to solve equa-
tion (II.56) is to apply a Fourier transformation with respect to y. With

P̃ (k, t) =

⇧ +⇥

�⇥
dy exp(�iky)P (y, t)

one obtains
⌃P̃ (k, t)

⌃t
= �Dk2P̃ (k, t).

The solution is thus
P̃ (k, t) = P̃ (k, 0) exp(�Dk2t), with P̃ (k, 0) = exp(�iky0),

if one uses the initial condition (II.57). Consequently

P (y, t) =
1

2⇤

⇧ +⇥

�⇥
dk exp(ik[y � y0]) exp(�Dk2t).

This inverse Fourier transform can be easily performed2 and one finds

P (y, t) =
1⇤

4⇤Dt
exp

⇤
�(y � y0)2

4Dt

⌅
(II.60)

1Norbert Wiener, American mathematician, 1894 – 1964.
2One uses that f(x) = 1�

2�⇥
exp

�
� x2

2⇥2

⇥
⇥ f̃(k) = exp

�
�⇥2k2

2

⇥
and that f(x � x0) ⇥

f̃(k) exp(�ikx0).
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Diffusion in position space

white noisex(t0 + �t) = x(t0) + ⇠

@tP (x, t|x0, 0) = D
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Fractional diffusion equation

Here ĥ(s) =
∫

∞

0 dt exp(−st)h(t) ("{s} > 0) denotes the Laplace transform of h(t). Noting

that ĥ(0) =
∫

∞

0 dt h(t), the theorem can be intuitively understood. It states that the diver-

gence of the integral
∫ t

0 dτ h(τ) as t approches infinity is reflected in the divergence of the

Laplace transform of h(t), as s approaches zero. From the asymptotic form (3) of the MSD

and the HLK theorem one can conclude that

Ŵ (s)
s→0
∼ 2DαL(1/s)

Γ(α + 1)

sα+1
. (7)

The relation of this expression to the VACF of the diffusing particle follows from the well

known convolution relation44

W (t) = 2

∫ t

0

dt′ (t − t′)cvv(t
′) (8)

which translates by Laplace transform into

Ŵ (s) =
2 ĉvv(s)

s2
. (9)

Comparison with (7) shows that

ĉvv(s)
s→0
∼ DαΓ(α + 1)L(1/s)s1−α. (10)

From expression (10) one can derive a generalized Kubo relation for the fractional diffusion

constant which holds for both normal and anomalous diffusion processes. The first step

consists in solving (10) for Dα. Using that lims→0 L(1/s) = 1 on account of (4), one obtains

Dα = lim
s→0

sα−1ĉvv(s)/Γ(1 + α). (11)

In a second step one recognizes that sα−1ĉvv(s) is the Laplace transform of the fractional

derivative of order α−1 of cvv(t) with respect to time. Writing ρ = n−β, where n = 0, 1, 2, . . .

is an integer number and β ≥ 0 is real, the fractional Riemann-Liouville derivative of order ρ

of an arbitrary function g is defined through45

0∂
ρ
t g(t) = ∂(−)n

t

∫ t

0

dt′
(t − t′)β−1

Γ(β)
g(t′). (12)

The symbol ∂(−)n
t denotes a normal left derivative of order n and negative values of ρ indicate

fractional integration. The index “0” in the symbol for the fractional derivative on the left-

hand side in Eq. (12) refers to the lower limit in the integral on the right-hand side. Since

5

Fractional Riemann-Liouville 
derivative of order ρ

Write ⇢ = n� �, where n = 0, 1, 2, . . ., � � 0.

W (t) = 2D↵t
↵

See e.g. Metzler and Klafter. Phys Rep (2000) vol. 339 (1) pp. 1-77

⇥tP (x, t|x0, 0) = 0⇥
1��
t

⇢
D�

⇥2

⇥x2

�
P (x, t|x0, 0) (0 < � < 2)
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Self-similarity of Brownian motion

Consider a self-similar stochastic processes1

[1]   Kolmogoroff, A. Wienersche Spiralen und einige andere interessante Kurven im Hilbertsche 
 Raum. C. R. (Dokl.) Acad. Sci. URSS 26 (n. Ser.), 115–118 (1940).

[2]	
  J. Beran, Statistics for Long-Memory Processes. Chapman and Hall, 1994.

c�HY (ct) =d Y (t)

such that 

Assume zero mean average and stationary increments:

hY (t)i = 0

h[Y (t) � Y (t � 1)]2i = hY 2(1)i = �2

Y (t) =d tHY (1), (t > 0, 0 < H < 1)
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and the covariance is

hY (t)Y (s)i =
�2

2
�
t2H � (t � s)2H + s2H

�

Then the MSD is

h[Y (t)� Y (s)]2i = �2(t� s)2H , 0 < s < t

SettingDH = �2/2, one recognizes “normal di↵u-

sion” for H = 1/2, subdi↵usion for 0 < H < 1/2,
and superdi↵usion for 1/2 < H < 1.
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Limits of self-similarity

W (t) t!0⇠ hv2it2 Ballistic regime

W (t)
t!1⇠ 2D�t

�

Self-similarity cannot be true on arbitrarily small time scales, but 
must be seen as a model which holds asymptotically.

224106-2 Gerald R. Kneller J. Chem. Phys. 134, 224106 (2011)

continuous time random walk model,30, 37 and an illustrative
interpretation of the memory kernel in FLEs for the descrip-
tion of subdiffusion in viscoelastic media can be found in
Ref. 38.

In this paper, a theoretical description of anomalous dif-
fusion processes is developed which combines a formally
exact description of single particle dynamics within the
framework of the generalized Langevin equation39, 40 with
an asymptotic analysis of the relevant observables for long
times. Memory effects enter here naturally through the mem-
ory function of the velocity autocorrelation function of the
diffusing particle, which is in turn related to the MSD. The
aim of the paper is to derive generalized Kubo relations for
the relevant transport coefficients, which hold for both normal
and anomalous diffusion, and to formulate general conditions
for anomalous diffusion, enabling a simple physical interpre-
tation without imposing a particular model.

The paper is organized as follows: Section II treats the
derivation of generalized Kubo relations, starting from a the-
orem for asymptotic analysis which is applied to the MSD of
a diffusing particle. In a second step general conditions for
anomalous diffusion are derived, where spatially unconfined
and confined diffusion are distinguished.

In Sec. III, the results are illustrated with semi-analytical
examples and the paper is concluded by a short résumé and
an outlook.

II. THEORY

A. Kubo relation for Dα

Kubo relations establish a connection between macro-
scopic transport coefficients and the microscopic Hamiltonian
dynamics of the system under consideration.41 Each trans-
port coefficient is expressed by an integral over a correspond-
ing time correlation function. In case of diffusion processes
one considers the velocity autocorrelation function (VACF),
cvv (t) = 〈v(t) · v(0)〉, and the diffusion coefficient is given by
the well-known relation

D =
∫ ∞

0
dt cvv (t), (2)

if one assumes unconfined normal diffusion.
A generalization of expression (2) covering both normal

and anomalous diffusion can be derived from an appropriate
asymptotic analysis of the MSD. Assuming isotropic diffu-
sion, its asymptotic form may be written as

W (t)
t→∞∼ 2Dα L(t)tα (0 ≤ α < 2), (3)

where L(t) fulfills the conditions

lim
t→∞

L(t) = 1, (4)

lim
t→∞

t
d L(t)

dt
= 0. (5)

For physical reasons L(t) must be positive. The ballistic
asymptotic regime, where α = 2, is not considered in the fol-
lowing. By construction, L(t) belongs to the class of slowly

varying functions,42, 43 which are defined through the weaker
condition limt→∞ L(λt)/L(t) = 1, with λ > 0.

The general asymptotic form (3) of the MSD yields a di-
rect link to a Tauberian theorem due to Hardy, Littlewood, and
Karamata (HLK),42, 43 which establishes a relation between
slowly growing functions and their Laplace transforms,

h(t)
t→∞∼ L(t)tρ ⇔ ĥ(s)

s→0∼ L(1/s)
$(ρ + 1)

sρ+1
(ρ > −1).

(6)
Here ĥ(s) =

∫ ∞
0 dt exp(−st)h(t) (){s} > 0) denotes the

Laplace transform of h(t). Noting that ĥ(0) =
∫ ∞

0 dt h(t), the
theorem can be intuitively understood. It states that the di-
vergence of the integral

∫ t
0 dτ h(τ ) as t approaches infinity is

reflected in the divergence of the Laplace transform of h(t), as
s approaches zero. From the asymptotic form (3) of the MSD
and the HLK theorem one can conclude that

Ŵ (s)
s→0∼ 2Dα L(1/s)

$(α + 1)
sα+1

. (7)

The relation of this expression to the VACF of the diffusing
particle follows from the convolution relation44

W (t) = 2
∫ t

0
dt ′ (t − t ′)cvv (t ′), (8)

which translates by Laplace transform into

Ŵ (s) = 2 ĉvv (s)
s2

. (9)

Comparison with Eq. (7) shows that

ĉvv (s)
s→0∼ Dα$(α + 1)L(1/s)s1−α. (10)

From expression (10) one can derive a generalized Kubo rela-
tion for the fractional diffusion constant which holds for both
normal and anomalous diffusion processes. The first step con-
sists in solving Eq. (10) for Dα . Using that lims→0 L(1/s) = 1
on account of Eq. (4), one obtains

Dα = lim
s→0

sα−1ĉvv (s)/$(1 + α). (11)

In a second step one recognizes that sα−1ĉvv (s) is the Laplace
transform of the fractional derivative of order α − 1 of
cvv (t) with respect to time. Writing ρ = n − β, where n
= 0, 1, 2, . . . is an integer number and β ≥ 0 is real, the frac-
tional Riemann-Liouville derivative of order ρ of an arbitrary
function g is defined through45

0∂
ρ
t g(t) = ∂

(−)n
t

∫ t

0
dt ′ (t − t ′)β−1

$(β)
g(t ′). (12)

The symbol ∂
(−)n
t denotes a normal left derivative of order n

and negative values of ρ indicate fractional integration. The
index “0” in the symbol for the fractional derivative on the
left-hand side in Eq. (12) refers to the lower limit in the inte-
gral on the right-hand side. Since lims→0 ĝ(s) =

∫ ∞
0 dt g(t),

one finds that the fractional diffusion coefficient is given by
the relation

Dα = 1
$(1 + α)

∫ ∞

0
dt 0∂

α−1
t cvv (t). (13)

For α = 1 the standard Kubo expression (2) for the diffusion
constant is retrieved and for the case α = 0, which describes
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varying functions,42, 43 which are defined through the weaker
condition limt→∞ L(λt)/L(t) = 1, with λ > 0.

The general asymptotic form (3) of the MSD yields a di-
rect link to a Tauberian theorem due to Hardy, Littlewood, and
Karamata (HLK),42, 43 which establishes a relation between
slowly growing functions and their Laplace transforms,
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Laplace transform of h(t). Noting that ĥ(0) =
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theorem can be intuitively understood. It states that the di-
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reflected in the divergence of the Laplace transform of h(t), as
s approaches zero. From the asymptotic form (3) of the MSD
and the HLK theorem one can conclude that
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s2

. (9)

Comparison with Eq. (7) shows that

ĉvv (s)
s→0∼ Dα$(α + 1)L(1/s)s1−α. (10)

From expression (10) one can derive a generalized Kubo rela-
tion for the fractional diffusion constant which holds for both
normal and anomalous diffusion processes. The first step con-
sists in solving Eq. (10) for Dα . Using that lims→0 L(1/s) = 1
on account of Eq. (4), one obtains

Dα = lim
s→0

sα−1ĉvv (s)/$(1 + α). (11)

In a second step one recognizes that sα−1ĉvv (s) is the Laplace
transform of the fractional derivative of order α − 1 of
cvv (t) with respect to time. Writing ρ = n − β, where n
= 0, 1, 2, . . . is an integer number and β ≥ 0 is real, the frac-
tional Riemann-Liouville derivative of order ρ of an arbitrary
function g is defined through45

0∂
ρ
t g(t) = ∂

(−)n
t

∫ t

0
dt ′ (t − t ′)β−1

$(β)
g(t ′). (12)

The symbol ∂
(−)n
t denotes a normal left derivative of order n

and negative values of ρ indicate fractional integration. The
index “0” in the symbol for the fractional derivative on the
left-hand side in Eq. (12) refers to the lower limit in the inte-
gral on the right-hand side. Since lims→0 ĝ(s) =

∫ ∞
0 dt g(t),

one finds that the fractional diffusion coefficient is given by
the relation

Dα = 1
$(1 + α)

∫ ∞

0
dt 0∂

α−1
t cvv (t). (13)

For α = 1 the standard Kubo expression (2) for the diffusion
constant is retrieved and for the case α = 0, which describes
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Velocity autocorrelation function

Asymptotic regime

cvv(t) =
1X

k=0

c(2k)vv (0)
t2k

(2k)!

⇣
c(2k)vv (0) = (�1)khv(k)(0) · v(k)(0)i/3

⌘
.
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Asymptotic analysis of anomalous diffusion 
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spatially limited diffusion where limt→∞ W (t) = 2D0, one
obtains

D0 = lim
T →∞

∫ T

0
dt

∫ t

0
dτ cvv (τ )

= lim
T →∞

∫ T

0
dτ (T −τ )cvv (τ ) = lim

T →∞
W (T )/2. (14)

Since limT →∞ W (T ) = 2〈u2〉, where 〈u2〉 = 〈x2〉 − 〈x〉2 is
the mean square position fluctuation of the particle, it follows
that

D0 = 〈u2〉. (15)

B. Generalized fluctuation-dissipation theorem

In the framework of the generalized Langevin equation
developed by Zwanzig,39, 40 the motion of a tagged particle in
an isotropic solvent is described by an equation of motion of
the form

v̇(t) = −
∫ t

0
dt ′ κ(t − t ′)v(t ′) + f(+)(t), (16)

where v(t) is the velocity of the particle, κ(t) is the corre-
sponding memory function, and f(+)(t) a generalized acceler-
ation fulfilling the orthogonality relation 〈v(t) · f(+)(t ′)〉 = 0.
In contrast to a full Hamiltonian description of the system,
the solvent is not described explicitly, but both κ(t) and f(+)(t)
can be, in principle, expressed by the microscopic dynamical
variables describing the full system. They are thus fully de-
terministic quantities. For details the reader is referred to the
monograph by Zwanzig.40 Due to the orthogonality between
v and f(+), the time evolution of the VACF is described by the
integro-differential equation

∂t cvv (t) = −
∫ t

0
dt ′ cvv (t − t ′)κ(t ′). (17)

The Laplace transform of this integral equation can be solved
for the Laplace transformed VACF,

ĉvv (s) = 〈v2〉
s + κ̂(s)

, (18)

which may be inserted into Eq. (9) to yield

Ŵ (s)
s→0∼ 〈v2〉

s2κ̂(s)
. (19)

Here 〈v2〉 = cvv (0) and the assumption s3 ( s2κ̂(s) has been
made, which is correct for s → 0 if ballistic diffusion is ex-
cluded. In the latter case one would have W (t)

t→∞∼ t2 and

therefore Ŵ (s)
s→0∼ s−3. Equating expressions (7) and (19)

leads then to

κ̂(s)
s→0∼

〈
v2

〉

Dα%(α + 1)
sα−1

L(1/s)
. (20)

Analogously to a fractional diffusion coefficient one can de-
fine a fractional relaxation constant through

ηα = %(1 + α) lim
s→0

s1−ακ̂(s), (21)

which becomes in the time domain

ηα = %(1 + α)
∫ ∞

0
dt 0∂

1−α
t κ(t), (22)

and leads to the fractional version of the fluctuation-
dissipation theorem,

Dα = 〈v2〉
ηα

. (23)

It should be noted that the same relation for phenomenologi-
cal constants Dα and ηα has been found in Ref. 28. For α = 1
one retrieves the standard definition η =

∫ ∞
0 dt κ(t) for the

relaxation constant and for spatially confined diffusion one
obtains

η0 =
∫ ∞

0
dt ∂

(−)
t κ(t) = κ(∞). (24)

Here is has been used that ∂
(−)
t is a left derivative and that

κ(t) = θ (t)κ(t) (θ (t) is the Heaviside function) since the
memory function is causal. On the other hand, it follows from
D0 = 〈v2〉/η0 = 〈u2〉 that

η0 = κ(∞) = 〈v2〉
〈u2〉

. (25)

C. Conditions for anomalous diffusion in the time
domain

A further application of the HLK theorem permits the
derivation of conditions for the asymptotic form of the VACF
and its memory function in the time domain. To derive these
conditions we introduce the functions

f (t) =
∫ t

0
dτ cvv (τ ), (26)

g(t) =
∫ t

0
dτ κ(τ ). (27)

One recognizes that f (∞) = D and g(∞) = η in case of nor-
mal unconfined diffusion. Defining the slowly varying func-
tions

L f (t) = αDα L(t), (28)

Lg(t) =
〈
v2

〉

Dα%(2 − α)%(α + 1)L(t)
, (29)

and using that f̂ (s) = ĉvv (s)/s and ĝ(s) = κ̂(s)/s, we obtain
the following equivalences from Eqs. (10) and (20), and from
the HLK theorem (6),

f̂ (s)
s→0∼ L f (1/s)

%(α)
sα

⇔ f (t)
t→∞∼ L f (t)tα−1, (30)

ĝ(s)
s→0∼ Lg(1/s)

%(2 − α)
s2−α

⇔ g(t)
t→∞∼ Lg(t)t1−α. (31)

Note that if L(t) is a slowly varying function, the same is true
for 1/L(t). On account of Eqs. (26) and (27), differentiation of
f (t) and g(t) for large times leads to necessary conditions for
the asymptotic forms of the VACF and its memory function.
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spatially limited diffusion where limt→∞ W (t) = 2D0, one
obtains

D0 = lim
T →∞

∫ T

0
dt

∫ t

0
dτ cvv (τ )

= lim
T →∞

∫ T

0
dτ (T −τ )cvv (τ ) = lim

T →∞
W (T )/2. (14)

Since limT →∞ W (T ) = 2〈u2〉, where 〈u2〉 = 〈x2〉 − 〈x〉2 is
the mean square position fluctuation of the particle, it follows
that

D0 = 〈u2〉. (15)

B. Generalized fluctuation-dissipation theorem

In the framework of the generalized Langevin equation
developed by Zwanzig,39, 40 the motion of a tagged particle in
an isotropic solvent is described by an equation of motion of
the form

v̇(t) = −
∫ t

0
dt ′ κ(t − t ′)v(t ′) + f(+)(t), (16)

where v(t) is the velocity of the particle, κ(t) is the corre-
sponding memory function, and f(+)(t) a generalized acceler-
ation fulfilling the orthogonality relation 〈v(t) · f(+)(t ′)〉 = 0.
In contrast to a full Hamiltonian description of the system,
the solvent is not described explicitly, but both κ(t) and f(+)(t)
can be, in principle, expressed by the microscopic dynamical
variables describing the full system. They are thus fully de-
terministic quantities. For details the reader is referred to the
monograph by Zwanzig.40 Due to the orthogonality between
v and f(+), the time evolution of the VACF is described by the
integro-differential equation

∂t cvv (t) = −
∫ t

0
dt ′ cvv (t − t ′)κ(t ′). (17)

The Laplace transform of this integral equation can be solved
for the Laplace transformed VACF,

ĉvv (s) = 〈v2〉
s + κ̂(s)

, (18)

which may be inserted into Eq. (9) to yield

Ŵ (s)
s→0∼ 〈v2〉

s2κ̂(s)
. (19)

Here 〈v2〉 = cvv (0) and the assumption s3 ( s2κ̂(s) has been
made, which is correct for s → 0 if ballistic diffusion is ex-
cluded. In the latter case one would have W (t)

t→∞∼ t2 and

therefore Ŵ (s)
s→0∼ s−3. Equating expressions (7) and (19)

leads then to

κ̂(s)
s→0∼

〈
v2

〉

Dα%(α + 1)
sα−1

L(1/s)
. (20)

Analogously to a fractional diffusion coefficient one can de-
fine a fractional relaxation constant through

ηα = %(1 + α) lim
s→0

s1−ακ̂(s), (21)

which becomes in the time domain

ηα = %(1 + α)
∫ ∞

0
dt 0∂

1−α
t κ(t), (22)

and leads to the fractional version of the fluctuation-
dissipation theorem,

Dα = 〈v2〉
ηα

. (23)

It should be noted that the same relation for phenomenologi-
cal constants Dα and ηα has been found in Ref. 28. For α = 1
one retrieves the standard definition η =

∫ ∞
0 dt κ(t) for the

relaxation constant and for spatially confined diffusion one
obtains

η0 =
∫ ∞

0
dt ∂

(−)
t κ(t) = κ(∞). (24)

Here is has been used that ∂
(−)
t is a left derivative and that

κ(t) = θ (t)κ(t) (θ (t) is the Heaviside function) since the
memory function is causal. On the other hand, it follows from
D0 = 〈v2〉/η0 = 〈u2〉 that

η0 = κ(∞) = 〈v2〉
〈u2〉

. (25)

C. Conditions for anomalous diffusion in the time
domain

A further application of the HLK theorem permits the
derivation of conditions for the asymptotic form of the VACF
and its memory function in the time domain. To derive these
conditions we introduce the functions

f (t) =
∫ t

0
dτ cvv (τ ), (26)

g(t) =
∫ t

0
dτ κ(τ ). (27)

One recognizes that f (∞) = D and g(∞) = η in case of nor-
mal unconfined diffusion. Defining the slowly varying func-
tions

L f (t) = αDα L(t), (28)

Lg(t) =
〈
v2

〉

Dα%(2 − α)%(α + 1)L(t)
, (29)

and using that f̂ (s) = ĉvv (s)/s and ĝ(s) = κ̂(s)/s, we obtain
the following equivalences from Eqs. (10) and (20), and from
the HLK theorem (6),

f̂ (s)
s→0∼ L f (1/s)

%(α)
sα

⇔ f (t)
t→∞∼ L f (t)tα−1, (30)

ĝ(s)
s→0∼ Lg(1/s)

%(2 − α)
s2−α

⇔ g(t)
t→∞∼ Lg(t)t1−α. (31)

Note that if L(t) is a slowly varying function, the same is true
for 1/L(t). On account of Eqs. (26) and (27), differentiation of
f (t) and g(t) for large times leads to necessary conditions for
the asymptotic forms of the VACF and its memory function.
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spatially limited diffusion where limt→∞ W (t) = 2D0, one
obtains

D0 = lim
T →∞

∫ T

0
dt

∫ t

0
dτ cvv (τ )

= lim
T →∞

∫ T

0
dτ (T −τ )cvv (τ ) = lim

T →∞
W (T )/2. (14)

Since limT →∞ W (T ) = 2〈u2〉, where 〈u2〉 = 〈x2〉 − 〈x〉2 is
the mean square position fluctuation of the particle, it follows
that

D0 = 〈u2〉. (15)

B. Generalized fluctuation-dissipation theorem

In the framework of the generalized Langevin equation
developed by Zwanzig,39, 40 the motion of a tagged particle in
an isotropic solvent is described by an equation of motion of
the form

v̇(t) = −
∫ t

0
dt ′ κ(t − t ′)v(t ′) + f(+)(t), (16)

where v(t) is the velocity of the particle, κ(t) is the corre-
sponding memory function, and f(+)(t) a generalized acceler-
ation fulfilling the orthogonality relation 〈v(t) · f(+)(t ′)〉 = 0.
In contrast to a full Hamiltonian description of the system,
the solvent is not described explicitly, but both κ(t) and f(+)(t)
can be, in principle, expressed by the microscopic dynamical
variables describing the full system. They are thus fully de-
terministic quantities. For details the reader is referred to the
monograph by Zwanzig.40 Due to the orthogonality between
v and f(+), the time evolution of the VACF is described by the
integro-differential equation

∂t cvv (t) = −
∫ t

0
dt ′ cvv (t − t ′)κ(t ′). (17)

The Laplace transform of this integral equation can be solved
for the Laplace transformed VACF,

ĉvv (s) = 〈v2〉
s + κ̂(s)

, (18)

which may be inserted into Eq. (9) to yield

Ŵ (s)
s→0∼ 〈v2〉

s2κ̂(s)
. (19)

Here 〈v2〉 = cvv (0) and the assumption s3 ( s2κ̂(s) has been
made, which is correct for s → 0 if ballistic diffusion is ex-
cluded. In the latter case one would have W (t)

t→∞∼ t2 and

therefore Ŵ (s)
s→0∼ s−3. Equating expressions (7) and (19)

leads then to

κ̂(s)
s→0∼

〈
v2

〉

Dα%(α + 1)
sα−1

L(1/s)
. (20)

Analogously to a fractional diffusion coefficient one can de-
fine a fractional relaxation constant through

ηα = %(1 + α) lim
s→0

s1−ακ̂(s), (21)

which becomes in the time domain

ηα = %(1 + α)
∫ ∞

0
dt 0∂

1−α
t κ(t), (22)

and leads to the fractional version of the fluctuation-
dissipation theorem,

Dα = 〈v2〉
ηα

. (23)

It should be noted that the same relation for phenomenologi-
cal constants Dα and ηα has been found in Ref. 28. For α = 1
one retrieves the standard definition η =

∫ ∞
0 dt κ(t) for the

relaxation constant and for spatially confined diffusion one
obtains

η0 =
∫ ∞

0
dt ∂

(−)
t κ(t) = κ(∞). (24)

Here is has been used that ∂
(−)
t is a left derivative and that

κ(t) = θ (t)κ(t) (θ (t) is the Heaviside function) since the
memory function is causal. On the other hand, it follows from
D0 = 〈v2〉/η0 = 〈u2〉 that

η0 = κ(∞) = 〈v2〉
〈u2〉

. (25)

C. Conditions for anomalous diffusion in the time
domain

A further application of the HLK theorem permits the
derivation of conditions for the asymptotic form of the VACF
and its memory function in the time domain. To derive these
conditions we introduce the functions

f (t) =
∫ t

0
dτ cvv (τ ), (26)

g(t) =
∫ t

0
dτ κ(τ ). (27)

One recognizes that f (∞) = D and g(∞) = η in case of nor-
mal unconfined diffusion. Defining the slowly varying func-
tions

L f (t) = αDα L(t), (28)

Lg(t) =
〈
v2

〉

Dα%(2 − α)%(α + 1)L(t)
, (29)

and using that f̂ (s) = ĉvv (s)/s and ĝ(s) = κ̂(s)/s, we obtain
the following equivalences from Eqs. (10) and (20), and from
the HLK theorem (6),

f̂ (s)
s→0∼ L f (1/s)

%(α)
sα

⇔ f (t)
t→∞∼ L f (t)tα−1, (30)

ĝ(s)
s→0∼ Lg(1/s)

%(2 − α)
s2−α

⇔ g(t)
t→∞∼ Lg(t)t1−α. (31)

Note that if L(t) is a slowly varying function, the same is true
for 1/L(t). On account of Eqs. (26) and (27), differentiation of
f (t) and g(t) for large times leads to necessary conditions for
the asymptotic forms of the VACF and its memory function.
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continuous time random walk model,30, 37 and an illustrative
interpretation of the memory kernel in FLEs for the descrip-
tion of subdiffusion in viscoelastic media can be found in
Ref. 38.

In this paper, a theoretical description of anomalous dif-
fusion processes is developed which combines a formally
exact description of single particle dynamics within the
framework of the generalized Langevin equation39, 40 with
an asymptotic analysis of the relevant observables for long
times. Memory effects enter here naturally through the mem-
ory function of the velocity autocorrelation function of the
diffusing particle, which is in turn related to the MSD. The
aim of the paper is to derive generalized Kubo relations for
the relevant transport coefficients, which hold for both normal
and anomalous diffusion, and to formulate general conditions
for anomalous diffusion, enabling a simple physical interpre-
tation without imposing a particular model.

The paper is organized as follows: Section II treats the
derivation of generalized Kubo relations, starting from a the-
orem for asymptotic analysis which is applied to the MSD of
a diffusing particle. In a second step general conditions for
anomalous diffusion are derived, where spatially unconfined
and confined diffusion are distinguished.

In Sec. III, the results are illustrated with semi-analytical
examples and the paper is concluded by a short résumé and
an outlook.

II. THEORY

A. Kubo relation for Dα

Kubo relations establish a connection between macro-
scopic transport coefficients and the microscopic Hamiltonian
dynamics of the system under consideration.41 Each trans-
port coefficient is expressed by an integral over a correspond-
ing time correlation function. In case of diffusion processes
one considers the velocity autocorrelation function (VACF),
cvv (t) = 〈v(t) · v(0)〉, and the diffusion coefficient is given by
the well-known relation

D =
∫ ∞

0
dt cvv (t), (2)

if one assumes unconfined normal diffusion.
A generalization of expression (2) covering both normal

and anomalous diffusion can be derived from an appropriate
asymptotic analysis of the MSD. Assuming isotropic diffu-
sion, its asymptotic form may be written as

W (t)
t→∞∼ 2Dα L(t)tα (0 ≤ α < 2), (3)

where L(t) fulfills the conditions

lim
t→∞

L(t) = 1, (4)

lim
t→∞

t
d L(t)

dt
= 0. (5)

For physical reasons L(t) must be positive. The ballistic
asymptotic regime, where α = 2, is not considered in the fol-
lowing. By construction, L(t) belongs to the class of slowly

varying functions,42, 43 which are defined through the weaker
condition limt→∞ L(λt)/L(t) = 1, with λ > 0.

The general asymptotic form (3) of the MSD yields a di-
rect link to a Tauberian theorem due to Hardy, Littlewood, and
Karamata (HLK),42, 43 which establishes a relation between
slowly growing functions and their Laplace transforms,

h(t)
t→∞∼ L(t)tρ ⇔ ĥ(s)

s→0∼ L(1/s)
$(ρ + 1)

sρ+1
(ρ > −1).

(6)
Here ĥ(s) =

∫ ∞
0 dt exp(−st)h(t) (){s} > 0) denotes the

Laplace transform of h(t). Noting that ĥ(0) =
∫ ∞

0 dt h(t), the
theorem can be intuitively understood. It states that the di-
vergence of the integral

∫ t
0 dτ h(τ ) as t approaches infinity is

reflected in the divergence of the Laplace transform of h(t), as
s approaches zero. From the asymptotic form (3) of the MSD
and the HLK theorem one can conclude that

Ŵ (s)
s→0∼ 2Dα L(1/s)

$(α + 1)
sα+1

. (7)

The relation of this expression to the VACF of the diffusing
particle follows from the convolution relation44

W (t) = 2
∫ t

0
dt ′ (t − t ′)cvv (t ′), (8)

which translates by Laplace transform into

Ŵ (s) = 2 ĉvv (s)
s2

. (9)

Comparison with Eq. (7) shows that

ĉvv (s)
s→0∼ Dα$(α + 1)L(1/s)s1−α. (10)

From expression (10) one can derive a generalized Kubo rela-
tion for the fractional diffusion constant which holds for both
normal and anomalous diffusion processes. The first step con-
sists in solving Eq. (10) for Dα . Using that lims→0 L(1/s) = 1
on account of Eq. (4), one obtains

Dα = lim
s→0

sα−1ĉvv (s)/$(1 + α). (11)

In a second step one recognizes that sα−1ĉvv (s) is the Laplace
transform of the fractional derivative of order α − 1 of
cvv (t) with respect to time. Writing ρ = n − β, where n
= 0, 1, 2, . . . is an integer number and β ≥ 0 is real, the frac-
tional Riemann-Liouville derivative of order ρ of an arbitrary
function g is defined through45

0∂
ρ
t g(t) = ∂

(−)n
t

∫ t

0
dt ′ (t − t ′)β−1

$(β)
g(t ′). (12)

The symbol ∂
(−)n
t denotes a normal left derivative of order n

and negative values of ρ indicate fractional integration. The
index “0” in the symbol for the fractional derivative on the
left-hand side in Eq. (12) refers to the lower limit in the inte-
gral on the right-hand side. Since lims→0 ĝ(s) =

∫ ∞
0 dt g(t),

one finds that the fractional diffusion coefficient is given by
the relation

Dα = 1
$(1 + α)

∫ ∞

0
dt 0∂

α−1
t cvv (t). (13)

For α = 1 the standard Kubo expression (2) for the diffusion
constant is retrieved and for the case α = 0, which describes
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continuous time random walk model,30, 37 and an illustrative
interpretation of the memory kernel in FLEs for the descrip-
tion of subdiffusion in viscoelastic media can be found in
Ref. 38.

In this paper, a theoretical description of anomalous dif-
fusion processes is developed which combines a formally
exact description of single particle dynamics within the
framework of the generalized Langevin equation39, 40 with
an asymptotic analysis of the relevant observables for long
times. Memory effects enter here naturally through the mem-
ory function of the velocity autocorrelation function of the
diffusing particle, which is in turn related to the MSD. The
aim of the paper is to derive generalized Kubo relations for
the relevant transport coefficients, which hold for both normal
and anomalous diffusion, and to formulate general conditions
for anomalous diffusion, enabling a simple physical interpre-
tation without imposing a particular model.

The paper is organized as follows: Section II treats the
derivation of generalized Kubo relations, starting from a the-
orem for asymptotic analysis which is applied to the MSD of
a diffusing particle. In a second step general conditions for
anomalous diffusion are derived, where spatially unconfined
and confined diffusion are distinguished.

In Sec. III, the results are illustrated with semi-analytical
examples and the paper is concluded by a short résumé and
an outlook.

II. THEORY

A. Kubo relation for Dα

Kubo relations establish a connection between macro-
scopic transport coefficients and the microscopic Hamiltonian
dynamics of the system under consideration.41 Each trans-
port coefficient is expressed by an integral over a correspond-
ing time correlation function. In case of diffusion processes
one considers the velocity autocorrelation function (VACF),
cvv (t) = 〈v(t) · v(0)〉, and the diffusion coefficient is given by
the well-known relation

D =
∫ ∞

0
dt cvv (t), (2)

if one assumes unconfined normal diffusion.
A generalization of expression (2) covering both normal

and anomalous diffusion can be derived from an appropriate
asymptotic analysis of the MSD. Assuming isotropic diffu-
sion, its asymptotic form may be written as

W (t)
t→∞∼ 2Dα L(t)tα (0 ≤ α < 2), (3)

where L(t) fulfills the conditions

lim
t→∞

L(t) = 1, (4)

lim
t→∞

t
d L(t)

dt
= 0. (5)

For physical reasons L(t) must be positive. The ballistic
asymptotic regime, where α = 2, is not considered in the fol-
lowing. By construction, L(t) belongs to the class of slowly

varying functions,42, 43 which are defined through the weaker
condition limt→∞ L(λt)/L(t) = 1, with λ > 0.

The general asymptotic form (3) of the MSD yields a di-
rect link to a Tauberian theorem due to Hardy, Littlewood, and
Karamata (HLK),42, 43 which establishes a relation between
slowly growing functions and their Laplace transforms,

h(t)
t→∞∼ L(t)tρ ⇔ ĥ(s)

s→0∼ L(1/s)
$(ρ + 1)

sρ+1
(ρ > −1).

(6)
Here ĥ(s) =

∫ ∞
0 dt exp(−st)h(t) (){s} > 0) denotes the

Laplace transform of h(t). Noting that ĥ(0) =
∫ ∞

0 dt h(t), the
theorem can be intuitively understood. It states that the di-
vergence of the integral

∫ t
0 dτ h(τ ) as t approaches infinity is

reflected in the divergence of the Laplace transform of h(t), as
s approaches zero. From the asymptotic form (3) of the MSD
and the HLK theorem one can conclude that

Ŵ (s)
s→0∼ 2Dα L(1/s)

$(α + 1)
sα+1

. (7)

The relation of this expression to the VACF of the diffusing
particle follows from the convolution relation44

W (t) = 2
∫ t

0
dt ′ (t − t ′)cvv (t ′), (8)

which translates by Laplace transform into

Ŵ (s) = 2 ĉvv (s)
s2

. (9)

Comparison with Eq. (7) shows that

ĉvv (s)
s→0∼ Dα$(α + 1)L(1/s)s1−α. (10)

From expression (10) one can derive a generalized Kubo rela-
tion for the fractional diffusion constant which holds for both
normal and anomalous diffusion processes. The first step con-
sists in solving Eq. (10) for Dα . Using that lims→0 L(1/s) = 1
on account of Eq. (4), one obtains

Dα = lim
s→0

sα−1ĉvv (s)/$(1 + α). (11)

In a second step one recognizes that sα−1ĉvv (s) is the Laplace
transform of the fractional derivative of order α − 1 of
cvv (t) with respect to time. Writing ρ = n − β, where n
= 0, 1, 2, . . . is an integer number and β ≥ 0 is real, the frac-
tional Riemann-Liouville derivative of order ρ of an arbitrary
function g is defined through45

0∂
ρ
t g(t) = ∂

(−)n
t

∫ t

0
dt ′ (t − t ′)β−1

$(β)
g(t ′). (12)

The symbol ∂
(−)n
t denotes a normal left derivative of order n

and negative values of ρ indicate fractional integration. The
index “0” in the symbol for the fractional derivative on the
left-hand side in Eq. (12) refers to the lower limit in the inte-
gral on the right-hand side. Since lims→0 ĝ(s) =

∫ ∞
0 dt g(t),

one finds that the fractional diffusion coefficient is given by
the relation

Dα = 1
$(1 + α)

∫ ∞

0
dt 0∂

α−1
t cvv (t). (13)

For α = 1 the standard Kubo expression (2) for the diffusion
constant is retrieved and for the case α = 0, which describes
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continuous time random walk model,30, 37 and an illustrative
interpretation of the memory kernel in FLEs for the descrip-
tion of subdiffusion in viscoelastic media can be found in
Ref. 38.

In this paper, a theoretical description of anomalous dif-
fusion processes is developed which combines a formally
exact description of single particle dynamics within the
framework of the generalized Langevin equation39, 40 with
an asymptotic analysis of the relevant observables for long
times. Memory effects enter here naturally through the mem-
ory function of the velocity autocorrelation function of the
diffusing particle, which is in turn related to the MSD. The
aim of the paper is to derive generalized Kubo relations for
the relevant transport coefficients, which hold for both normal
and anomalous diffusion, and to formulate general conditions
for anomalous diffusion, enabling a simple physical interpre-
tation without imposing a particular model.

The paper is organized as follows: Section II treats the
derivation of generalized Kubo relations, starting from a the-
orem for asymptotic analysis which is applied to the MSD of
a diffusing particle. In a second step general conditions for
anomalous diffusion are derived, where spatially unconfined
and confined diffusion are distinguished.

In Sec. III, the results are illustrated with semi-analytical
examples and the paper is concluded by a short résumé and
an outlook.

II. THEORY

A. Kubo relation for Dα

Kubo relations establish a connection between macro-
scopic transport coefficients and the microscopic Hamiltonian
dynamics of the system under consideration.41 Each trans-
port coefficient is expressed by an integral over a correspond-
ing time correlation function. In case of diffusion processes
one considers the velocity autocorrelation function (VACF),
cvv (t) = 〈v(t) · v(0)〉, and the diffusion coefficient is given by
the well-known relation

D =
∫ ∞

0
dt cvv (t), (2)

if one assumes unconfined normal diffusion.
A generalization of expression (2) covering both normal

and anomalous diffusion can be derived from an appropriate
asymptotic analysis of the MSD. Assuming isotropic diffu-
sion, its asymptotic form may be written as

W (t)
t→∞∼ 2Dα L(t)tα (0 ≤ α < 2), (3)

where L(t) fulfills the conditions

lim
t→∞

L(t) = 1, (4)

lim
t→∞

t
d L(t)

dt
= 0. (5)

For physical reasons L(t) must be positive. The ballistic
asymptotic regime, where α = 2, is not considered in the fol-
lowing. By construction, L(t) belongs to the class of slowly

varying functions,42, 43 which are defined through the weaker
condition limt→∞ L(λt)/L(t) = 1, with λ > 0.

The general asymptotic form (3) of the MSD yields a di-
rect link to a Tauberian theorem due to Hardy, Littlewood, and
Karamata (HLK),42, 43 which establishes a relation between
slowly growing functions and their Laplace transforms,

h(t)
t→∞∼ L(t)tρ ⇔ ĥ(s)

s→0∼ L(1/s)
$(ρ + 1)

sρ+1
(ρ > −1).

(6)
Here ĥ(s) =

∫ ∞
0 dt exp(−st)h(t) (){s} > 0) denotes the

Laplace transform of h(t). Noting that ĥ(0) =
∫ ∞

0 dt h(t), the
theorem can be intuitively understood. It states that the di-
vergence of the integral

∫ t
0 dτ h(τ ) as t approaches infinity is

reflected in the divergence of the Laplace transform of h(t), as
s approaches zero. From the asymptotic form (3) of the MSD
and the HLK theorem one can conclude that

Ŵ (s)
s→0∼ 2Dα L(1/s)

$(α + 1)
sα+1

. (7)

The relation of this expression to the VACF of the diffusing
particle follows from the convolution relation44

W (t) = 2
∫ t

0
dt ′ (t − t ′)cvv (t ′), (8)

which translates by Laplace transform into

Ŵ (s) = 2 ĉvv (s)
s2

. (9)

Comparison with Eq. (7) shows that

ĉvv (s)
s→0∼ Dα$(α + 1)L(1/s)s1−α. (10)

From expression (10) one can derive a generalized Kubo rela-
tion for the fractional diffusion constant which holds for both
normal and anomalous diffusion processes. The first step con-
sists in solving Eq. (10) for Dα . Using that lims→0 L(1/s) = 1
on account of Eq. (4), one obtains

Dα = lim
s→0

sα−1ĉvv (s)/$(1 + α). (11)

In a second step one recognizes that sα−1ĉvv (s) is the Laplace
transform of the fractional derivative of order α − 1 of
cvv (t) with respect to time. Writing ρ = n − β, where n
= 0, 1, 2, . . . is an integer number and β ≥ 0 is real, the frac-
tional Riemann-Liouville derivative of order ρ of an arbitrary
function g is defined through45

0∂
ρ
t g(t) = ∂

(−)n
t

∫ t

0
dt ′ (t − t ′)β−1

$(β)
g(t ′). (12)

The symbol ∂
(−)n
t denotes a normal left derivative of order n

and negative values of ρ indicate fractional integration. The
index “0” in the symbol for the fractional derivative on the
left-hand side in Eq. (12) refers to the lower limit in the inte-
gral on the right-hand side. Since lims→0 ĝ(s) =

∫ ∞
0 dt g(t),

one finds that the fractional diffusion coefficient is given by
the relation

Dα = 1
$(1 + α)

∫ ∞

0
dt 0∂

α−1
t cvv (t). (13)

For α = 1 the standard Kubo expression (2) for the diffusion
constant is retrieved and for the case α = 0, which describes
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continuous time random walk model,30, 37 and an illustrative
interpretation of the memory kernel in FLEs for the descrip-
tion of subdiffusion in viscoelastic media can be found in
Ref. 38.

In this paper, a theoretical description of anomalous dif-
fusion processes is developed which combines a formally
exact description of single particle dynamics within the
framework of the generalized Langevin equation39, 40 with
an asymptotic analysis of the relevant observables for long
times. Memory effects enter here naturally through the mem-
ory function of the velocity autocorrelation function of the
diffusing particle, which is in turn related to the MSD. The
aim of the paper is to derive generalized Kubo relations for
the relevant transport coefficients, which hold for both normal
and anomalous diffusion, and to formulate general conditions
for anomalous diffusion, enabling a simple physical interpre-
tation without imposing a particular model.

The paper is organized as follows: Section II treats the
derivation of generalized Kubo relations, starting from a the-
orem for asymptotic analysis which is applied to the MSD of
a diffusing particle. In a second step general conditions for
anomalous diffusion are derived, where spatially unconfined
and confined diffusion are distinguished.

In Sec. III, the results are illustrated with semi-analytical
examples and the paper is concluded by a short résumé and
an outlook.
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lowing. By construction, L(t) belongs to the class of slowly
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reflected in the divergence of the Laplace transform of h(t), as
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and the HLK theorem one can conclude that
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. (9)

Comparison with Eq. (7) shows that
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s→0∼ Dα$(α + 1)L(1/s)s1−α. (10)

From expression (10) one can derive a generalized Kubo rela-
tion for the fractional diffusion constant which holds for both
normal and anomalous diffusion processes. The first step con-
sists in solving Eq. (10) for Dα . Using that lims→0 L(1/s) = 1
on account of Eq. (4), one obtains

Dα = lim
s→0

sα−1ĉvv (s)/$(1 + α). (11)

In a second step one recognizes that sα−1ĉvv (s) is the Laplace
transform of the fractional derivative of order α − 1 of
cvv (t) with respect to time. Writing ρ = n − β, where n
= 0, 1, 2, . . . is an integer number and β ≥ 0 is real, the frac-
tional Riemann-Liouville derivative of order ρ of an arbitrary
function g is defined through45
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∫ t

0
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The symbol ∂
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t denotes a normal left derivative of order n

and negative values of ρ indicate fractional integration. The
index “0” in the symbol for the fractional derivative on the
left-hand side in Eq. (12) refers to the lower limit in the inte-
gral on the right-hand side. Since lims→0 ĝ(s) =

∫ ∞
0 dt g(t),

one finds that the fractional diffusion coefficient is given by
the relation

Dα = 1
$(1 + α)

∫ ∞

0
dt 0∂

α−1
t cvv (t). (13)

For α = 1 the standard Kubo expression (2) for the diffusion
constant is retrieved and for the case α = 0, which describes
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conditions we introduce the functions

f(t) =

∫ t

0

dτ cvv(τ), (26)

g(t) =

∫ t

0

dτ κ(τ). (27)

One recognizes that f(∞) = D and g(∞) = η in case of normal unconfined diffusion.

Defining the slowly varying functions

Lf (t) = αDαL(t), (28)

Lg(t) =
〈v2〉

DαΓ(2 − α)Γ(α + 1)L(t)
, (29)

and using that f̂(s) = ĉvv(s)/s and ĝ(s) = κ̂(s)/s, we obtain the following equivalences from

(10), (20), and from the HLK theorem (6),

f̂(s)
s→0
∼ Lf (1/s)

Γ(α)

sα
⇔ f(t)

t→∞

∼ Lf (t)t
α−1, (30)

ĝ(s)
s→0
∼ Lg(1/s)

Γ(2 − α)

s2−α
⇔ g(t)

t→∞

∼ Lg(t)t
1−α. (31)

Note that if L(t) is a slowly varying function, the same is true for 1/L(t). On account of (26)

and (27), differentiation of f(t) and g(t) for large times leads to necessary conditions for the

asymptotic forms of the VACF and its memory function. Observing that limt→∞ t dL/dt = 0,

one obtains

cvv(t)
t→∞

∼ Dαα(α − 1)L(t)tα−2, (32)

κ(t)
t→∞

∼
〈v2〉

Dα

sin(πα)

πα

1

L(t)
t−α. (33)

Applying here the HLK theorem again, one can also conclude that (10) follows from (32)

if 1 < α < 2 and that (20) follows from (33) if 0 < α < 1. Therefore (32) and (33)

are also sufficient conditions for superdiffusion and subdiffusion, respectively. The relations

cvv(t)
t→∞

∼ 0 and κ(t)
t→∞

∼ 0, which arise for α = 0, 1 in case of the VACF and for α = 1 in

case of the memory function, indicate the absence of the corresponding algebraic long time

tails.

D. Spatially confined diffusion

So far, spatially confined diffusion appears as an extreme case of subdiffusion, where

α = 0. The fact that the motions of the diffusing particle take place in a restricted volume
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leads to the necessary conditions

lims→0 ĝ(s) =
∫

∞

0 dt g(t), one finds that the fractional diffusion coefficient is given by the

relation

Dα =
1

Γ(1 + α)

∫

∞

0

dt 0∂
α−1
t cvv(t). (13)

For α = 1 the standard Kubo expression (2) for the diffusion constant is retrieved and for

the case α = 0, which describes spatially limited diffusion where limt→∞ W (t) = 2D0, one

obtains

D0 = lim
T→∞

∫ T

0

dt

∫ t

0

dτ cvv(τ) = lim
T→∞

∫ T

0

dτ (T − τ)cvv(τ) = lim
t→∞

W (t)/2. (14)

Since limt→∞ W (t) = 2〈u2〉, where 〈u2〉 = 〈x2〉−〈x〉2 is the mean square position fluctuation

of the particle, it follows that

D0 = 〈u2〉. (15)

B. Generalized fluctuation-dissipation theorem

In the framework of the generalized Langevin equation developed by Zwanzig,39,40 the

motion of a tagged particle in an isotropic solvent is described by an equation of motion of

the form

v̇(t) = −

∫ t

0

dt′ κ(t − t′)v(t′) + f (+)(t), (16)

where v(t) is the velocity of the particle, κ(t) is the corresponding memory function, and

f (+)(t) a generalized acceleration fulfilling the orthogonality relation 〈v(t) · f (+)(t′)〉 = 0. In

contrast to a full Hamiltonian description of the system, the solvent is not described explic-

itly, but both κ(t) and f (+)(t) can be, in principle, expressed by the microscopic dynamical

variables describing the full system. They are thus fully deterministic quantities. For details

the reader is referred to the monograph by Zwanzig40. Due to the orthogonality between v

and f (+), the time evolution of the VACF is described by the integro-differential equation

∂tcvv(t) = −

∫ t

0

dt′ cvv(t − t′)κ(t′). (17)

The Laplace transform of this integral equation can be solved for the Laplace transformed

VACF,

ĉvv(s) =
〈v2〉

s + κ̂(s)
, (18)
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III. ILLUSTRATIONS

In the following some examples for spatially unconfined and confined diffusion will be

discussed which illustrate how the various asymptotic forms of the MSD can be generated

from a simple model for the memory function associated to the VACF, i.e. from different

types of “cages”.

A. Free diffusion

The memory function for confined diffusion is assumed to have the form

κf (t) = Ω2M(α, 1,−t/τ), (39)

where M(a, b, z) is Kummer’s hypergeometric function,47 Ω has the dimension of a frequency

and τ > 0 sets the time scale. The Kummer function is regular in the whole complex plane

and it has the properties M(0, b, z) = 1 and M(a, a, z) = exp(z). If α is varied between

0 and 1, the model thus interpolates between a constant and an exponentially decaying

memory function. It is worthwhile noting that the latter model has been proposed long time

ago by Berne et al.48 to qualitatively describe the VACF of simple liquids obtained from

molecular dynamics simulations.49

Due to the analytical properties of the Kummer function the Laplace transform of κf(t)

has a particularly simple form,

κ̂f (s) = Ω2

{

τα

s1−α

1

(sτ + 1)α

}

, (40)

showing that

κ̂f (s)
s→0
∼ Ω2ταsα−1. (41)

From the general form (20) of the Laplace transformed memory function one can thus

conclude that α is the exponent for the asymptotic growth of the MSD with time, W (t) ∼

2Dαtα, and that the fractional diffusion constant for the model is given by

Dα =
〈v2〉

Γ(1 + α)Ω2τα
. (42)

It follows, moreover, from the asymptotic form of the Kummer function for large arguments z
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that

κf(t)
t→∞

∼











Ω2 (t/τ)−α

Γ(1−α) , α "= 1,

Ω2 exp(−t/τ), α = 1.
(43)

These properties are compatible with condition (33), noting that an exponential decay

amounts to saying that κ(t) ∼ 0 for large times. Fig. 1 shows the normalized model memory

function, κf (t)/κf(0), for α = 1/2, 1, 3/2 (dashed, solid, and dotted line, respectively). One

notices the positive log time tail in case of subdiffusion and the negative long time tail in

case of superdiffusion. Here and in the following τ is set to one arbitrary time unit.

The VACFs and the MSDs corresponding to (39) have been computed by inverse Laplace

transform of expressions (18) and (9), respectively, using computer aided symbolic calcu-

lation.50 For this purpose the analytical expression (40) for κ̂(s) was replaced by a Padé

approximation,

κ̂f (s) ≈

∑Ma

k=0 ak(s − s0)k

∑Mb

k=0 bk(s − s0)k
, (44)

in order to obtain rational expressions for ĉvv(s) and Ŵ (s). Choosing s0 = 1 and Ma =

Mb = 7, the relative error of the inverse Laplace transform of (44) compared to the exact

form (39) is smaller than 5 × 10−3 for 0 ≤ t < 50 τ . The calculations were performed with

Ω = 1.5/τ and 〈v2〉 = 1/τ 2. Fig. 2 show the results for the VACFs, where the positive long

time tail in the VACF corresponding to superdiffusive motion (dotted line) is well visible.

The corresponding MSDs are displayed in Fig. 3 (solid lines), together with the the limiting

forms, W∞(t) = 2Dαtα and the common ballistic short time form, Wb(t) = 〈v2〉t2 (dotted

lines). The above results demonstrate that the model memory function generates all regimes

for unconfined diffusion and that the general conditions (32) and (33) for the asymptotic

forms of the VACF and the memory function, respectively, are fulfilled.

B. Spatially confined diffusion

The memory function for spatially confined diffusion is chosen to be

κc(t) = Ω2 {r + (1 − r)M(β, 1,−t/τ)} , (45)

where 0 < r < 1 and 0 < β ≤ 1. It resembles the one for unconfined subdiffusion, but in

contrast to the latter it decays to a finite plateau value, κc(∞) = Ω2r. Its asymptotic form

12
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III. ILLUSTRATIONS

In the following some examples for spatially unconfined and confined diffusion will be

discussed which illustrate how the various asymptotic forms of the MSD can be generated

from a simple model for the memory function associated to the VACF, i.e. from different

types of “cages”.

A. Free diffusion

The memory function for confined diffusion is assumed to have the form

κf (t) = Ω2M(α, 1,−t/τ), (39)

where M(a, b, z) is Kummer’s hypergeometric function,47 Ω has the dimension of a frequency

and τ > 0 sets the time scale. The Kummer function is regular in the whole complex plane

and it has the properties M(0, b, z) = 1 and M(a, a, z) = exp(z). If α is varied between

0 and 1, the model thus interpolates between a constant and an exponentially decaying

memory function. It is worthwhile noting that the latter model has been proposed long time

ago by Berne et al.48 to qualitatively describe the VACF of simple liquids obtained from

molecular dynamics simulations.49

Due to the analytical properties of the Kummer function the Laplace transform of κf(t)

has a particularly simple form,

κ̂f (s) = Ω2

{

τα

s1−α

1

(sτ + 1)α

}

, (40)

showing that

κ̂f (s)
s→0
∼ Ω2ταsα−1. (41)

From the general form (20) of the Laplace transformed memory function one can thus

conclude that α is the exponent for the asymptotic growth of the MSD with time, W (t) ∼

2Dαtα, and that the fractional diffusion constant for the model is given by

Dα =
〈v2〉

Γ(1 + α)Ω2τα
. (42)

It follows, moreover, from the asymptotic form of the Kummer function for large arguments z

11
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FIG. 1. Simulated system consisting of a bilayer of 2 × 64 DOPC lipid
molecules and 3840 water molecules (light-grey).

Here Nmol denotes the number of lipid molecules, Nt is the
number of time steps in the MD trajectory, and x(n) ≡ x(n!t),
with !t being the sampling time step. The results for two dif-
ferent lag time scales (1 ns and 30 ns) are shown in Figs. 2 and
3, respectively, where dots correspond to the simulated MSDs
and solid lines to the fits of expression (1). The fit parame-
ters are α = 0.52, Dα = 0.107 nm2/nsα for the fit in Fig. 2
and α = 0.61, Dα = 0.101 nm2/nsα for the fit in Fig. 3. We
have also performed an analysis for an intermediate lag time
scale of 5 ns (not shown here), which lead to α = 0.56, Dα

= 0.110 nm2/nsα . The insets of Figs. 2 and 3 show the spread
of the MSDs for the individual molecules. The rapid increase
of the latter with the lag time spots the problem of statistical
reliability, if the lag time becomes comparable with the length
of the simulation trajectory. The form of the spread gives
also a hint to appropriate stochastic models describing the
observed subdiffusion, such as (ergodic) fractional Brownian
motion (fBM) and the (non-ergodic) continuous time random
walk.18 Here, one has to make the assumption that the average
over all molecules corresponds to a true ensemble average.
The observed Gaussian shape of the distribution functions
shown in Figs. 2 and 3 supports that the lateral subdiffusion
of the DOPC molecules can be described by fBM. In recent
experimental studies, both models have been used to describe
experimental data for trajectories of diffusing molecules.7–9

We note finally that the fractional diffusion constant found
for the lateral diffusion of lipid molecules in the giant vesi-
cles studied in Ref. 4 is Dα = 0.088 ± 0.007 nm2/nsα for
α = 0.74 ± 0.08. Although the lipid bilayer considered in
this study consisted of different lipid molecules (dilauroyl-sn-
glycero-3-phosphocholine or DLPC), the measured diffusion
coefficient shows that the results for Dα obtained in our sim-
ulation study of DOPC are of the right order of magnitude.

In the following, we further analyze the lateral center-of-
mass dynamics of the DOPC molecules in the framework of
the GLE.12 The velocity autocorrelation function (VACF) of a
tagged molecule, c(t) ≡ 〈v(0) · v(t)〉, fulfills then the integro-

FIG. 2. Simulated molecule-averaged MSD for the lateral CM diffusion of
the DOPC molecules (dots) and fit of model (1) (solid line). The fitted frac-
tional diffusion coefficient is Dα = 0.107 nm2/nsα for α = 0.52. The inset
shows the distribution of δW(t) = Wj(t) − W(t) for t = 0.1 ns, t = 0.5 ns,
and t = 1 ns (with increasing width). In the main figure the corresponding
average MSD values are indicated by triangles.

differential equation

∂t c(t) = −
∫ t

0
dt ′ κ(t − t ′)c(t ′), (4)

where κ(t) is the corresponding memory kernel. Formally,
the latter can be derived from the microscopic Hamiltonian
dynamics of the system under consideration (tagged particle
plus the environment). Using that the MSD and the VACF are
related through19

W (t) = 2
∫ t

0
dτ (t − τ )c(τ ), (5)

one can derive characteristic long-time tails for the VACF and
its memory function,20

c(t) t→∞
∼ Dαα(α − 1)tα−2, (6)

κ(t) t→∞
∼

〈v2〉
Dα

sin(πα)
πα

t−α, (7)

FIG. 3. As Fig. 2, but for a maximum time lag of 30 ns. Here, the fitted
fractional diffusion coefficient is Dα = 0.101 nm2/nsα for α = 0.61 and the
inset shows the spread of the molecular MSDs at t = 5 ns, t = 15 ns, and
t = 30 ns.
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FIG. 4. Normalized simulated VACF for the lateral CM motion of the DOPC
molecules. The inset shows the superposition of the simulated VACF (dots)
with the long-time tail (6) (solid line). Here it is taken into account that c(0)
= 1, and the characteristic time scale defined according to Eq. (11) is τVACF
= 0.35 ps.

which are to be considered as necessary conditions for anoma-
lous diffusion. Expressions (6) and (7) are also sufficient con-
ditions in case of super- and subdiffusion, respectively. For
subdiffusion, the theory predicts thus a negative long-time
tail for the VACF and a positive long-time tail for the mem-
ory function. Negative values of the VACF for large time lags
indicate a persistent tendency of the diffusing molecules to
invert their direction of motion and thus a tendency to stay lo-
calized. In agreement with this interpretation, Eq. (4) shows
that the inversion of the direction of motion is favored by posi-
tive values of the memory function. In this context, it is worth-
while noting that the VACF for fBM, which can be defined for
a coarse-grained velocity, decays asymptotically also as tα − 2,
with c(t) < 0.9

To investigate the existence of a long-time tail in the
VACF, we estimated the contributions of the individual
molecules again through time averages

cj (n) ≈ 1
Nt − n

Nt−n−1∑

k=0

vj (k) · vj (k + n) (8)

and calculated the VACF as an average over the individual
contributions,

c(n) = 1
Nmol

Nmol∑

j=1

cj (n). (9)

The results are shown in Fig. 4, where the VACF has been nor-
malized such that c(0) = 1. The inset shows that the computed
VACF (dots) is in good agreement with the long-time tail (6)
(solid line) if t > 1 ps. In this comparison, the normalization
of the VACF has been taken into account. The asymptotic
regime of the VACF is defined with respect to a correspond-
ing typical time scale, τVACF. For normal diffusion, this time
scale can be obtained via τVACF =

∫ ∞
0 dt c(t)/c(0). To gener-

alize this estimation for arbitrary α we use that the fractional
diffusion constant can be written as20

Dα = 1
#(1 + α)

∫ ∞

0
dt 0∂

α−1
t c(t), (10)

FIG. 5. Memory function associated with the VACF shown in Fig. 4. The
inset shows the superposition of the calculated memory function (dots) with
the corresponding long-time tail (7) (solid line). The characteristic time scale
defined according to Eq. (14) is τmem = 2.4 fs.

where #(.) is the Gamma function21 and 0∂
α−1
t c(t)

= d/dt
∫ t

0 dt ′ #(α)−1(t − t ′)α−1c(t ′) is the fractional Rieman-
Liouville derivative22 of order 1 − α of c(t). Noting that c(0)
= 〈v2〉, we define

τVACF =
(

Dα

〈v2〉

)1/(2−α)

. (11)

Using α = 0.61, Dα = 0.101 nm2/nsα , and a thermal mean
square velocity of 〈v2〉 = kBT /M = 6.55 × 10−3 nm2/ps2 at
T = 310 K, yields τVACF = 0.35 ps. Here kB is the Boltzmann
constant, T is the absolute temperature in Kelvin, and M is
the mass of a single DOPC molecule. What exactly means t

( τVACF can be seen from Fig. 4, which shows that the
asymptotic regime starts at t ≈ 1 ps, corresponding to t ≈
3 τVACF. On account of relation Eq. (5), this time scale also
defines the onset of the asymptotic regime of the MSD. Since
τVACF is much smaller than the time scale on which the MSD
varies notably, expression (1) can be in practice fitted for the
whole time scale, 0 ≤ t < ∞. This has been tacitly assumed
in the fits of the MSDs described earlier.

To compute the memory function, we started from the
discretized form of Eq. (4),

c(n + 1) − c(n)
%t

= −
n∑

k=0

%t wkc(n − k)κ(k), (12)

where w0 = wn = 1/2 and wk = 1 for k = 1, . . . , n − 1
(Simpson integration scheme). Equation (12) can be consid-
ered as a linear of system of equations for κ(0), κ(1), κ(2),
etc., which can be solved recursively. The result is shown in
Fig. 5, where the inset shows the long-time tail (dots) together
with the analytical form (7) (solid line). Although the mem-
ory function decays very rapidly to almost zero compared to
its initial value, it is exactly the remaining positive long-time
tail which makes the diffusion process subdiffusive. We note
that the agreement between the long-time tail of the memory
function and the theoretical prediction is less good as for the
VACF. A reason might be that the memory function is not well
resolved for short times and that errors in the VACF are accu-
mulated through the recursive calculation of κ(n). The typical
time scale for the memory function can be defined along the
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FIG. 4. Normalized simulated VACF for the lateral CM motion of the DOPC
molecules. The inset shows the superposition of the simulated VACF (dots)
with the long-time tail (6) (solid line). Here it is taken into account that c(0)
= 1, and the characteristic time scale defined according to Eq. (11) is τVACF
= 0.35 ps.

which are to be considered as necessary conditions for anoma-
lous diffusion. Expressions (6) and (7) are also sufficient con-
ditions in case of super- and subdiffusion, respectively. For
subdiffusion, the theory predicts thus a negative long-time
tail for the VACF and a positive long-time tail for the mem-
ory function. Negative values of the VACF for large time lags
indicate a persistent tendency of the diffusing molecules to
invert their direction of motion and thus a tendency to stay lo-
calized. In agreement with this interpretation, Eq. (4) shows
that the inversion of the direction of motion is favored by posi-
tive values of the memory function. In this context, it is worth-
while noting that the VACF for fBM, which can be defined for
a coarse-grained velocity, decays asymptotically also as tα − 2,
with c(t) < 0.9

To investigate the existence of a long-time tail in the
VACF, we estimated the contributions of the individual
molecules again through time averages

cj (n) ≈ 1
Nt − n

Nt−n−1∑

k=0

vj (k) · vj (k + n) (8)

and calculated the VACF as an average over the individual
contributions,

c(n) = 1
Nmol

Nmol∑

j=1

cj (n). (9)

The results are shown in Fig. 4, where the VACF has been nor-
malized such that c(0) = 1. The inset shows that the computed
VACF (dots) is in good agreement with the long-time tail (6)
(solid line) if t > 1 ps. In this comparison, the normalization
of the VACF has been taken into account. The asymptotic
regime of the VACF is defined with respect to a correspond-
ing typical time scale, τVACF. For normal diffusion, this time
scale can be obtained via τVACF =

∫ ∞
0 dt c(t)/c(0). To gener-

alize this estimation for arbitrary α we use that the fractional
diffusion constant can be written as20

Dα = 1
#(1 + α)

∫ ∞

0
dt 0∂

α−1
t c(t), (10)

FIG. 5. Memory function associated with the VACF shown in Fig. 4. The
inset shows the superposition of the calculated memory function (dots) with
the corresponding long-time tail (7) (solid line). The characteristic time scale
defined according to Eq. (14) is τmem = 2.4 fs.

where #(.) is the Gamma function21 and 0∂
α−1
t c(t)

= d/dt
∫ t

0 dt ′ #(α)−1(t − t ′)α−1c(t ′) is the fractional Rieman-
Liouville derivative22 of order 1 − α of c(t). Noting that c(0)
= 〈v2〉, we define

τVACF =
(

Dα

〈v2〉

)1/(2−α)

. (11)

Using α = 0.61, Dα = 0.101 nm2/nsα , and a thermal mean
square velocity of 〈v2〉 = kBT /M = 6.55 × 10−3 nm2/ps2 at
T = 310 K, yields τVACF = 0.35 ps. Here kB is the Boltzmann
constant, T is the absolute temperature in Kelvin, and M is
the mass of a single DOPC molecule. What exactly means t

( τVACF can be seen from Fig. 4, which shows that the
asymptotic regime starts at t ≈ 1 ps, corresponding to t ≈
3 τVACF. On account of relation Eq. (5), this time scale also
defines the onset of the asymptotic regime of the MSD. Since
τVACF is much smaller than the time scale on which the MSD
varies notably, expression (1) can be in practice fitted for the
whole time scale, 0 ≤ t < ∞. This has been tacitly assumed
in the fits of the MSDs described earlier.

To compute the memory function, we started from the
discretized form of Eq. (4),

c(n + 1) − c(n)
%t

= −
n∑

k=0

%t wkc(n − k)κ(k), (12)

where w0 = wn = 1/2 and wk = 1 for k = 1, . . . , n − 1
(Simpson integration scheme). Equation (12) can be consid-
ered as a linear of system of equations for κ(0), κ(1), κ(2),
etc., which can be solved recursively. The result is shown in
Fig. 5, where the inset shows the long-time tail (dots) together
with the analytical form (7) (solid line). Although the mem-
ory function decays very rapidly to almost zero compared to
its initial value, it is exactly the remaining positive long-time
tail which makes the diffusion process subdiffusive. We note
that the agreement between the long-time tail of the memory
function and the theoretical prediction is less good as for the
VACF. A reason might be that the memory function is not well
resolved for short times and that errors in the VACF are accu-
mulated through the recursive calculation of κ(n). The typical
time scale for the memory function can be defined along the
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FIG. 1. Simulated system consisting of a bilayer of 2 × 64 DOPC lipid
molecules and 3840 water molecules (light-grey).

Here Nmol denotes the number of lipid molecules, Nt is the
number of time steps in the MD trajectory, and x(n) ≡ x(n!t),
with !t being the sampling time step. The results for two dif-
ferent lag time scales (1 ns and 30 ns) are shown in Figs. 2 and
3, respectively, where dots correspond to the simulated MSDs
and solid lines to the fits of expression (1). The fit parame-
ters are α = 0.52, Dα = 0.107 nm2/nsα for the fit in Fig. 2
and α = 0.61, Dα = 0.101 nm2/nsα for the fit in Fig. 3. We
have also performed an analysis for an intermediate lag time
scale of 5 ns (not shown here), which lead to α = 0.56, Dα

= 0.110 nm2/nsα . The insets of Figs. 2 and 3 show the spread
of the MSDs for the individual molecules. The rapid increase
of the latter with the lag time spots the problem of statistical
reliability, if the lag time becomes comparable with the length
of the simulation trajectory. The form of the spread gives
also a hint to appropriate stochastic models describing the
observed subdiffusion, such as (ergodic) fractional Brownian
motion (fBM) and the (non-ergodic) continuous time random
walk.18 Here, one has to make the assumption that the average
over all molecules corresponds to a true ensemble average.
The observed Gaussian shape of the distribution functions
shown in Figs. 2 and 3 supports that the lateral subdiffusion
of the DOPC molecules can be described by fBM. In recent
experimental studies, both models have been used to describe
experimental data for trajectories of diffusing molecules.7–9

We note finally that the fractional diffusion constant found
for the lateral diffusion of lipid molecules in the giant vesi-
cles studied in Ref. 4 is Dα = 0.088 ± 0.007 nm2/nsα for
α = 0.74 ± 0.08. Although the lipid bilayer considered in
this study consisted of different lipid molecules (dilauroyl-sn-
glycero-3-phosphocholine or DLPC), the measured diffusion
coefficient shows that the results for Dα obtained in our sim-
ulation study of DOPC are of the right order of magnitude.

In the following, we further analyze the lateral center-of-
mass dynamics of the DOPC molecules in the framework of
the GLE.12 The velocity autocorrelation function (VACF) of a
tagged molecule, c(t) ≡ 〈v(0) · v(t)〉, fulfills then the integro-

FIG. 2. Simulated molecule-averaged MSD for the lateral CM diffusion of
the DOPC molecules (dots) and fit of model (1) (solid line). The fitted frac-
tional diffusion coefficient is Dα = 0.107 nm2/nsα for α = 0.52. The inset
shows the distribution of δW(t) = Wj(t) − W(t) for t = 0.1 ns, t = 0.5 ns,
and t = 1 ns (with increasing width). In the main figure the corresponding
average MSD values are indicated by triangles.

differential equation

∂t c(t) = −
∫ t

0
dt ′ κ(t − t ′)c(t ′), (4)

where κ(t) is the corresponding memory kernel. Formally,
the latter can be derived from the microscopic Hamiltonian
dynamics of the system under consideration (tagged particle
plus the environment). Using that the MSD and the VACF are
related through19

W (t) = 2
∫ t

0
dτ (t − τ )c(τ ), (5)

one can derive characteristic long-time tails for the VACF and
its memory function,20

c(t) t→∞
∼ Dαα(α − 1)tα−2, (6)

κ(t) t→∞
∼

〈v2〉
Dα

sin(πα)
πα

t−α, (7)

FIG. 3. As Fig. 2, but for a maximum time lag of 30 ns. Here, the fitted
fractional diffusion coefficient is Dα = 0.101 nm2/nsα for α = 0.61 and the
inset shows the spread of the molecular MSDs at t = 5 ns, t = 15 ns, and
t = 30 ns.
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FIG. 4. Normalized simulated VACF for the lateral CM motion of the DOPC
molecules. The inset shows the superposition of the simulated VACF (dots)
with the long-time tail (6) (solid line). Here it is taken into account that c(0)
= 1, and the characteristic time scale defined according to Eq. (11) is τVACF
= 0.35 ps.

which are to be considered as necessary conditions for anoma-
lous diffusion. Expressions (6) and (7) are also sufficient con-
ditions in case of super- and subdiffusion, respectively. For
subdiffusion, the theory predicts thus a negative long-time
tail for the VACF and a positive long-time tail for the mem-
ory function. Negative values of the VACF for large time lags
indicate a persistent tendency of the diffusing molecules to
invert their direction of motion and thus a tendency to stay lo-
calized. In agreement with this interpretation, Eq. (4) shows
that the inversion of the direction of motion is favored by posi-
tive values of the memory function. In this context, it is worth-
while noting that the VACF for fBM, which can be defined for
a coarse-grained velocity, decays asymptotically also as tα − 2,
with c(t) < 0.9

To investigate the existence of a long-time tail in the
VACF, we estimated the contributions of the individual
molecules again through time averages

cj (n) ≈ 1
Nt − n

Nt−n−1∑

k=0

vj (k) · vj (k + n) (8)

and calculated the VACF as an average over the individual
contributions,

c(n) = 1
Nmol

Nmol∑

j=1

cj (n). (9)

The results are shown in Fig. 4, where the VACF has been nor-
malized such that c(0) = 1. The inset shows that the computed
VACF (dots) is in good agreement with the long-time tail (6)
(solid line) if t > 1 ps. In this comparison, the normalization
of the VACF has been taken into account. The asymptotic
regime of the VACF is defined with respect to a correspond-
ing typical time scale, τVACF. For normal diffusion, this time
scale can be obtained via τVACF =

∫ ∞
0 dt c(t)/c(0). To gener-

alize this estimation for arbitrary α we use that the fractional
diffusion constant can be written as20

Dα = 1
#(1 + α)

∫ ∞

0
dt 0∂

α−1
t c(t), (10)

FIG. 5. Memory function associated with the VACF shown in Fig. 4. The
inset shows the superposition of the calculated memory function (dots) with
the corresponding long-time tail (7) (solid line). The characteristic time scale
defined according to Eq. (14) is τmem = 2.4 fs.

where #(.) is the Gamma function21 and 0∂
α−1
t c(t)

= d/dt
∫ t

0 dt ′ #(α)−1(t − t ′)α−1c(t ′) is the fractional Rieman-
Liouville derivative22 of order 1 − α of c(t). Noting that c(0)
= 〈v2〉, we define

τVACF =
(

Dα

〈v2〉

)1/(2−α)

. (11)

Using α = 0.61, Dα = 0.101 nm2/nsα , and a thermal mean
square velocity of 〈v2〉 = kBT /M = 6.55 × 10−3 nm2/ps2 at
T = 310 K, yields τVACF = 0.35 ps. Here kB is the Boltzmann
constant, T is the absolute temperature in Kelvin, and M is
the mass of a single DOPC molecule. What exactly means t

( τVACF can be seen from Fig. 4, which shows that the
asymptotic regime starts at t ≈ 1 ps, corresponding to t ≈
3 τVACF. On account of relation Eq. (5), this time scale also
defines the onset of the asymptotic regime of the MSD. Since
τVACF is much smaller than the time scale on which the MSD
varies notably, expression (1) can be in practice fitted for the
whole time scale, 0 ≤ t < ∞. This has been tacitly assumed
in the fits of the MSDs described earlier.

To compute the memory function, we started from the
discretized form of Eq. (4),

c(n + 1) − c(n)
%t

= −
n∑

k=0

%t wkc(n − k)κ(k), (12)

where w0 = wn = 1/2 and wk = 1 for k = 1, . . . , n − 1
(Simpson integration scheme). Equation (12) can be consid-
ered as a linear of system of equations for κ(0), κ(1), κ(2),
etc., which can be solved recursively. The result is shown in
Fig. 5, where the inset shows the long-time tail (dots) together
with the analytical form (7) (solid line). Although the mem-
ory function decays very rapidly to almost zero compared to
its initial value, it is exactly the remaining positive long-time
tail which makes the diffusion process subdiffusive. We note
that the agreement between the long-time tail of the memory
function and the theoretical prediction is less good as for the
VACF. A reason might be that the memory function is not well
resolved for short times and that errors in the VACF are accu-
mulated through the recursive calculation of κ(n). The typical
time scale for the memory function can be defined along the
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Visualizing the cage effect in a POPC bilayer

• 2x137 POPC molecules 
(10 nm ✕ 10 nm in the 
XY-plane)

• 10471 water molecules 
(fully hydrated)

• OPLS force field

• T=310 K
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Mean Square Displacement of POPC lipids after 15ns simulation (dots) and  fit of the 
model for anomalous diffusion (thick line).
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The pair Distribution Function 
(PDF), g(r), is proportional to the 
probability of finding a particle 
between distances „r+dr”, from a 
tagged central particle in a liquid.

Time-dependent PDFs (van Hove 
PDFs), GD(r,t), display the 
dynamic structure in a liquid.

(Van Hove) PDFs can be obtained from scattering experiments 
(neutron scttering, inelastic X-ray scattering)

Image: "The structure of the cytoplasm" from Molecular Biology of the Cell. 
Adapted from D.S. Goodsell, Trends Biochem. Sci. 16:203-206, 1991.

Van Hove correlation function and the „cage” of 
nearest neighbours
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Bulk water for comparison....
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Tables

AA1.5 ns CG(1) 1.5 ns CG(2) 1.5 ns CG(1) 50ns CG(2) 50 ns
↵ 0.668 0.515 0.508 0.571 0.558

D↵[nm2/ns] 0.018 0.057 0.058 0.051 0.051

Table 1. Coe�cient ↵ and fractional di↵usion coe�cient D↵ for the OPLS all-atom (AA) simulation of POPC and the coarse-
grained (CG) MARTINI force field. Here (1) and (2) refer, respectively, to the simulation with the NApzT and NV T ensembles
described in the text.

Figures

AA CG

Figure 1. Simulated POPC bilayers using an OPLS all-atom (AA) force field and a coarse-grained (CG) MARTINI force
field. The upper part of the figure shows the representation of the lipid molecules.

Comparing all-atom (OPLS) and coarse-
grained (MARTINI) force field for POPC

All atom (AA):

274 POPC lipids in 10 471 
water molecules (OPLS)

Coarse Grained (CG):

2033 POPC lipids in 231 808 
water molecules (MARTINI)

1. Marrink, et al.  J Phys Chem B 111, 7812–7824 (2007).
2. de Jong, D. H. et al.  JCTC 9, 687–697 (2012).
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Figure 1. Simulated POPC bilayers using an OPLS all-atom (AA) force field and a coarse-grained (CG) MARTINI force
field. The upper part of the figure shows the representation of the lipid molecules.

   ☛ MARTINI is 3 x faster 
than OPLS 
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Observation of a Power-Law Memory Kernel for Fluctuations
within a Single Protein Molecule

Wei Min,1 Guobin Luo,1 Binny J. Cherayil,1,* S. C. Kou,2 and X. Sunney Xie1,†

1Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Statistics, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 6 October 2004; published 18 May 2005)

The fluctuation of the distance between a fluorescein-tyrosine pair within a single protein complex was
directly monitored in real time by photoinduced electron transfer and found to be a stationary, time-
reversible, and non-Markovian Gaussian process. Within the generalized Langevin equation formalism,
we experimentally determine the memory kernel K!t", which is proportional to the autocorrelation
function of the random fluctuating force. K!t" is a power-law decay, t#0:51$0:07 in a broad range of
time scales (10#3–10 s). Such a long-time memory effect could have implications for protein functions.

DOI: 10.1103/PhysRevLett.94.198302 PACS numbers: 82.37.-j, 02.50.-r, 05.40.-a, 87.15.He

Understanding the role of a protein’s dynamic motions
on its function has been a problem of long-standing interest
[1]. Single-molecule experiments provide information
about protein dynamics otherwise hidden in ensemble-
averaged studies. Recent single-molecule investigations
of a flavin oxidoreductase [2] indicate that protein confor-
mational fluctuations occur over a broad range of time
scales. Such conformational motion is closely related to
the fluctuations of enzymatic rate constant [3,4]. Kou and
Xie recently showed that this conformational fluctuation
can be modeled by a generalized Langevin equation (GLE)
[5]. Here we report a new single-molecule experiment
probing equilibrium conformational fluctuation in a pro-
tein via photoinduced electron-transfer (ET). Distance
fluctuations between the ET donor (D) and acceptor (A)
within a protein molecule were observed over a broad
range of times (10#3–100 s), and their stationarity, time
reversibility, and Gaussian property were proved by statis-
tical analysis. In the GLE formalism, the autocorrelation
function of the distance fluctuation was used to determine
the memory kernel which turns out to be a remarkable
power-law decay K!t" / t#0:51$0:07. The broad range of
time scales for conformational fluctuations at which pro-
tein reactions normally occur has implications for its bio-
logical functions, such as catalysis and allostery.

The system under study is a protein complex formed
between fluorescein (FL) and monoclonal antifluorescein
4-4-20 (anti-FL). This complex is highly stable, with a
small dissociation constant Kd % 0:1 nM, allowing long-
time observations at the single-molecule level. Figure 1(a)
shows its crystal structure, adapted from Ref. [6]. In our
room temperature experiment, a single FL and anti-FL
complex was first formed in solution, immobilized onto a
quartz surface via the biotin-streptavidin linkage, and then
repetitively excited by a 490 nm, 76 MHz, 100 fs pulse
train from a frequency doubled Ti:sapphire laser.
Fluorescence lifetime !#1 measurements were carried
out using the time-correlated single photon counting tech-

nique. The detailed experimental setup has been described
previously in Ref. [2].

The fluorescence decay of a single FL molecule is
monoexponential, while that of a single FL and anti-FL
complex is faster and multiexponential [Fig. 1(b)]. The
shorter lifetime results from photoinduced ET from the
closest tyrosine residue (Tyr37, donor) to FL (acceptor)
[7] and is expressed by !#1 & !!0 ' !ET"#1 ( !ET

#1,
where !0 denotes the fluorescence decay rate constant in

FIG. 1 (color). (a) Schematic of the structure of the FL and
anti-FL complex, adapted from Ref. [6]. Tyr37 and FL, ET donor
and acceptor, are highlighted. (b) Monoexponential fluorescence
lifetime decay for a single FL molecule. Multiexponential fluo-
rescence decay for the FL and anti-FL complex at both ensemble
and single-molecule levels. The instrumental response function
with 60 ps FWHM. a.u., arbitrary units.
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ibility holds, we expect

hx3!0"x!t"i # hx3!$t"x!0"i # hx!0"x3!t"i; (2)

where the first equality is due to stationarity, and the
second to reversibility. Figure 3(a) plots the experimentally
determined hx3!0"x!t"i and hx!0"x3!t"i against each other.
The diagonal line proves the time reversal symmetry.

We now examine the Gaussian property of x!t". For a
Gaussian process, all correlation functions higher than
second order can be expressed by the second order corre-
lation function. For example, hx!0"x!t"x!2t"i # 0, and
hx!0"x!t"x!2t"x!3t"i# hx!0"x!3t"ihx!0"x!t"i% hx!0"x!t"i2%
hx!0"x!2t"i2. We calculated both hx!0"x!t"x!2t"i and
hx!0"x!t"x!2t"x!3t"i from the experimental x!t" tra-
jectory and found that hx!0"x!t"x!2t"i vanishes within
experimental error and that hx!0"x!t"x!2t"x!3t"i matches
well with hx!0"x!3t"ihx!0"x!t"i% hx!0"x!t"i2% hx!0"x!2t"i2
[Fig. 3(b)]. These results strongly suggest that x!t" is a
Gaussian process.

By virtue of the stationary and Gaussian properties of
x!t", Cx!t" & hx!t"x!0"i is related to the autocorrelation
function of fluorescence lifetime variations, C!$1!t", by

C!$1!t" & h"!$1!0""!$1!t"i
h!$1i2 # e#

2Cx!t" $ 1; (3)

where "!$1!t" # !$1!t" $ h!$1i. C!$1!t" can be obtained
with a high time resolution comparable to the reciprocal of
the average photon count rate (1–2 ms), using the photon-
by-photon method [11] instead of the conventional bin-
ning. Thus, Cx!t" can be obtained from Eq. (3) with the
same high time resolution. Figure 4 shows the averaged
Cx!t" of 13 molecules, and it clearly has fluctuations over a
wide range of time scales. No noticeable power depen-
dence of Cx!t" in the excitation power range from 0.5 to
5 $W was observed, implying that the distance fluctua-
tions are spontaneous rather than photoinduced.

To investigate the underlying dynamics, the fluctuation
was analyzed in the framework of GLE, which can be
derived from the Liouville equation using projection op-
erators [12]. x!t" is modeled as the coordinate of a fictitious
particle diffusing in a potential of mean force. The GLE
governing its equilibrium dynamics is

m
d2x!t"
dt2

# $%
Z t

0
d&K!t$&"dx!&"

d&
$dU!x"

dx
%F!t"; (4)

where m is the reduced mass of the particle, U!x" #
m!2x2=2 is the harmonic potential with an angular fre-
quency !, % is the friction coefficient, F!t" is the fluctuat-
ing force, and K!t" is the memory kernel related to F!t" by
the fluctuation-dissipation theorem:

K!t$ &" # !1=%kBT"hF!t"F!&"i: (5)

In the overdamped limit where acceleration can be ne-
glected, Eq. (4) can be rewritten as

m!2x!t" # $ %
Z t

0
d&K!t$ &" dx!&"

d&
% F!t": (6)

Equation (6) can be converted to an equation for the time
correlation function Cx!t" by multiplying by x!0" and
averaging over the initial equilibrium condition:

m!2Cx!t"# $%
Z t

0
d&K!t$&"dCx!&"

d!&" % hF!t"x!0"i: (7)

The last term hF!t"x!0"i # 0 because F is orthogonal to x
in the phase space [12,13]. The Laplace transform of
Eq. (7) gives

~K!s" # m!2

%

~Cx!s"
Cx!0" $ s ~Cx!s"

; (8)

where ~K!s" is the Laplace transform of K!t". By taking the
Laplace transform of Cx!t" in Fig. 4 (open circles) numeri-
cally, and plugging the resulting ~Cx!s" into Eq. (8) along
with Cx!0" # kBT=m!2 # ' # 0:22 !A2, one solves
!%=m!2" ~K!s", which is shown in Fig. 5 after normaliza-
tion. Over at least four decades of time, ~K!s" exhibits a
simple power-law decay, ~K!s" / s(, with ( # $ 0:49'
0:07. Inverse Laplace transform of ~K!s" gives the time
domain correspondence K!t" / t$($1 # t$0:51'0:07, which
is remarkably simple.

The above results have implications for the nature of
F!t". First, since x!t" is stationary, the fluctuations of F!t"
must likewise be stationary. Second, since GLE is a linear
equation of x!t", the Gaussianity of x!t" requires F!t" to be
a Gaussian process as well. Third, the long memory be-
havior indicates that F!t" is non-Markovian. Fourth, the
power-law decay of K!t" implies time scaling invariance of
hF!t"F!&"i [Eq. (5)]. Mathematically, the only process that

FIG. 4. Autocorrelation function of distance fluctuation Cx!t"
(open circles, average of 13 molecules under the same experi-
mental condition), determined with high time resolution using
Eq. (3), with Cx!0" # kBT=m!2 # ' # 0:22 !A2. The solid line
is a fit to Cx!t" # Cx!0"et=t0erfc!

!!!!!!!!!!

t=t0"
p

with parameter
%=m!2 # 0:7 s0:5. The error bounds (dashed line) were esti-
mated by the method described in Ref. [17].
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(⇥{s} > 0). Performing first an integration of both sides of the FFPE from 0 to t yields

P (t, ⇥)� P (⇥, 0) = ⇧̃ 1��

⌅ t

0

d⇧
(t� ⇧)��1

�(�)
LFP P (⇥, ⇧),

and a subsequent Laplace transform leads to

P̂ (s, ⇥)� P (⇥, 0)

s
= ⇧̃ 1��s��LFP P (⇥, ⇧).

Using that P (⇥, 0) = ⇥(⇥� ⇥0) one obtains thus

P̂ (⇥, s) =
1

s� [s⇧̃ ]1��LFP
⇥(⇥� ⇥0). (2.4)

We assume now that LFP has a discrete spectrum of eigenvalues. The Dirac distribu-

tion may then be expressed in terms of the biorthogonal set of right and left eigenfunc-

tions of LFP , which are defined by the relations [26, 28]

LFP Pn(⇥) = �⇤nPn(⇥), (2.5)

L+
FP Qn(⇥) = �⇤nQn(⇥), (2.6)

respectively, and fulfil (Pn, Qk) = ⇥nk, where ⇥nk is the Kronecker delta. The operator L+
FP

is adjoint to LFP , such that (g,LFP f) = (L+
FP g, f), and one has Pn(⇥) = Qn(⇥)Peq(⇥).

The scalar product of two functions f and g is here defined as (f, g) =
⇥ +⇥
�⇥ d⇥ f(⇥)g(⇥).

Inserting the representation

⇥(⇥� ⇥0) =
⇤

n

Pn(⇥)Qn(⇥0). (2.7)

into expression (2.4) yields thus

P̂ (⇥, s) =
⇤

n

1

s + (s⇧̃)1��⇤n
Pn(⇥)Qn(⇥0). (2.8)

One can now make use of the relation

E� (�t�) =
1

2⌅i

�

C

ds
exp(st)

s(1 + s��)
, (2.9)

where E�(z) is the Mittag-Leffler function [31]

E�(z) =
⇥⇤

k=0

zk

�(1 + �k)
. (2.10)

5
Mittag-Leffler function

� t��

algebraic long-time tail

When calculating the memory function, following the
approach described in the previous section, the quantity of
interest is actually the Laplace transform of Eq. !14",
which is

Ĉ!s;!1,!2" = ĈE!s;!1,!2" + ĈO!s;!1,!2" . !15"

Since the time dependence in Eq. !14" enters solely through
the factor of exp!−"nt /#m", the functions ĈE!s ;!1 ,!2" and
ĈO!s ;!1 ,!2" differ from CE!t ;!1 ,!2" and CO!t ;!1 ,!2" #Eqs.
!A22" and !A24", respectively$ only in the replacement of
exp!−"nt /#m" by the factor 1 / #s+"n /#m$.

Both C!t ;!1 ,!2" and K!t" are functions not only of !1
and !2, but also of the contour length N and the persistence
length Lp%1/2p. The latter is conveniently expressed in
terms of a dimensionless stiffness parameter z, defined as z
= pN=N /2Lp, which is large !$1" for flexible chains !Rouse
limit" and small !%1" for stiff chains. The evaluation of
C!t ;!1 ,!2" and K!t" for definite values of these parameters
!N, !1, !2, and z" is done numerically, as the eigenvalues "n
must be obtained from a transcendental equation that cannot
be solved in closed form. Details of the evaluation of these
two functions are discussed in Appendix II.

IV. RESULTS AND CONCLUSIONS

Using Eq. !6" to determine the memory kernel from
Ĉ!s ;!1 ,!2", we find, for a fairly wide range of N, z, and !1

and !2 values, that K̂!s" is a power law in s over several
decades, the exponents varying between about 0.25–0.48 in
absolute value. !The highest exponent value, 0.48, and the
one closest to the experimentally determined exponent of
0.49±0.07, was obtained for a chain with the following pa-
rameters: N=5000, z=5000, !1=2500, and !2=−2500."
Chains can apparently be long or short, stiff or flexible, with
small or large separations between !1 and !2, and still pro-
duce power-law memory kernels #within the one-
dimensional !1D" GLE framework$.

Significantly, however, not all choices of N, z, and !1 and
!2 provide satisfactory, simultaneous fits of the calculated
K̂!s" and C!t" curves to the corresponding experimental
curves of Ref. 7. One set of parameter values that does this is
N=500, z=5000, !1=24, and !2=19, with the monomer fric-
tion coefficient #m /kBT chosen to be 3.18s1/2 Å−2 so as to
agree with the value of # /kBT estimated from experiment.7

The corresponding distance correlation function C!t ;!1 ,!2"
#normalized by C!0;!1 ,!2"$ is shown in Fig. 1 !full line",
along with the experimentally determined correlation func-
tion !open circles", and the Mittag-Leffler function of index
1/2 !dashed line". The above parameter values leading to
this curve describe a long flexible polymer in which the
given pair of segments are close together.

For exactly the same set of parameter values, the s de-
pendence of K̂!s", normalized by the first theoretical data
point, is shown in Fig. 2 !full line", along with the experi-
mental data points, normalized by the first experimental data
point !open circles", and their estimated error bounds !dashed
lines". The slope of the theoretical curve is estimated as
−0.43, while the slope of the experimental curve is estimated

as −0.49±0.07.7 Within experimental error, therefore, the
calculated and experimental memory kernel exponents coin-
cide. Interestingly, for the same N and z values, essentially
the same degree of agreement between theory and experi-
ment is obtained even if !1 and !2 are varied, provided their
difference &!1−!2& is about 5.

We also find that changes to the parameter #m /kBT shift
the position of the C!t" and K̂!s" curves, but do not otherwise
change their form. In particular, K̂!s" remains a power law
with the same exponent. Since the experimental distance cor-
relation function is well described by the Mittag-Leffler
function E1/2!−!t / t0"1/2" it decays on a characteristic time

FIG. 1. Distance autocorrelation function C!t" #normalized by C!0"$ as a
function of time t !in seconds". The open circles are the experimental data
!normalized by the first experimental data point" on the fluorescein antifluo-
rescein system taken from Ref. 7. The dashed line corresponds to
the Mittag-Leffler function of index 1/2, and the full line is obtained from
the calculations described in the text. These calculations use the following
parameter values: N=500, z=5000, !1=24, !2=19, and #m /kBT
=3.18s1/2 Å−2.

FIG. 2. Memory kernel K̂!s" as a function of s. The open circles are the
experimental data points !normalized by the first experimental data point" of
Ref. 7. The full line is the theoretical memory kernel !normalized by the first
theoretical data point" calculated from the Laplace transform of the C!t"
curve shown in Fig. 1 using Eq. !6". The dashed lines correspond to the
estimated experimental error bounds.

204903-4 Debnath et al. J. Chem. Phys. 123, 204903 !2005"
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N(t) = N(0)Eα(−[t/τ ]α)

Fractional reaction kinetics
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Self-similar fractional Brownian dynamics
4. FRACTIONAL OU PROCESS AND APPLICATIONS 99

FIGURE IV.9. Left: Harmonic potential driving the OU process.
Right: Sketch of the corresponding “rugged” potential energy
surface leading to fractional Brownian motion.

proposed long time ago by Frauenfelder et al. [56]. It must be emphasised that
such an effective harmonic model can only describe protein dynamics close to
the equilibrium state, which is here characterised by a single global minimum
of the potential.

Using the general considerations concerning FFPEs made in Section 3.1 of
this chapter we can immediately write down the solution of the FFPE describ-
ing the fractional OU process. For this purpose we use expression (IV.57) and
insert the eigenfunctions of the Fokker-Planck operator (II.161) associated with
the standard OU process which are given in Eqs. (II.163) and (II.165). Defining
again the scaled positions ⇤ = x/

⌥
⇧x2⌃ and the scaled relaxation constant

⇥� = ⇧̃ 1��⇥ (IV.65)

one obtains from (IV.57) [49, 50]

P (⇤, t|⇤0, 0) =
exp

�
� ⇥2

2

⇥

�
2⌅

⇥⌃

n=0

1

2nn!
Hn

⇤
⇤�
2

⌅
Hn

⇤
⇤0�
2

⌅
E� (�n⇥�t�) (IV.66)

Here E�(·) is the Mittag-Leffler function defined in Eq. (IV.53).

4.2. Autocorrelation function and its spectrum. The autocorrelation func-
tion of the scaled variable ⇤ is obtained from the general expression (IV.59),
using that here y ⌅ ⇤ and

⇧
d⇤ ⇤Pn(⇤) = �n,1. Noting that the autocorrelation

function of ⇤ equals the normalised autocorrelation function of x, ⌃(t) ⇤ c⇥⇥(t),
one obtains

⌃(t) = E� (�⇥�t�) (IV.67)

Ornstein-Uhlenbeck process Fractional Ornstein-Uhlenbeck process

Uhlenbeck, G. E. & Ornstein, L. S.  
Physical Review 36, 823 (1930).

1. Shao, Y.  Physica D: Nonlinear 
Phenomena 83, 461–477 (1995).

2.	
Metzler, R. & Klafter, J.  Phys Rep 
339, 1–77 (2000).
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Fractional Smoluchowski equation
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Application 2 for ns dynamics : neutron scattering

Experimental dynamic structure factor of 
lysozyme under pressure for q=20 nm−1 
(dots).  

[1]" V. Calandrini  et al, Chem. Phys., vol. 345, pp. 289–297, 2008.
[2]" G. Kneller and V. Calandrini,  Biochimica et Biophysica Acta, vol. 1804, pp. 56–62, 2010.
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• Calandrini, Kneller, J. Chem. Phys., vol. 128, no. 6, p. 065102, 2008.

• Calandrini et al,, Chem. Phys., vol. 345, pp. 289–297, 2008.

• Kneller, Calandrini, Biochimica et Biophysica Acta, vol. 1804, pp. 56–62, 2010.

Proteins under pressure
Neutron scattering MD simulation
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The convolution product (17) for the measured dynam-
ics structure factor can be written in the following form,
using S as the model (14),

Smðq;xÞ ¼ expð$q2hx2iÞ

% ðl & rÞ þ
X1

n¼1

q2nhx2in

n!2p
ðLD

a;sn
& rÞðxÞ

( )

: ð21Þ

Here LD
a;sn
ðxÞ ¼ ðLa;sn & lÞðxÞ is the convolution of a gener-

alized Lorentzian with a normal Lorentzian, for which an
analytical form can be given. Defining

~x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðDq2Þ2

q
; / ¼ argðDq2 þ ixÞ; ð22Þ

one obtains [33]

LD
a;sðxÞ ¼

2 ð~xsÞa cos /þ cosð½a$ 1)/Þf g
~x ð~xsÞa þ 2 cos a/þ ð~xsÞ$af g

: ð23Þ

In contrast to La,s, its convolution with a normal Lorentz-
ian stays finite at x = 0 if D > 0. This point is important if
one aims at evaluating the convolutions in (21) by the effi-
cient Fast Fourier Transform technique [34], as we did for
the fits presented in this article. With this method singular
functions cannot be treated and we refer to [33] to handle
the case of D = 0. It is worthwhile mentioning that the lat-
ter method can be easily generalized to include also global
diffusion, but the FFT technique is more efficient.

4.3. Results

We start the presentation of the results with the analysis
of the MD simulations. The most basic quantity to con-
sider is the time-dependent mean-square displacement.
Fig. 3 shows the neutron-weighted average atomic MSD
of lysozyme and the fit of the model function (3). The
atomic weights are chosen to be the squared incoherent

scattering lengths. We note that the MSD computed from
MD is the sum of the MSDs in the x-, y- and z-direction,
and expression (3) must thus be multiplied by 3 for the
fit. In the latter only two of the three parameters of the
model, s and a, were used and the mean square position
fluctuation hx2i has been fixed by a separate analysis of
the MD trajectory. The resulting fit parameters can be read
off from Table 3. It is important to emphasize that the
model parameters are quite strongly correlated, in particu-
lar hx2i and s. Therefore a good estimation of hx2i is crucial
even to estimate tendencies of s with pressure. In this con-
text we found that the direct calculation of hx2i from the
MD trajectories is less reliable than the calculation from
the EISF via expression (13) in the limit q! 0. For ambi-
ent pressure this procedure gives a very similar result as the
direct calculation, but for p = 300 MPa the direct calcula-
tion yields a value which is about 10% smaller than the
one obtained from the EISF. This small difference leads
even to a slight shortening of s with pressure instead to
the lengthening seen in Table 3, and the fit is clearly less
good. If all parameters are left free in the fit, one also finds
a lengthening of s with pressure, and the resulting para-
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Fig. 3. Average atomic mean-square displacement of lysozyme in solution obtained from MD simulation at p = 0.1 MPa and at p = 300 MPa (solid lines).
The broken lines correspond to a fit of the model according to expression (3). See Table 3 for the resulting parameters. More explanations are given in the
text.

Table 3
Parameters for the fractional Ornstein–Uhlenbeck process obtained from
fits to the simulated MSDs and to the simulated intermediate scattering
functions

0.1 MPa 300 MPa

hx2i (nm2) a s (ps) hx2i (nm2) a s (ps)

MSD 6.17 · 10$3 0.54 31.75 4.74 · 10$3 0.54 39.08

Finc(6 nm, t) 4.68 · 10$3 0.53 13.48 3.94 · 10$3 0.50 19.43
Finc(10 nm, t) 3.96 · 10$3 0.51 8.86 3.28 · 10$3 0.49 13.58
Finc(20 nm, t) 2.57 · 10$3 0.52 2.53 2.21 · 10$3 0.45 4.39
Finc(22 nm, t) 2.41 · 10$3 0.50 2.3 2.08 · 10$3 0.44 3.64

The value of hx2i is fixed according to Eq. (13).

294 V. Calandrini et al. / Chemical Physics 345 (2008) 289–297
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We propose a fractional Brownian dynamics model for time correlation functions characterizing the
internal dynamics of proteins probed by NMR relaxation spectroscopy. The time correlation
functions are represented by a broad distribution of exponential functions which are characterized
by two parameters. We show that the model describes well the restricted rotational motion of N–H
vectors in the amide groups of lysozyme obtained from molecular dynamics simulation and that
reliable predictions of experimental relaxation rates can be obtained on that basis. © 2010 American
Institute of Physics. #doi:10.1063/1.3486195$

I. INTRODUCTION

NMR relaxation spectroscopy has proven to be a unique
approach for a site-specific investigation of both global tum-
bling and internal motions of proteins. The molecular mo-
tions modulate the magnetic interactions between the nuclear
spins and lead for each nuclear spin to a relaxation behavior
which reflects its environment. Since its first applications to
the study of protein dynamics, a variety of techniques has
been proposed for the investigation of both backbone and
side chain dynamics. Among them, relaxation measurements
of backbone amide 15N nuclei, which are routinely studied
by NMR, are most widespread.

The relationship between microscopic motions and spin
relaxation rates is provided by Redfield’s theory.1 In the case
of backbone amide 15N, relaxation primarily occurs through
fluctuations of the 15N– 1H-dipole-dipole interactions with
the directly bonded amide proton and of the 15N chemical
shift anisotropy tensor, which is commonly assumed to be
axially symmetric with its axis parallel to the NH bond !for a
general reference, see Ref. 2". The relaxation rates of the 15N
nuclei are determined by time correlation functions !TCFs"
of the form

Cii!t" = %P2!!i!t" · !i!0""& , !1"

where !i!t" is a unit vector pointing along the NH bond of
residue i and P2! . " is the second order Legendre polynomial.
Longitudinal and transverse 15N relaxation rates !R1i and
R2i", and 15N'1H( heteronuclear Overhauser enhancement
!!NHi" are expressed as linear combinations of the spectral
density functions Jii!"", the Fourier transforms of the Cii!t",
which are evaluated at the Larmor frequencies 0, "H, "N,
and "H#N)"H#"N

!NHi = 1 +
$H

$N

d2

R1
!6Jii!"H+N" − Jii!"H−N"" , !2a"

R1i = d2!3Jii!"N" + Jii!"H−N" + 6Jii!"H+N"" + 2c2Jii!"N" ,

!2b"

R2i = d2*2Jii!0" +
3
2

Jii!"N" +
1
2

Jii!"H−N" + 3Jii!"H"

+ 3Jii!"H+N"+ + c2*4
3

Jii!0" + Jii!"N"+ . !2c"

Here d=%0&$H$N /4,10'%rNH
3 & and c=$NB0()N /,15. The

parameters $H and $N are the gyromagnetic ratios of 15N and
1H atoms, respectively, %0 is the vacuum magnetic suscepti-
bility, & is the reduced Planck constant, and ()N is the 15N
chemical shift anisotropy. The NH distance is considered
constant and is fixed to its average value %rNH&.

The Redfield equations show that relaxation measure-
ments probe the relaxation dynamics of a selected nuclear
spin at only five selected frequencies. It is therefore not pos-
sible in practice to obtain a detailed picture about the internal
and global dynamics of proteins by a numerical reconstruc-
tion of Jii!"" from NMR data. In the model-free !MF" ap-
proach by Lipari and Szabo3 the assumption is made that the
internal reorientational correlation function decays exponen-
tially. Various studies of protein dynamics, spanning time
scales from picoseconds to hours4–10 give, however, evidence
that internal protein dynamics is characterized by strongly
nonexponential TCFs which may be described by non-
Markovian stochastic models, such as fractional Brownian
dynamics !fBD" and the continuous time random walk
!CTRW".11 The TCFs resulting from such models are char-
acterized by a superposition of exponential functions, with a
broad spectrum of decay rates. In the context of NMR spec-
troscopy we have recently shown12 that these relaxation

a"Electronic mail: vania.calandrini@cnrs-orleans.fr.
b"Electronic mail: daniel.abergel@ens.fr.
c"Electronic mail: gerald.kneller@cnrs-orleans.fr.

THE JOURNAL OF CHEMICAL PHYSICS 133, 145101 !2010"

0021-9606/2010/133"14!/145101/9/$30.00 © 2010 American Institute of Physics133, 145101-1
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• Calandrini, Abergel, Kneller, 
J. Chem. Phys., vol. 128, p. 145102, 2008.

• Calandrini, Abergel, Kneller, 
J. Chem. Phys., vol. 133, p. 145101, 2010.
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Limits of fractional Brownian 
dynamics

The model correlation functions have the experimentally 
observed power law decay, but they are not analytic and thus 
unphysical at t=0.

dnc(t)

dtn

����
t=0

= (�1)n1
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cvv(t)
t!1⇠ 0,

(t)
t!1⇠ hv2i

D0

1

L(t)

Asymptotic model for Confined anomalous 
diffusion (α=0)

The memory function 
tends to a plateau value

W (t)
t!1⇠ 2D0L(t), with D0 = h(x� hxi)2i

conditions we introduce the functions

f(t) =

∫ t

0

dτ cvv(τ), (26)

g(t) =

∫ t

0

dτ κ(τ). (27)

One recognizes that f(∞) = D and g(∞) = η in case of normal unconfined diffusion.

Defining the slowly varying functions

Lf (t) = αDαL(t), (28)

Lg(t) =
〈v2〉

DαΓ(2 − α)Γ(α + 1)L(t)
, (29)

and using that f̂(s) = ĉvv(s)/s and ĝ(s) = κ̂(s)/s, we obtain the following equivalences from

(10), (20), and from the HLK theorem (6),

f̂(s)
s→0
∼ Lf (1/s)

Γ(α)

sα
⇔ f(t)

t→∞

∼ Lf (t)t
α−1, (30)

ĝ(s)
s→0
∼ Lg(1/s)

Γ(2 − α)

s2−α
⇔ g(t)

t→∞

∼ Lg(t)t
1−α. (31)

Note that if L(t) is a slowly varying function, the same is true for 1/L(t). On account of (26)

and (27), differentiation of f(t) and g(t) for large times leads to necessary conditions for the

asymptotic forms of the VACF and its memory function. Observing that limt→∞ t dL/dt = 0,

one obtains

cvv(t)
t→∞

∼ Dαα(α − 1)L(t)tα−2, (32)

κ(t)
t→∞

∼
〈v2〉

Dα

sin(πα)

πα

1

L(t)
t−α. (33)

Applying here the HLK theorem again, one can also conclude that (10) follows from (32)

if 1 < α < 2 and that (20) follows from (33) if 0 < α < 1. Therefore (32) and (33)

are also sufficient conditions for superdiffusion and subdiffusion, respectively. The relations

cvv(t)
t→∞

∼ 0 and κ(t)
t→∞

∼ 0, which arise for α = 0, 1 in case of the VACF and for α = 1 in

case of the memory function, indicate the absence of the corresponding algebraic long time

tails.

D. Spatially confined diffusion

So far, spatially confined diffusion appears as an extreme case of subdiffusion, where

α = 0. The fact that the motions of the diffusing particle take place in a restricted volume

8

α=0 No long 
time tail
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A memory functio for confined anomalous diffusion

224106-6 Gerald R. Kneller J. Chem. Phys. 134, 224106 (2011)

B. Spatially confined diffusion

The memory function for spatially confined diffusion is
chosen to be

κc(t) = "2 {r + (1 − r )M(β, 1,−t/τ )} , (45)

where 0 < r < 1 and 0 < β ≤ 1. It resembles the one for un-
confined subdiffusion, but in contrast to the latter it decays
to a finite plateau value, κc(∞) = "2r . Its asymptotic form is
given by

κc(t) − κc(∞)
t→∞∼





"2(1 − r ) (t/τ )−β

%(1−β) , 0 < β < 1,

"2(1 − r ) exp(−t/τ ), β = 1.

(46)
For 0 < β < 1 we have thus anomalous diffusion, in the
sense that the relaxation constant τc introduced in Eq. (34)
diverges. Figure 4 displays the normalized model memory
function for β = 1 and β = 1/2 (solid and dashed line, re-
spectively), fixing r = 0.3. The corresponding VACFs and
MSDs are shown in Figs. 5 and 6, respectively. They have
been calculated in the same way as for unconfined diffusion,
setting again " = 1.5/τ and 〈v2〉 = 1. Figure 6 displays in
addition the fits of two stochastic models for the MSD: the
normal Ornstein-Uhlenbeck (OU) process and the fractional
Ornstein-Uhlenbeck (fOU) process. The first one describes
the normal, markovian diffusion of a particle in a harmonic
potential,51 and the latter is the corresponding generalization
to a non-markovian process.30 The mean square displacement
for both the OU and the fOU process can be expressed by the
formula,

W(f)OU(t) = 2〈u2〉(1 − Eb(−[t/t0]b)), 0 < b ≤ 1, (47)

where Eb(z) denotes the Mittag-Leffler (ML) function and t0
is a time scale parameter. The ML function is an entire func-
tion in the complex plane and it can be represented by the
power series

Eb(z) =
∞∑

k=0

zk

%(1 + bk)
, (48)

which shows that Eb(z) = exp(z) for b = 1. The latter choice
for b in Eq. (47) corresponds to the normal Ornstein-

FIG. 4. Normalized memory functions according to model (45) for β = 1/2
and β = 1 (dashed line and solid line). The grey horizontal line shows the
plateau value.

FIG. 5. Normalized VACFs corresponding to the memory functions shown
in Fig. 4.

Uhlenbeck process, where the MSD converges exponentially
to its plateau value. The model (47) has been fitted to the
MSDs displayed in Fig. 6, leading to b = 0.521 ≈ β, t0
= 5.537 τ for the fOU process and to t0 = 2.126 τ for the OU
process. Both fits represent well the long time form of the
MSDs corresponding to model (45) for β = 1/2 and β = 1,
respectively. In this context, it is worthwhile to compare the
L-functions corresponding to the (f)OU process to the one re-
sulting from the memory function (44). It follows from the
asymptotic form of the ML function,

Eb(−tb)
t→∞∼ t−b

%(1 − b)
, (β )= 1), (49)

and from W (t)
t→∞∼ 2〈u2〉L(t) that the function L fOU(t) is

given by

L fOU(t) =





1 − (t/t0)−b

%(1−b) , if 0 < b < 1,

1 − exp(−t/t0), if b = 1.
(50)

On the other hand, one obtains from Eqs. (35) and (46)

L(t) =





1 −

( 1−r
r

) (t/τ )−β

%(1−β) , if 0 < β < 1,

1 −
( 1−r

r

)
exp(−t/τ ), if β = 1,

(51)

FIG. 6. MSDs derived from the memory functions shown in Fig. 4 (black
dashed line for β = 1/2 and black solid line for β = 1). In addition the
figure displays fits of model (47) for anomalous diffusion (grey dashed
line, βfOU = 0.521, τfOU = 5.537 τ ) and normal diffusion (grey solid line,
τOU = 2.126 τ ). More explanations are given in the text.
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to a finite plateau value, κc(∞) = "2r . Its asymptotic form is
given by
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%(1−β) , 0 < β < 1,
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For 0 < β < 1 we have thus anomalous diffusion, in the
sense that the relaxation constant τc introduced in Eq. (34)
diverges. Figure 4 displays the normalized model memory
function for β = 1 and β = 1/2 (solid and dashed line, re-
spectively), fixing r = 0.3. The corresponding VACFs and
MSDs are shown in Figs. 5 and 6, respectively. They have
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where Eb(z) denotes the Mittag-Leffler (ML) function and t0
is a time scale parameter. The ML function is an entire func-
tion in the complex plane and it can be represented by the
power series

Eb(z) =
∞∑

k=0

zk

%(1 + bk)
, (48)

which shows that Eb(z) = exp(z) for b = 1. The latter choice
for b in Eq. (47) corresponds to the normal Ornstein-
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FIG. 5. Normalized VACFs corresponding to the memory functions shown
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Uhlenbeck process, where the MSD converges exponentially
to its plateau value. The model (47) has been fitted to the
MSDs displayed in Fig. 6, leading to b = 0.521 ≈ β, t0
= 5.537 τ for the fOU process and to t0 = 2.126 τ for the OU
process. Both fits represent well the long time form of the
MSDs corresponding to model (45) for β = 1/2 and β = 1,
respectively. In this context, it is worthwhile to compare the
L-functions corresponding to the (f)OU process to the one re-
sulting from the memory function (44). It follows from the
asymptotic form of the ML function,

Eb(−tb)
t→∞∼ t−b

%(1 − b)
, (β )= 1), (49)

and from W (t)
t→∞∼ 2〈u2〉L(t) that the function L fOU(t) is

given by

L fOU(t) =





1 − (t/t0)−b

%(1−b) , if 0 < b < 1,

1 − exp(−t/t0), if b = 1.
(50)

On the other hand, one obtains from Eqs. (35) and (46)

L(t) =





1 −

( 1−r
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FIG. 6. MSDs derived from the memory functions shown in Fig. 4 (black
dashed line for β = 1/2 and black solid line for β = 1). In addition the
figure displays fits of model (47) for anomalous diffusion (grey dashed
line, βfOU = 0.521, τfOU = 5.537 τ ) and normal diffusion (grey solid line,
τOU = 2.126 τ ). More explanations are given in the text.
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where 0 < r < 1 and 0 < β ≤ 1. It resembles the one for un-
confined subdiffusion, but in contrast to the latter it decays
to a finite plateau value, κc(∞) = "2r . Its asymptotic form is
given by
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sense that the relaxation constant τc introduced in Eq. (34)
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is a time scale parameter. The ML function is an entire func-
tion in the complex plane and it can be represented by the
power series

Eb(z) =
∞∑

k=0

zk

%(1 + bk)
, (48)

which shows that Eb(z) = exp(z) for b = 1. The latter choice
for b in Eq. (47) corresponds to the normal Ornstein-

FIG. 4. Normalized memory functions according to model (45) for β = 1/2
and β = 1 (dashed line and solid line). The grey horizontal line shows the
plateau value.

FIG. 5. Normalized VACFs corresponding to the memory functions shown
in Fig. 4.

Uhlenbeck process, where the MSD converges exponentially
to its plateau value. The model (47) has been fitted to the
MSDs displayed in Fig. 6, leading to b = 0.521 ≈ β, t0
= 5.537 τ for the fOU process and to t0 = 2.126 τ for the OU
process. Both fits represent well the long time form of the
MSDs corresponding to model (45) for β = 1/2 and β = 1,
respectively. In this context, it is worthwhile to compare the
L-functions corresponding to the (f)OU process to the one re-
sulting from the memory function (44). It follows from the
asymptotic form of the ML function,

Eb(−tb)
t→∞∼ t−b

%(1 − b)
, (β )= 1), (49)

and from W (t)
t→∞∼ 2〈u2〉L(t) that the function L fOU(t) is

given by

L fOU(t) =





1 − (t/t0)−b

%(1−b) , if 0 < b < 1,

1 − exp(−t/t0), if b = 1.
(50)

On the other hand, one obtains from Eqs. (35) and (46)

L(t) =





1 −

( 1−r
r

) (t/τ )−β

%(1−β) , if 0 < β < 1,

1 −
( 1−r

r

)
exp(−t/τ ), if β = 1,

(51)

FIG. 6. MSDs derived from the memory functions shown in Fig. 4 (black
dashed line for β = 1/2 and black solid line for β = 1). In addition the
figure displays fits of model (47) for anomalous diffusion (grey dashed
line, βfOU = 0.521, τfOU = 5.537 τ ) and normal diffusion (grey solid line,
τOU = 2.126 τ ). More explanations are given in the text.
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We present a model for the local diffusion-relaxation dynamics of the Cα-atoms in proteins describ-
ing both the diffusive short-time dynamics and the asymptotic long-time relaxation of the position
autocorrelation functions. The relaxation rate spectra of the latter are represented by shifted gamma
distributions, where the standard gamma distribution describes anomalous slow relaxation in macro-
molecular systems of infinite size and the shift accounts for a smallest local relaxation rate in macro-
molecules of finite size. The resulting autocorrelation functions are analytic for any time t ≥ 0. Using
results from a molecular dynamics simulation of lysozyme, we demonstrate that the model fits the
position autocorrelation functions of the Cα-atoms exceptionally well and reveals moreover a strong
correlation between the residue’s solvent-accessible surface and the fitted model parameters. © 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4718380]

Over the recent years, the multi-scale aspect of the in-
ternal dynamics of proteins and macromolecular systems in
general has attracted considerable interest on both the ex-
perimental and theoretical sides.1–9 A characteristic feature
of time correlation functions (TCFs) related to internal diffu-
sive motions is their strongly non-exponential decay. A clas-
sical empirical model is the stretched exponential function,
c(t) = c(0) exp (− [t/τ ]β) (0 < β ≤ 1), which has been used
to model, for example, the kinetics of protein folding.10 The
description of internal protein dynamics through a fractional
Ornstein-Uhlenbeck (fOU) process11–13 leads to the stretched
Mittag-Leffler (ML) function, c(t) = c(0)Eβ(− [t/τ ]β) (0 < β

≤ 1), which has proven to be a good model for the TCF
of position and distance fluctuations in proteins.3, 4, 14, 15 The
ML function is an entire function in the complex plane,16, 17

Eβ(z) =
∑∞

n=0 zn/$(1 + βn), and includes the exponential
function as a special case, E1(z) = exp (z). Since the mod-
els cited above capture the essential features of the measured
correlation functions by a few parameters, they have undoubt-
edly their merits as simple models for an ad hoc interpretation
of experimental data. They have, however, also the unpleas-
ant feature of becoming unphysical for short times. Due to
the “stretched” argument ∝tβ the time derivatives c(n)(0+) do
not exist if 0 < β < 1, although they should exist whenever
the time evolution of the dynamical system under consider-
ation is described by equations of motion.18–20 Consider, for
example, the diffusive motion of an atom in a dense molecular
system in thermal equilibrium. Here, the dynamical variable
is the deviation of the atom with respect to its mean position,
u = x − 〈x〉, and the relevant TCF is its position autocor-
relation function (PACF), c(t) = 〈u · exp(Lt)u〉. The symbol
〈. . . 〉 denotes an equilibrium ensemble average and L is the

a)Electronic mail: gerald.kneller@cnrs-orleans.fr.

time evolution operator for the whole system. It follows from
the construction of the PACFs that c(n)(0+) = 〈u · Lnu〉 are
well-defined ensemble averages which should exist. For non-
Hamiltonian diffusive dynamics, where L is a many-particle
Smoluchowski operator,21, 22

Ds = 1
2

d〈[u(t) − u(0)]2〉
dt

∣∣∣∣
t=0

= −c(1)(0+), (1)

defines in particular the short-time diffusion coefficient.
In this paper, we develop a realistic minimal model for

the backbone dynamics of proteins which leads to regular
PACFs for the Cα-atoms describing both the diffusive short-
time dynamics and the relaxation for long times. We assume
that u(t) is described by a stationary stochastic process and
write its autocorrelation function in the form

c(t) = 〈u2〉ψ(t/τ ), (2)

where ψ(.) is the normalized PACF for a dimensionless time
argument, with ψ(0) = 1, and τ > 0 sets the time scale. For
convenience we set τ = 1 in the following. To express the
multi-scale character of protein dynamics we write the PACFs
as a superposition of exponential functions,

ψ(t) =
∫ ∞

0
dλ p(λ) exp(−λt), (3)

where the relaxation rate spectrum p(λ) satisfies the normal-
ization condition

∫ ∞
0 dλ p(λ) = 1, as well as p(λ) ≥ 0. The

moments of the relaxation rate spectrum are given by

λk =
∫ ∞

0
dλ λkp(λ) = (−1)kψ (k)(0), (4)

and their existence depends on the behavior of p(λ) for λ

→ ∞. For λk to exist the relaxation rate spectrum must decay

0021-9606/2012/136(19)/191101/4/$30.00 © 2012 American Institute of Physics136, 191101-1
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FIG. 1. Four selected residues in the lysozyme molecule.

All fits show an excellent agreement with the simulation
data and we show here the results for four selected residues
which have been chosen according to their exposure to sol-
vent (see Fig. 1). Residues Ala 9 and Val 29 are buried in
α-helices, whereas Thr 47 and Gly 104 are located in loop re-
gions. Figure 2 shows the superposition of the simulated nor-
malized PACFs (dots) with the fits of ψ(t/τ ; α, β) (solid lines)
in form of a log-log plot. The fit parameters are given in the
plot. A coherent view of the results is obtained by correlating
the mean relaxation rate,

λ = (1 + α)τ−1, (20)

of all Cα-atoms and its spread,

σλ = (λ2 − λ
2
)1/2 = β−1/2τ−1, (21)

FIG. 2. Log-log plot of the simulated position autocorrelation functions for
the Cα-atoms of the residues shown in Figure 1 (dots) and fits of model (13)
(solid lines). For the simulated PACFs the smallest positive time argument is
t = 0.05 ps.

FIG. 3. Upper panel: Solvent accessible surface for the Cα-atoms in
lysozyme. Middle panel: Mean relaxation rate λ (blue line) and correspond-
ing standard deviation σλ (green line). Lower panel: Mean square position
fluctuation 〈u2〉 (blue line) and short time diffusion coefficient Ds (green
line). The additional graphics on top of the figure locates the secondary struc-
ture elements. Black rectangles indicate α-helices, grey rectangles short heli-
coidal motifs, and arrows beta sheets.

with the solvent-accessible surface of the respective residue.
Here, the total solvent-accessible surface of all atoms is con-
sidered. The fitted quantities λ and σλ for our model are, re-
spectively, given in the upper and middle panels of Fig. 3,
combining λ (blue line) and σλ (green line) in the middle
panel. On top of the figure we indicate the location of sec-
ondary structure elements and the vertical lines locate the four
selected residues displayed in Fig. 1. The results show that
the PACFs of Cα-atoms in solvent-exposed loop regions re-
lax one or two orders of magnitude more slowly than those
buried in helices, and the spread of the relaxation rates fol-
lows exactly the same trend, which is not trivial since the
mean relaxation and its spread are not described by the same
parameters. The backbone relaxation dynamics in secondary
structure elements is thus faster than the one in the more
floppy, solvent-exposed loop regions, and has a much stronger
non-exponential character. In this context, it is interesting to
look at the static position fluctuations of the Cα-atoms and at
the corresponding short-time diffusion coefficients, which de-
pend on both the amplitudes of the atomic motions and on the
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at least as fast as p(λ) ∼ λ−(k + 1 + ε), with ε > 0. In this con-
text it is worthwhile noting that the relaxation rate spectrum
corresponding to the stretched Mittag-Leffler function, ψ(t)
= Eβ(− tβ), which describes the PACF of the fOU process1, 14

behaves for large λ as pfOU(λ) ∼ λ−(β+1). For this reason none
of moments λk with k > 0 exist and ψ(t) is non-analytic at
t = 0.

To construct a model for p(λ), we make the following
assumptions:
(a) For a protein of finite size, the PACF of each Cα-atom is

characterized by a smallest relaxation rate, ηmin. In ther-
mal equilibrium, a protein performs fluctuations about its
equilibrium structure, and to a first approximation pro-
tein dynamics can be described by diffusion in an effec-
tive multidimensional harmonic potential energy.23, 24 If
ωmin is the smallest normal frequency for this harmonic
potential, then ηmin = γ −1ω2

min is the minimal relaxation
rate for the PACF of a given Cα-atom, where γ > 0 is a
positive friction constant which is essentially determined
by the atomic density of the nearest neighbors. With in-
creasing system size ωmin and thus ηmin tend to zero.

(b) In the limit of infinite protein size, the PACF of each
Cα-atom exhibits anomalous relaxation,

ψ(t)
t→∞∼ t−β 0 < β < 1, (5)

which is characteristic for relaxation processes in large
scale polymeric networks.2 Due to the slow decay of
the PACFs, the corresponding average relaxation times,
τ exp =

∫ ∞
0 dt ψ(t), diverge.

(c) The PACFs should be analytical in t = 0, i.e., they should
representable by a Taylor series in this point. Since ψ(t)
is the moment generating function for p(λ), all moments
λk must exist.

In order to fulfill the above requirements, the relaxation
rate spectrum must have the general form

p(λ; α,β) = θ (λ − α)p(λ − α; β), (6)

where θ (.) is the Heaviside unit step function, α is a di-
mensionless minimal relaxation rate (α = ηminτ ), and p(λ; β)
must be constructed such that ψ(t) has the asymptotic form
(5) if α = 0. For this purpose, one can rely on the fact that the
Laplace transform of ψ(t) is the Stieltjes transform of p(λ),

ψ̂(s) =
∫ ∞

0
dµ

p(µ)
s + µ

, (7)

p(λ) = 1
π

lim
ε→0

%{ψ̂(−λ − iε)}, (8)

where ψ̂(s) =
∫ ∞

0 dt exp(−st)ψ(t) (R{s} > 0), and on a
Tauberian theorem,25, 26 according to which

ψ̂(s)
s→0∼ ,(1 − β)

s1−β
(9)

follows from relation (5) and vice versa. Combining relations
(8) and (9), one can conclude that p(λ; β) must have the gen-
eral form

p(λ; β) = f (λ)
sin(πβ)

π

,(1 − β)
λ1−β

(0 < β < 1), (10)

where f(λ) is a yet undetermined function fulfilling
limλ → 0f(λ) = C. The constant C must be chosen such
that

∫ ∞
0 p(λ; β) = 1. We note that limβ → 1sin (πβ),(1 − β)

= π . Relation (10) is a necessary and sufficient condition for a
slowly decaying PACF with the asymptotic form (5). To con-
struct p(λ) such that the existence of all moments λk and thus
the analyticity of ψ(t) in t = 0 is guaranteed we set

f (λ) = C exp(−βλ). (11)

The properly normalized relaxation rate spectrum then reads

p(λ; β) = λβ−1ββ exp(−βλ)
,(β)

, (12)

and ψ(t) is given by

ψ(t ; α,β) = exp(−αt)
(1 + t/β)β

. (13)

The corresponding cumulants, which are defined through

c
(k)
α,β = (−1)k

dk

dtk
ln(ψ(t ; α,β))

∣∣∣∣
t=0+

(14)

have the particularly simple form

c
(1)
α,β =1 + α, (15)

c
(k)
α,β = (k − 1)!

βk−1
, (k = 2, 3, . . .). (16)

From the form of ψ(t; α, β) and its cumulants, one derives the
consistent limits

lim
β→∞

ψ(t ; α,β) = exp(−[1 + α]t), (17)

lim
β→∞

p(λ; α,β) = δ(λ − [1 + α]), (18)

and we note in this context that ψ(t; 0, 1/(1 − q)) is the “Tsal-
lis q-exponential” which is considered in non-extensive sta-
tistical mechanics.27–29

To test our model, we performed a molecular dynam-
ics simulation of a lysozyme molecule in water for a subse-
quent analysis of the Cα PACFs with our model. The sim-
ulated system was set up by starting with the initial structure
193L of the Protein Data Bank (PDB).30 A total of 6775 water
molecules were added, resulting in a system of 22 295 atoms.
The simulations were performed using the NAMD program31

with the all-atom force field AMBER99SB (Ref. 32) and with
periodic boundary conditions. Electrostatic interactions were
computed using the particle mesh Ewald method.33 The inte-
gration time step was set to 1 fs and coordinates were saved
every 50 fs for further analysis. After a preliminary minimiza-
tion of the PDB structure, the system was first equilibrated at
constant temperature (298 K) and constant pressure (1 bar)
using a Langevin thermostat34 coupled with a Nose-Hoover
barostat.35 The equilibrated system was used for a production
run of 10 ns from which the PACFs of the Cα-atoms were
calculated. The normalized PACFs were fitted according to

c(t)
c(0)

≈ ψ(t/τ ; α,β). (19)
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at least as fast as p(λ) ∼ λ−(k + 1 + ε), with ε > 0. In this con-
text it is worthwhile noting that the relaxation rate spectrum
corresponding to the stretched Mittag-Leffler function, ψ(t)
= Eβ(− tβ), which describes the PACF of the fOU process1, 14

behaves for large λ as pfOU(λ) ∼ λ−(β+1). For this reason none
of moments λk with k > 0 exist and ψ(t) is non-analytic at
t = 0.

To construct a model for p(λ), we make the following
assumptions:
(a) For a protein of finite size, the PACF of each Cα-atom is

characterized by a smallest relaxation rate, ηmin. In ther-
mal equilibrium, a protein performs fluctuations about its
equilibrium structure, and to a first approximation pro-
tein dynamics can be described by diffusion in an effec-
tive multidimensional harmonic potential energy.23, 24 If
ωmin is the smallest normal frequency for this harmonic
potential, then ηmin = γ −1ω2

min is the minimal relaxation
rate for the PACF of a given Cα-atom, where γ > 0 is a
positive friction constant which is essentially determined
by the atomic density of the nearest neighbors. With in-
creasing system size ωmin and thus ηmin tend to zero.

(b) In the limit of infinite protein size, the PACF of each
Cα-atom exhibits anomalous relaxation,

ψ(t)
t→∞∼ t−β 0 < β < 1, (5)

which is characteristic for relaxation processes in large
scale polymeric networks.2 Due to the slow decay of
the PACFs, the corresponding average relaxation times,
τ exp =

∫ ∞
0 dt ψ(t), diverge.

(c) The PACFs should be analytical in t = 0, i.e., they should
representable by a Taylor series in this point. Since ψ(t)
is the moment generating function for p(λ), all moments
λk must exist.

In order to fulfill the above requirements, the relaxation
rate spectrum must have the general form

p(λ; α,β) = θ (λ − α)p(λ − α; β), (6)

where θ (.) is the Heaviside unit step function, α is a di-
mensionless minimal relaxation rate (α = ηminτ ), and p(λ; β)
must be constructed such that ψ(t) has the asymptotic form
(5) if α = 0. For this purpose, one can rely on the fact that the
Laplace transform of ψ(t) is the Stieltjes transform of p(λ),

ψ̂(s) =
∫ ∞

0
dµ

p(µ)
s + µ

, (7)

p(λ) = 1
π

lim
ε→0

%{ψ̂(−λ − iε)}, (8)

where ψ̂(s) =
∫ ∞

0 dt exp(−st)ψ(t) (R{s} > 0), and on a
Tauberian theorem,25, 26 according to which

ψ̂(s)
s→0∼ ,(1 − β)

s1−β
(9)

follows from relation (5) and vice versa. Combining relations
(8) and (9), one can conclude that p(λ; β) must have the gen-
eral form

p(λ; β) = f (λ)
sin(πβ)

π

,(1 − β)
λ1−β

(0 < β < 1), (10)

where f(λ) is a yet undetermined function fulfilling
limλ → 0f(λ) = C. The constant C must be chosen such
that

∫ ∞
0 p(λ; β) = 1. We note that limβ → 1sin (πβ),(1 − β)

= π . Relation (10) is a necessary and sufficient condition for a
slowly decaying PACF with the asymptotic form (5). To con-
struct p(λ) such that the existence of all moments λk and thus
the analyticity of ψ(t) in t = 0 is guaranteed we set

f (λ) = C exp(−βλ). (11)

The properly normalized relaxation rate spectrum then reads

p(λ; β) = λβ−1ββ exp(−βλ)
,(β)

, (12)

and ψ(t) is given by

ψ(t ; α,β) = exp(−αt)
(1 + t/β)β

. (13)

The corresponding cumulants, which are defined through

c
(k)
α,β = (−1)k

dk

dtk
ln(ψ(t ; α,β))

∣∣∣∣
t=0+

(14)

have the particularly simple form

c
(1)
α,β =1 + α, (15)

c
(k)
α,β = (k − 1)!

βk−1
, (k = 2, 3, . . .). (16)

From the form of ψ(t; α, β) and its cumulants, one derives the
consistent limits

lim
β→∞

ψ(t ; α,β) = exp(−[1 + α]t), (17)

lim
β→∞

p(λ; α,β) = δ(λ − [1 + α]), (18)

and we note in this context that ψ(t; 0, 1/(1 − q)) is the “Tsal-
lis q-exponential” which is considered in non-extensive sta-
tistical mechanics.27–29

To test our model, we performed a molecular dynam-
ics simulation of a lysozyme molecule in water for a subse-
quent analysis of the Cα PACFs with our model. The sim-
ulated system was set up by starting with the initial structure
193L of the Protein Data Bank (PDB).30 A total of 6775 water
molecules were added, resulting in a system of 22 295 atoms.
The simulations were performed using the NAMD program31

with the all-atom force field AMBER99SB (Ref. 32) and with
periodic boundary conditions. Electrostatic interactions were
computed using the particle mesh Ewald method.33 The inte-
gration time step was set to 1 fs and coordinates were saved
every 50 fs for further analysis. After a preliminary minimiza-
tion of the PDB structure, the system was first equilibrated at
constant temperature (298 K) and constant pressure (1 bar)
using a Langevin thermostat34 coupled with a Nose-Hoover
barostat.35 The equilibrated system was used for a production
run of 10 ns from which the PACFs of the Cα-atoms were
calculated. The normalized PACFs were fitted according to

c(t)
c(0)

≈ ψ(t/τ ; α,β). (19)
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at least as fast as p(λ) ∼ λ−(k + 1 + ε), with ε > 0. In this con-
text it is worthwhile noting that the relaxation rate spectrum
corresponding to the stretched Mittag-Leffler function, ψ(t)
= Eβ(− tβ), which describes the PACF of the fOU process1, 14

behaves for large λ as pfOU(λ) ∼ λ−(β+1). For this reason none
of moments λk with k > 0 exist and ψ(t) is non-analytic at
t = 0.

To construct a model for p(λ), we make the following
assumptions:
(a) For a protein of finite size, the PACF of each Cα-atom is

characterized by a smallest relaxation rate, ηmin. In ther-
mal equilibrium, a protein performs fluctuations about its
equilibrium structure, and to a first approximation pro-
tein dynamics can be described by diffusion in an effec-
tive multidimensional harmonic potential energy.23, 24 If
ωmin is the smallest normal frequency for this harmonic
potential, then ηmin = γ −1ω2

min is the minimal relaxation
rate for the PACF of a given Cα-atom, where γ > 0 is a
positive friction constant which is essentially determined
by the atomic density of the nearest neighbors. With in-
creasing system size ωmin and thus ηmin tend to zero.

(b) In the limit of infinite protein size, the PACF of each
Cα-atom exhibits anomalous relaxation,

ψ(t)
t→∞∼ t−β 0 < β < 1, (5)

which is characteristic for relaxation processes in large
scale polymeric networks.2 Due to the slow decay of
the PACFs, the corresponding average relaxation times,
τ exp =

∫ ∞
0 dt ψ(t), diverge.

(c) The PACFs should be analytical in t = 0, i.e., they should
representable by a Taylor series in this point. Since ψ(t)
is the moment generating function for p(λ), all moments
λk must exist.

In order to fulfill the above requirements, the relaxation
rate spectrum must have the general form

p(λ; α,β) = θ (λ − α)p(λ − α; β), (6)

where θ (.) is the Heaviside unit step function, α is a di-
mensionless minimal relaxation rate (α = ηminτ ), and p(λ; β)
must be constructed such that ψ(t) has the asymptotic form
(5) if α = 0. For this purpose, one can rely on the fact that the
Laplace transform of ψ(t) is the Stieltjes transform of p(λ),

ψ̂(s) =
∫ ∞

0
dµ

p(µ)
s + µ

, (7)

p(λ) = 1
π

lim
ε→0

%{ψ̂(−λ − iε)}, (8)

where ψ̂(s) =
∫ ∞

0 dt exp(−st)ψ(t) (R{s} > 0), and on a
Tauberian theorem,25, 26 according to which

ψ̂(s)
s→0∼ ,(1 − β)

s1−β
(9)

follows from relation (5) and vice versa. Combining relations
(8) and (9), one can conclude that p(λ; β) must have the gen-
eral form

p(λ; β) = f (λ)
sin(πβ)

π

,(1 − β)
λ1−β

(0 < β < 1), (10)

where f(λ) is a yet undetermined function fulfilling
limλ → 0f(λ) = C. The constant C must be chosen such
that

∫ ∞
0 p(λ; β) = 1. We note that limβ → 1sin (πβ),(1 − β)

= π . Relation (10) is a necessary and sufficient condition for a
slowly decaying PACF with the asymptotic form (5). To con-
struct p(λ) such that the existence of all moments λk and thus
the analyticity of ψ(t) in t = 0 is guaranteed we set

f (λ) = C exp(−βλ). (11)

The properly normalized relaxation rate spectrum then reads

p(λ; β) = λβ−1ββ exp(−βλ)
,(β)

, (12)

and ψ(t) is given by

ψ(t ; α,β) = exp(−αt)
(1 + t/β)β

. (13)

The corresponding cumulants, which are defined through

c
(k)
α,β = (−1)k

dk

dtk
ln(ψ(t ; α,β))

∣∣∣∣
t=0+

(14)

have the particularly simple form

c
(1)
α,β =1 + α, (15)

c
(k)
α,β = (k − 1)!

βk−1
, (k = 2, 3, . . .). (16)

From the form of ψ(t; α, β) and its cumulants, one derives the
consistent limits

lim
β→∞

ψ(t ; α,β) = exp(−[1 + α]t), (17)

lim
β→∞

p(λ; α,β) = δ(λ − [1 + α]), (18)

and we note in this context that ψ(t; 0, 1/(1 − q)) is the “Tsal-
lis q-exponential” which is considered in non-extensive sta-
tistical mechanics.27–29

To test our model, we performed a molecular dynam-
ics simulation of a lysozyme molecule in water for a subse-
quent analysis of the Cα PACFs with our model. The sim-
ulated system was set up by starting with the initial structure
193L of the Protein Data Bank (PDB).30 A total of 6775 water
molecules were added, resulting in a system of 22 295 atoms.
The simulations were performed using the NAMD program31

with the all-atom force field AMBER99SB (Ref. 32) and with
periodic boundary conditions. Electrostatic interactions were
computed using the particle mesh Ewald method.33 The inte-
gration time step was set to 1 fs and coordinates were saved
every 50 fs for further analysis. After a preliminary minimiza-
tion of the PDB structure, the system was first equilibrated at
constant temperature (298 K) and constant pressure (1 bar)
using a Langevin thermostat34 coupled with a Nose-Hoover
barostat.35 The equilibrated system was used for a production
run of 10 ns from which the PACFs of the Cα-atoms were
calculated. The normalized PACFs were fitted according to

c(t)
c(0)

≈ ψ(t/τ ; α,β). (19)
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We present a model for the local diffusion-relaxation dynamics of the Cα-atoms in proteins describ-
ing both the diffusive short-time dynamics and the asymptotic long-time relaxation of the position
autocorrelation functions. The relaxation rate spectra of the latter are represented by shifted gamma
distributions, where the standard gamma distribution describes anomalous slow relaxation in macro-
molecular systems of infinite size and the shift accounts for a smallest local relaxation rate in macro-
molecules of finite size. The resulting autocorrelation functions are analytic for any time t ≥ 0. Using
results from a molecular dynamics simulation of lysozyme, we demonstrate that the model fits the
position autocorrelation functions of the Cα-atoms exceptionally well and reveals moreover a strong
correlation between the residue’s solvent-accessible surface and the fitted model parameters. © 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4718380]

Over the recent years, the multi-scale aspect of the in-
ternal dynamics of proteins and macromolecular systems in
general has attracted considerable interest on both the ex-
perimental and theoretical sides.1–9 A characteristic feature
of time correlation functions (TCFs) related to internal diffu-
sive motions is their strongly non-exponential decay. A clas-
sical empirical model is the stretched exponential function,
c(t) = c(0) exp (− [t/τ ]β) (0 < β ≤ 1), which has been used
to model, for example, the kinetics of protein folding.10 The
description of internal protein dynamics through a fractional
Ornstein-Uhlenbeck (fOU) process11–13 leads to the stretched
Mittag-Leffler (ML) function, c(t) = c(0)Eβ(− [t/τ ]β) (0 < β

≤ 1), which has proven to be a good model for the TCF
of position and distance fluctuations in proteins.3, 4, 14, 15 The
ML function is an entire function in the complex plane,16, 17

Eβ(z) =
∑∞

n=0 zn/$(1 + βn), and includes the exponential
function as a special case, E1(z) = exp (z). Since the mod-
els cited above capture the essential features of the measured
correlation functions by a few parameters, they have undoubt-
edly their merits as simple models for an ad hoc interpretation
of experimental data. They have, however, also the unpleas-
ant feature of becoming unphysical for short times. Due to
the “stretched” argument ∝tβ the time derivatives c(n)(0+) do
not exist if 0 < β < 1, although they should exist whenever
the time evolution of the dynamical system under consider-
ation is described by equations of motion.18–20 Consider, for
example, the diffusive motion of an atom in a dense molecular
system in thermal equilibrium. Here, the dynamical variable
is the deviation of the atom with respect to its mean position,
u = x − 〈x〉, and the relevant TCF is its position autocor-
relation function (PACF), c(t) = 〈u · exp(Lt)u〉. The symbol
〈. . . 〉 denotes an equilibrium ensemble average and L is the

a)Electronic mail: gerald.kneller@cnrs-orleans.fr.

time evolution operator for the whole system. It follows from
the construction of the PACFs that c(n)(0+) = 〈u · Lnu〉 are
well-defined ensemble averages which should exist. For non-
Hamiltonian diffusive dynamics, where L is a many-particle
Smoluchowski operator,21, 22

Ds = 1
2

d〈[u(t) − u(0)]2〉
dt

∣∣∣∣
t=0

= −c(1)(0+), (1)

defines in particular the short-time diffusion coefficient.
In this paper, we develop a realistic minimal model for

the backbone dynamics of proteins which leads to regular
PACFs for the Cα-atoms describing both the diffusive short-
time dynamics and the relaxation for long times. We assume
that u(t) is described by a stationary stochastic process and
write its autocorrelation function in the form

c(t) = 〈u2〉ψ(t/τ ), (2)

where ψ(.) is the normalized PACF for a dimensionless time
argument, with ψ(0) = 1, and τ > 0 sets the time scale. For
convenience we set τ = 1 in the following. To express the
multi-scale character of protein dynamics we write the PACFs
as a superposition of exponential functions,

ψ(t) =
∫ ∞

0
dλ p(λ) exp(−λt), (3)

where the relaxation rate spectrum p(λ) satisfies the normal-
ization condition

∫ ∞
0 dλ p(λ) = 1, as well as p(λ) ≥ 0. The

moments of the relaxation rate spectrum are given by

λk =
∫ ∞

0
dλ λkp(λ) = (−1)kψ (k)(0), (4)

and their existence depends on the behavior of p(λ) for λ

→ ∞. For λk to exist the relaxation rate spectrum must decay
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at least as fast as p(λ) ∼ λ−(k + 1 + ε), with ε > 0. In this con-
text it is worthwhile noting that the relaxation rate spectrum
corresponding to the stretched Mittag-Leffler function, ψ(t)
= Eβ(− tβ), which describes the PACF of the fOU process1, 14

behaves for large λ as pfOU(λ) ∼ λ−(β+1). For this reason none
of moments λk with k > 0 exist and ψ(t) is non-analytic at
t = 0.

To construct a model for p(λ), we make the following
assumptions:
(a) For a protein of finite size, the PACF of each Cα-atom is

characterized by a smallest relaxation rate, ηmin. In ther-
mal equilibrium, a protein performs fluctuations about its
equilibrium structure, and to a first approximation pro-
tein dynamics can be described by diffusion in an effec-
tive multidimensional harmonic potential energy.23, 24 If
ωmin is the smallest normal frequency for this harmonic
potential, then ηmin = γ −1ω2

min is the minimal relaxation
rate for the PACF of a given Cα-atom, where γ > 0 is a
positive friction constant which is essentially determined
by the atomic density of the nearest neighbors. With in-
creasing system size ωmin and thus ηmin tend to zero.

(b) In the limit of infinite protein size, the PACF of each
Cα-atom exhibits anomalous relaxation,

ψ(t)
t→∞∼ t−β 0 < β < 1, (5)

which is characteristic for relaxation processes in large
scale polymeric networks.2 Due to the slow decay of
the PACFs, the corresponding average relaxation times,
τ exp =

∫ ∞
0 dt ψ(t), diverge.

(c) The PACFs should be analytical in t = 0, i.e., they should
representable by a Taylor series in this point. Since ψ(t)
is the moment generating function for p(λ), all moments
λk must exist.

In order to fulfill the above requirements, the relaxation
rate spectrum must have the general form

p(λ; α,β) = θ (λ − α)p(λ − α; β), (6)

where θ (.) is the Heaviside unit step function, α is a di-
mensionless minimal relaxation rate (α = ηminτ ), and p(λ; β)
must be constructed such that ψ(t) has the asymptotic form
(5) if α = 0. For this purpose, one can rely on the fact that the
Laplace transform of ψ(t) is the Stieltjes transform of p(λ),

ψ̂(s) =
∫ ∞

0
dµ

p(µ)
s + µ

, (7)

p(λ) = 1
π

lim
ε→0

%{ψ̂(−λ − iε)}, (8)

where ψ̂(s) =
∫ ∞

0 dt exp(−st)ψ(t) (R{s} > 0), and on a
Tauberian theorem,25, 26 according to which

ψ̂(s)
s→0∼ ,(1 − β)

s1−β
(9)

follows from relation (5) and vice versa. Combining relations
(8) and (9), one can conclude that p(λ; β) must have the gen-
eral form

p(λ; β) = f (λ)
sin(πβ)

π

,(1 − β)
λ1−β

(0 < β < 1), (10)

where f(λ) is a yet undetermined function fulfilling
limλ → 0f(λ) = C. The constant C must be chosen such
that

∫ ∞
0 p(λ; β) = 1. We note that limβ → 1sin (πβ),(1 − β)

= π . Relation (10) is a necessary and sufficient condition for a
slowly decaying PACF with the asymptotic form (5). To con-
struct p(λ) such that the existence of all moments λk and thus
the analyticity of ψ(t) in t = 0 is guaranteed we set

f (λ) = C exp(−βλ). (11)

The properly normalized relaxation rate spectrum then reads

p(λ; β) = λβ−1ββ exp(−βλ)
,(β)

, (12)

and ψ(t) is given by

ψ(t ; α,β) = exp(−αt)
(1 + t/β)β

. (13)

The corresponding cumulants, which are defined through

c
(k)
α,β = (−1)k

dk

dtk
ln(ψ(t ; α,β))

∣∣∣∣
t=0+

(14)

have the particularly simple form

c
(1)
α,β =1 + α, (15)

c
(k)
α,β = (k − 1)!

βk−1
, (k = 2, 3, . . .). (16)

From the form of ψ(t; α, β) and its cumulants, one derives the
consistent limits

lim
β→∞

ψ(t ; α,β) = exp(−[1 + α]t), (17)

lim
β→∞

p(λ; α,β) = δ(λ − [1 + α]), (18)

and we note in this context that ψ(t; 0, 1/(1 − q)) is the “Tsal-
lis q-exponential” which is considered in non-extensive sta-
tistical mechanics.27–29

To test our model, we performed a molecular dynam-
ics simulation of a lysozyme molecule in water for a subse-
quent analysis of the Cα PACFs with our model. The sim-
ulated system was set up by starting with the initial structure
193L of the Protein Data Bank (PDB).30 A total of 6775 water
molecules were added, resulting in a system of 22 295 atoms.
The simulations were performed using the NAMD program31

with the all-atom force field AMBER99SB (Ref. 32) and with
periodic boundary conditions. Electrostatic interactions were
computed using the particle mesh Ewald method.33 The inte-
gration time step was set to 1 fs and coordinates were saved
every 50 fs for further analysis. After a preliminary minimiza-
tion of the PDB structure, the system was first equilibrated at
constant temperature (298 K) and constant pressure (1 bar)
using a Langevin thermostat34 coupled with a Nose-Hoover
barostat.35 The equilibrated system was used for a production
run of 10 ns from which the PACFs of the Cα-atoms were
calculated. The normalized PACFs were fitted according to

c(t)
c(0)

≈ ψ(t/τ ; α,β). (19)
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at least as fast as p(λ) ∼ λ−(k + 1 + ε), with ε > 0. In this con-
text it is worthwhile noting that the relaxation rate spectrum
corresponding to the stretched Mittag-Leffler function, ψ(t)
= Eβ(− tβ), which describes the PACF of the fOU process1, 14

behaves for large λ as pfOU(λ) ∼ λ−(β+1). For this reason none
of moments λk with k > 0 exist and ψ(t) is non-analytic at
t = 0.

To construct a model for p(λ), we make the following
assumptions:
(a) For a protein of finite size, the PACF of each Cα-atom is

characterized by a smallest relaxation rate, ηmin. In ther-
mal equilibrium, a protein performs fluctuations about its
equilibrium structure, and to a first approximation pro-
tein dynamics can be described by diffusion in an effec-
tive multidimensional harmonic potential energy.23, 24 If
ωmin is the smallest normal frequency for this harmonic
potential, then ηmin = γ −1ω2

min is the minimal relaxation
rate for the PACF of a given Cα-atom, where γ > 0 is a
positive friction constant which is essentially determined
by the atomic density of the nearest neighbors. With in-
creasing system size ωmin and thus ηmin tend to zero.

(b) In the limit of infinite protein size, the PACF of each
Cα-atom exhibits anomalous relaxation,

ψ(t)
t→∞∼ t−β 0 < β < 1, (5)

which is characteristic for relaxation processes in large
scale polymeric networks.2 Due to the slow decay of
the PACFs, the corresponding average relaxation times,
τ exp =

∫ ∞
0 dt ψ(t), diverge.

(c) The PACFs should be analytical in t = 0, i.e., they should
representable by a Taylor series in this point. Since ψ(t)
is the moment generating function for p(λ), all moments
λk must exist.

In order to fulfill the above requirements, the relaxation
rate spectrum must have the general form

p(λ; α,β) = θ (λ − α)p(λ − α; β), (6)

where θ (.) is the Heaviside unit step function, α is a di-
mensionless minimal relaxation rate (α = ηminτ ), and p(λ; β)
must be constructed such that ψ(t) has the asymptotic form
(5) if α = 0. For this purpose, one can rely on the fact that the
Laplace transform of ψ(t) is the Stieltjes transform of p(λ),

ψ̂(s) =
∫ ∞

0
dµ

p(µ)
s + µ

, (7)

p(λ) = 1
π

lim
ε→0

%{ψ̂(−λ − iε)}, (8)

where ψ̂(s) =
∫ ∞

0 dt exp(−st)ψ(t) (R{s} > 0), and on a
Tauberian theorem,25, 26 according to which

ψ̂(s)
s→0∼ ,(1 − β)

s1−β
(9)

follows from relation (5) and vice versa. Combining relations
(8) and (9), one can conclude that p(λ; β) must have the gen-
eral form

p(λ; β) = f (λ)
sin(πβ)

π

,(1 − β)
λ1−β

(0 < β < 1), (10)

where f(λ) is a yet undetermined function fulfilling
limλ → 0f(λ) = C. The constant C must be chosen such
that

∫ ∞
0 p(λ; β) = 1. We note that limβ → 1sin (πβ),(1 − β)

= π . Relation (10) is a necessary and sufficient condition for a
slowly decaying PACF with the asymptotic form (5). To con-
struct p(λ) such that the existence of all moments λk and thus
the analyticity of ψ(t) in t = 0 is guaranteed we set

f (λ) = C exp(−βλ). (11)

The properly normalized relaxation rate spectrum then reads

p(λ; β) = λβ−1ββ exp(−βλ)
,(β)

, (12)

and ψ(t) is given by

ψ(t ; α,β) = exp(−αt)
(1 + t/β)β

. (13)

The corresponding cumulants, which are defined through

c
(k)
α,β = (−1)k

dk

dtk
ln(ψ(t ; α,β))

∣∣∣∣
t=0+

(14)

have the particularly simple form

c
(1)
α,β =1 + α, (15)

c
(k)
α,β = (k − 1)!

βk−1
, (k = 2, 3, . . .). (16)

From the form of ψ(t; α, β) and its cumulants, one derives the
consistent limits

lim
β→∞

ψ(t ; α,β) = exp(−[1 + α]t), (17)

lim
β→∞

p(λ; α,β) = δ(λ − [1 + α]), (18)

and we note in this context that ψ(t; 0, 1/(1 − q)) is the “Tsal-
lis q-exponential” which is considered in non-extensive sta-
tistical mechanics.27–29

To test our model, we performed a molecular dynam-
ics simulation of a lysozyme molecule in water for a subse-
quent analysis of the Cα PACFs with our model. The sim-
ulated system was set up by starting with the initial structure
193L of the Protein Data Bank (PDB).30 A total of 6775 water
molecules were added, resulting in a system of 22 295 atoms.
The simulations were performed using the NAMD program31

with the all-atom force field AMBER99SB (Ref. 32) and with
periodic boundary conditions. Electrostatic interactions were
computed using the particle mesh Ewald method.33 The inte-
gration time step was set to 1 fs and coordinates were saved
every 50 fs for further analysis. After a preliminary minimiza-
tion of the PDB structure, the system was first equilibrated at
constant temperature (298 K) and constant pressure (1 bar)
using a Langevin thermostat34 coupled with a Nose-Hoover
barostat.35 The equilibrated system was used for a production
run of 10 ns from which the PACFs of the Cα-atoms were
calculated. The normalized PACFs were fitted according to

c(t)
c(0)

≈ ψ(t/τ ; α,β). (19)
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We present a model for the local diffusion-relaxation dynamics of the Cα-atoms in proteins describ-
ing both the diffusive short-time dynamics and the asymptotic long-time relaxation of the position
autocorrelation functions. The relaxation rate spectra of the latter are represented by shifted gamma
distributions, where the standard gamma distribution describes anomalous slow relaxation in macro-
molecular systems of infinite size and the shift accounts for a smallest local relaxation rate in macro-
molecules of finite size. The resulting autocorrelation functions are analytic for any time t ≥ 0. Using
results from a molecular dynamics simulation of lysozyme, we demonstrate that the model fits the
position autocorrelation functions of the Cα-atoms exceptionally well and reveals moreover a strong
correlation between the residue’s solvent-accessible surface and the fitted model parameters. © 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4718380]

Over the recent years, the multi-scale aspect of the in-
ternal dynamics of proteins and macromolecular systems in
general has attracted considerable interest on both the ex-
perimental and theoretical sides.1–9 A characteristic feature
of time correlation functions (TCFs) related to internal diffu-
sive motions is their strongly non-exponential decay. A clas-
sical empirical model is the stretched exponential function,
c(t) = c(0) exp (− [t/τ ]β) (0 < β ≤ 1), which has been used
to model, for example, the kinetics of protein folding.10 The
description of internal protein dynamics through a fractional
Ornstein-Uhlenbeck (fOU) process11–13 leads to the stretched
Mittag-Leffler (ML) function, c(t) = c(0)Eβ(− [t/τ ]β) (0 < β

≤ 1), which has proven to be a good model for the TCF
of position and distance fluctuations in proteins.3, 4, 14, 15 The
ML function is an entire function in the complex plane,16, 17

Eβ(z) =
∑∞

n=0 zn/$(1 + βn), and includes the exponential
function as a special case, E1(z) = exp (z). Since the mod-
els cited above capture the essential features of the measured
correlation functions by a few parameters, they have undoubt-
edly their merits as simple models for an ad hoc interpretation
of experimental data. They have, however, also the unpleas-
ant feature of becoming unphysical for short times. Due to
the “stretched” argument ∝tβ the time derivatives c(n)(0+) do
not exist if 0 < β < 1, although they should exist whenever
the time evolution of the dynamical system under consider-
ation is described by equations of motion.18–20 Consider, for
example, the diffusive motion of an atom in a dense molecular
system in thermal equilibrium. Here, the dynamical variable
is the deviation of the atom with respect to its mean position,
u = x − 〈x〉, and the relevant TCF is its position autocor-
relation function (PACF), c(t) = 〈u · exp(Lt)u〉. The symbol
〈. . . 〉 denotes an equilibrium ensemble average and L is the

a)Electronic mail: gerald.kneller@cnrs-orleans.fr.

time evolution operator for the whole system. It follows from
the construction of the PACFs that c(n)(0+) = 〈u · Lnu〉 are
well-defined ensemble averages which should exist. For non-
Hamiltonian diffusive dynamics, where L is a many-particle
Smoluchowski operator,21, 22

Ds = 1
2

d〈[u(t) − u(0)]2〉
dt

∣∣∣∣
t=0

= −c(1)(0+), (1)

defines in particular the short-time diffusion coefficient.
In this paper, we develop a realistic minimal model for

the backbone dynamics of proteins which leads to regular
PACFs for the Cα-atoms describing both the diffusive short-
time dynamics and the relaxation for long times. We assume
that u(t) is described by a stationary stochastic process and
write its autocorrelation function in the form

c(t) = 〈u2〉ψ(t/τ ), (2)

where ψ(.) is the normalized PACF for a dimensionless time
argument, with ψ(0) = 1, and τ > 0 sets the time scale. For
convenience we set τ = 1 in the following. To express the
multi-scale character of protein dynamics we write the PACFs
as a superposition of exponential functions,

ψ(t) =
∫ ∞

0
dλ p(λ) exp(−λt), (3)

where the relaxation rate spectrum p(λ) satisfies the normal-
ization condition

∫ ∞
0 dλ p(λ) = 1, as well as p(λ) ≥ 0. The

moments of the relaxation rate spectrum are given by

λk =
∫ ∞

0
dλ λkp(λ) = (−1)kψ (k)(0), (4)

and their existence depends on the behavior of p(λ) for λ

→ ∞. For λk to exist the relaxation rate spectrum must decay
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at least as fast as p(λ) ∼ λ−(k + 1 + ε), with ε > 0. In this con-
text it is worthwhile noting that the relaxation rate spectrum
corresponding to the stretched Mittag-Leffler function, ψ(t)
= Eβ(− tβ), which describes the PACF of the fOU process1, 14

behaves for large λ as pfOU(λ) ∼ λ−(β+1). For this reason none
of moments λk with k > 0 exist and ψ(t) is non-analytic at
t = 0.

To construct a model for p(λ), we make the following
assumptions:
(a) For a protein of finite size, the PACF of each Cα-atom is

characterized by a smallest relaxation rate, ηmin. In ther-
mal equilibrium, a protein performs fluctuations about its
equilibrium structure, and to a first approximation pro-
tein dynamics can be described by diffusion in an effec-
tive multidimensional harmonic potential energy.23, 24 If
ωmin is the smallest normal frequency for this harmonic
potential, then ηmin = γ −1ω2

min is the minimal relaxation
rate for the PACF of a given Cα-atom, where γ > 0 is a
positive friction constant which is essentially determined
by the atomic density of the nearest neighbors. With in-
creasing system size ωmin and thus ηmin tend to zero.

(b) In the limit of infinite protein size, the PACF of each
Cα-atom exhibits anomalous relaxation,

ψ(t)
t→∞∼ t−β 0 < β < 1, (5)

which is characteristic for relaxation processes in large
scale polymeric networks.2 Due to the slow decay of
the PACFs, the corresponding average relaxation times,
τ exp =

∫ ∞
0 dt ψ(t), diverge.

(c) The PACFs should be analytical in t = 0, i.e., they should
representable by a Taylor series in this point. Since ψ(t)
is the moment generating function for p(λ), all moments
λk must exist.

In order to fulfill the above requirements, the relaxation
rate spectrum must have the general form

p(λ; α,β) = θ (λ − α)p(λ − α; β), (6)

where θ (.) is the Heaviside unit step function, α is a di-
mensionless minimal relaxation rate (α = ηminτ ), and p(λ; β)
must be constructed such that ψ(t) has the asymptotic form
(5) if α = 0. For this purpose, one can rely on the fact that the
Laplace transform of ψ(t) is the Stieltjes transform of p(λ),

ψ̂(s) =
∫ ∞

0
dµ

p(µ)
s + µ

, (7)

p(λ) = 1
π

lim
ε→0

%{ψ̂(−λ − iε)}, (8)

where ψ̂(s) =
∫ ∞

0 dt exp(−st)ψ(t) (R{s} > 0), and on a
Tauberian theorem,25, 26 according to which

ψ̂(s)
s→0∼ ,(1 − β)

s1−β
(9)

follows from relation (5) and vice versa. Combining relations
(8) and (9), one can conclude that p(λ; β) must have the gen-
eral form

p(λ; β) = f (λ)
sin(πβ)

π

,(1 − β)
λ1−β

(0 < β < 1), (10)

where f(λ) is a yet undetermined function fulfilling
limλ → 0f(λ) = C. The constant C must be chosen such
that

∫ ∞
0 p(λ; β) = 1. We note that limβ → 1sin (πβ),(1 − β)

= π . Relation (10) is a necessary and sufficient condition for a
slowly decaying PACF with the asymptotic form (5). To con-
struct p(λ) such that the existence of all moments λk and thus
the analyticity of ψ(t) in t = 0 is guaranteed we set

f (λ) = C exp(−βλ). (11)

The properly normalized relaxation rate spectrum then reads

p(λ; β) = λβ−1ββ exp(−βλ)
,(β)

, (12)

and ψ(t) is given by

ψ(t ; α,β) = exp(−αt)
(1 + t/β)β

. (13)

The corresponding cumulants, which are defined through

c
(k)
α,β = (−1)k

dk

dtk
ln(ψ(t ; α,β))

∣∣∣∣
t=0+

(14)

have the particularly simple form

c
(1)
α,β =1 + α, (15)

c
(k)
α,β = (k − 1)!

βk−1
, (k = 2, 3, . . .). (16)

From the form of ψ(t; α, β) and its cumulants, one derives the
consistent limits

lim
β→∞

ψ(t ; α,β) = exp(−[1 + α]t), (17)

lim
β→∞

p(λ; α,β) = δ(λ − [1 + α]), (18)

and we note in this context that ψ(t; 0, 1/(1 − q)) is the “Tsal-
lis q-exponential” which is considered in non-extensive sta-
tistical mechanics.27–29

To test our model, we performed a molecular dynam-
ics simulation of a lysozyme molecule in water for a subse-
quent analysis of the Cα PACFs with our model. The sim-
ulated system was set up by starting with the initial structure
193L of the Protein Data Bank (PDB).30 A total of 6775 water
molecules were added, resulting in a system of 22 295 atoms.
The simulations were performed using the NAMD program31

with the all-atom force field AMBER99SB (Ref. 32) and with
periodic boundary conditions. Electrostatic interactions were
computed using the particle mesh Ewald method.33 The inte-
gration time step was set to 1 fs and coordinates were saved
every 50 fs for further analysis. After a preliminary minimiza-
tion of the PDB structure, the system was first equilibrated at
constant temperature (298 K) and constant pressure (1 bar)
using a Langevin thermostat34 coupled with a Nose-Hoover
barostat.35 The equilibrated system was used for a production
run of 10 ns from which the PACFs of the Cα-atoms were
calculated. The normalized PACFs were fitted according to

c(t)
c(0)

≈ ψ(t/τ ; α,β). (19)
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FIG. 1. Four selected residues in the lysozyme molecule.

All fits show an excellent agreement with the simulation
data and we show here the results for four selected residues
which have been chosen according to their exposure to sol-
vent (see Fig. 1). Residues Ala 9 and Val 29 are buried in
α-helices, whereas Thr 47 and Gly 104 are located in loop re-
gions. Figure 2 shows the superposition of the simulated nor-
malized PACFs (dots) with the fits of ψ(t/τ ; α, β) (solid lines)
in form of a log-log plot. The fit parameters are given in the
plot. A coherent view of the results is obtained by correlating
the mean relaxation rate,

λ = (1 + α)τ−1, (20)

of all Cα-atoms and its spread,

σλ = (λ2 − λ
2
)1/2 = β−1/2τ−1, (21)

FIG. 2. Log-log plot of the simulated position autocorrelation functions for
the Cα-atoms of the residues shown in Figure 1 (dots) and fits of model (13)
(solid lines). For the simulated PACFs the smallest positive time argument is
t = 0.05 ps.

FIG. 3. Upper panel: Solvent accessible surface for the Cα-atoms in
lysozyme. Middle panel: Mean relaxation rate λ (blue line) and correspond-
ing standard deviation σλ (green line). Lower panel: Mean square position
fluctuation 〈u2〉 (blue line) and short time diffusion coefficient Ds (green
line). The additional graphics on top of the figure locates the secondary struc-
ture elements. Black rectangles indicate α-helices, grey rectangles short heli-
coidal motifs, and arrows beta sheets.

with the solvent-accessible surface of the respective residue.
Here, the total solvent-accessible surface of all atoms is con-
sidered. The fitted quantities λ and σλ for our model are, re-
spectively, given in the upper and middle panels of Fig. 3,
combining λ (blue line) and σλ (green line) in the middle
panel. On top of the figure we indicate the location of sec-
ondary structure elements and the vertical lines locate the four
selected residues displayed in Fig. 1. The results show that
the PACFs of Cα-atoms in solvent-exposed loop regions re-
lax one or two orders of magnitude more slowly than those
buried in helices, and the spread of the relaxation rates fol-
lows exactly the same trend, which is not trivial since the
mean relaxation and its spread are not described by the same
parameters. The backbone relaxation dynamics in secondary
structure elements is thus faster than the one in the more
floppy, solvent-exposed loop regions, and has a much stronger
non-exponential character. In this context, it is interesting to
look at the static position fluctuations of the Cα-atoms and at
the corresponding short-time diffusion coefficients, which de-
pend on both the amplitudes of the atomic motions and on the
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CONCLUSIONS

• The combination of physical models (GLE) and mathematics (asymptotic 
analysis) yields insight into the origin anomalous diffusion : The decay of 
the local cage of  neighbors represented by a memory function defines 
the type of diffusion.

• Free and confined diffusion can be handled

• Develop simple models to interpolate between the (known) short time 
and the long time regime of time correlation functions.
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