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Energy landscapes - a qualitative picture of 
protein structural dynamics

“Conformational substates”

The protein jumps between different minima of the multidimensional (free) 
energy landscape which correspond to similar “conformational substates” (H. 
Frauenfelder et al, Science 254, 1598 (1991)). 



Conformational substates

Non-exponential rebinding 
kinetics of CO

3



The distribution barrier heights corresponds to a distribution of 
rates for kinetic processes and conformational relaxation.  

Relaxation and time correlation functions have a multi-exponential 
form: 

For complex systems these functions decay for long times slowly 
with a power law and exhibit thus self-similarity:
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and establish a fractional differential equation for cuu(t), whose solution is
found to be [33]
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Here, the mean square position fluctuation is given by
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E�(z) denotes the Mittag–Leffler function [16], and the time scale ⌧ is defined
by the relation
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The Mittag–Leffler function is an entire function in the complex plane,
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and can be considered as a generalization of a normal exponential function.
For � = 1, the latter is retrieved, E1(z) = exp(z). According to (15), the
MSD takes the form
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and two regimes can be distinguished:

(a) The short time regime, where t ⌧ ⌧ . Here, one may use just the first
two terms of the series (26), such that
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that the MSD behaves as
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Since lim�!1 � (1 � �) = +1, the long-time tail vanishes for normal
diffusion. Here, the Mittag–Leffler function becomes a normal expo-
nential function, E1(z) = exp(z), and one retrieves the exponentially
relaxing DACF of the normal Ornstein–Uhlenbeck process.
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Relating energy landscapes to neutron scattering

Neutron scattering measures the dynamic structure factor of a 
condensed matter system

At moderate momentum transfers, q, the neutron intermediate 
scattering function gives access to the mean square displacement 
of the diffusing scattering atom 
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Motions in proteins are confined in space and the atomic positions 
can be referred to a well-defined mean positions,

The MSD for confined motions can be expressed in terms of the 
displacement autocorrelation function.

Confined di↵usion
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4. FRACTIONAL OU PROCESS AND APPLICATIONS 99

FIGURE IV.9. Left: Harmonic potential driving the OU process.
Right: Sketch of the corresponding “rugged” potential energy
surface leading to fractional Brownian motion.

proposed long time ago by Frauenfelder et al. [56]. It must be emphasised that
such an effective harmonic model can only describe protein dynamics close to
the equilibrium state, which is here characterised by a single global minimum
of the potential.

Using the general considerations concerning FFPEs made in Section 3.1 of
this chapter we can immediately write down the solution of the FFPE describ-
ing the fractional OU process. For this purpose we use expression (IV.57) and
insert the eigenfunctions of the Fokker-Planck operator (II.161) associated with
the standard OU process which are given in Eqs. (II.163) and (II.165). Defining
again the scaled positions ⇤ = x/

⌥
⇧x2⌃ and the scaled relaxation constant
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one obtains from (IV.57) [49, 50]
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Here E�(·) is the Mittag-Leffler function defined in Eq. (IV.53).

4.2. Autocorrelation function and its spectrum. The autocorrelation func-
tion of the scaled variable ⇤ is obtained from the general expression (IV.59),
using that here y ⌅ ⇤ and

⇧
d⇤ ⇤Pn(⇤) = �n,1. Noting that the autocorrelation

function of ⇤ equals the normalised autocorrelation function of x, ⌃(t) ⇤ c⇥⇥(t),
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Normal Ornstein-
Uhlenbeck process: 
Diffusion in a harmonic 
potential

Uhlenbeck, G. E. & 
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Physical Review 36, 
823 (1930).

1. Shao, Y.  Physica D: Nonlinear 
Phenomena 83, 461–477 
(1995).

2. Metzler, R. & Klafter, J.  Phys 
Rep 339, 1–77 (2000).

Fractional Ornstein-Uhlenbeck process as a model for 
self-similar atomic dynamics in proteins

Fractional Ornstein-
Uhlenbeck process: 
Anomalous Diffusion in 
a “rugged” harmonic 
potential



Fractional Fokker-Planck equation for conditional probability

Time evolution operator

6 Contribution-Kneller-corr-2 printed on June 7, 2015

position space. Knowing that limt!1 cuu(t) = 0 and that cuu(0) = h|u|2i is
the is the mean square position fluctuation, it follows from (15) that

lim
t!1

W (t) = 2h|u|2i. (17)

2.4.2. The model

A simple example for a concrete dynamical model is the fractional
Ornstein-Uhlenbeck (fOU) process [3, 32, 33] which describes anomalous
di↵usion of a Brownian particle in a harmonic potential,

V (u) =
K

2
|u|2 (K > 0). (18)

The corresponding transition probability density is described by the fFPE
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Here kB and T denote, respectively, the Boltzmann constant and the abso-
lute temperature. Due to the Hookean force, F (u) = �Ku, the equilibrium
probability density tends for long times to a Gaussian function of finite
width,

peq(u) =
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With these definitions the DACF for the fOU process is obtained via
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nuu · u0 p(u, t|u0, 0)peq(u0), (22)

but the full solution p(u, t|u0, 0) is not required for its computation. One
can, in fact, apply a similar trick as for the MSD of anomalous free di↵usion
and establish a fractional di↵erential equation for cuu(t), whose solution is
found to be [33]

cuu(t) = h|u|2iE�(�[t/⌧ ]�). (23)

Here the the mean square position fluctuation is given by

h|u|2i = nkBT/K, (24)

Fractional time derivative 
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Application 2 for ns dynamics : neutron scattering

Experimental dynamic structure factor of 
lysozyme under pressure for q=20 nm−1 
(dots).  

[1]" V. Calandrini  et al, Chem. Phys., vol. 345, pp. 289–297, 2008.
[2]" G. Kneller and V. Calandrini,  Biochimica et Biophysica Acta, vol. 1804, pp. 56–62, 2010.
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The convolution product (17) for the measured dynam-
ics structure factor can be written in the following form,
using S as the model (14),

Smðq;xÞ ¼ expð$q2hx2iÞ

% ðl & rÞ þ
X1

n¼1

q2nhx2in

n!2p
ðLD

a;sn & rÞðxÞ

( )

: ð21Þ

Here LD
a;snðxÞ ¼ ðLa;sn & lÞðxÞ is the convolution of a gener-

alized Lorentzian with a normal Lorentzian, for which an
analytical form can be given. Defining

~x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðDq2Þ2

q
; / ¼ argðDq2 þ ixÞ; ð22Þ

one obtains [33]

LD
a;sðxÞ ¼

2 ð~xsÞa cos/þ cosð½a$ 1)/Þf g
~x ð~xsÞa þ 2 cos a/þ ð~xsÞ$af g

: ð23Þ

In contrast to La,s, its convolution with a normal Lorentz-
ian stays finite at x = 0 if D > 0. This point is important if
one aims at evaluating the convolutions in (21) by the effi-
cient Fast Fourier Transform technique [34], as we did for
the fits presented in this article. With this method singular
functions cannot be treated and we refer to [33] to handle
the case of D = 0. It is worthwhile mentioning that the lat-
ter method can be easily generalized to include also global
diffusion, but the FFT technique is more efficient.

4.3. Results

We start the presentation of the results with the analysis
of the MD simulations. The most basic quantity to con-
sider is the time-dependent mean-square displacement.
Fig. 3 shows the neutron-weighted average atomic MSD
of lysozyme and the fit of the model function (3). The
atomic weights are chosen to be the squared incoherent

scattering lengths. We note that the MSD computed from
MD is the sum of the MSDs in the x-, y- and z-direction,
and expression (3) must thus be multiplied by 3 for the
fit. In the latter only two of the three parameters of the
model, s and a, were used and the mean square position
fluctuation hx2i has been fixed by a separate analysis of
the MD trajectory. The resulting fit parameters can be read
off from Table 3. It is important to emphasize that the
model parameters are quite strongly correlated, in particu-
lar hx2i and s. Therefore a good estimation of hx2i is crucial
even to estimate tendencies of s with pressure. In this con-
text we found that the direct calculation of hx2i from the
MD trajectories is less reliable than the calculation from
the EISF via expression (13) in the limit q ! 0. For ambi-
ent pressure this procedure gives a very similar result as the
direct calculation, but for p = 300 MPa the direct calcula-
tion yields a value which is about 10% smaller than the
one obtained from the EISF. This small difference leads
even to a slight shortening of s with pressure instead to
the lengthening seen in Table 3, and the fit is clearly less
good. If all parameters are left free in the fit, one also finds
a lengthening of s with pressure, and the resulting para-
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Fig. 3. Average atomic mean-square displacement of lysozyme in solution obtained fromMD simulation at p = 0.1 MPa and at p = 300 MPa (solid lines).
The broken lines correspond to a fit of the model according to expression (3). See Table 3 for the resulting parameters. More explanations are given in the
text.

Table 3
Parameters for the fractional Ornstein–Uhlenbeck process obtained from
fits to the simulated MSDs and to the simulated intermediate scattering
functions

0.1 MPa 300 MPa

hx2i (nm2) a s (ps) hx2i (nm2) a s (ps)

MSD 6.17 · 10$3 0.54 31.75 4.74 · 10$3 0.54 39.08

Finc(6 nm, t) 4.68 · 10$3 0.53 13.48 3.94 · 10$3 0.50 19.43
Finc(10 nm, t) 3.96 · 10$3 0.51 8.86 3.28 · 10$3 0.49 13.58
Finc(20 nm, t) 2.57 · 10$3 0.52 2.53 2.21 · 10$3 0.45 4.39
Finc(22 nm, t) 2.41 · 10$3 0.50 2.3 2.08 · 10$3 0.44 3.64

The value of hx2i is fixed according to Eq. (13).
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ics structure factor can be written in the following form,
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Smðq;xÞ ¼ expð$q2hx2iÞ

% ðl & rÞ þ
X1

n¼1

q2nhx2in

n!2p
ðLD

a;sn
& rÞðxÞ

( )

: ð21Þ

Here LD
a;sn
ðxÞ ¼ ðLa;sn & lÞðxÞ is the convolution of a gener-

alized Lorentzian with a normal Lorentzian, for which an
analytical form can be given. Defining
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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In contrast to La,s, its convolution with a normal Lorentz-
ian stays finite at x = 0 if D > 0. This point is important if
one aims at evaluating the convolutions in (21) by the effi-
cient Fast Fourier Transform technique [34], as we did for
the fits presented in this article. With this method singular
functions cannot be treated and we refer to [33] to handle
the case of D = 0. It is worthwhile mentioning that the lat-
ter method can be easily generalized to include also global
diffusion, but the FFT technique is more efficient.

4.3. Results

We start the presentation of the results with the analysis
of the MD simulations. The most basic quantity to con-
sider is the time-dependent mean-square displacement.
Fig. 3 shows the neutron-weighted average atomic MSD
of lysozyme and the fit of the model function (3). The
atomic weights are chosen to be the squared incoherent

scattering lengths. We note that the MSD computed from
MD is the sum of the MSDs in the x-, y- and z-direction,
and expression (3) must thus be multiplied by 3 for the
fit. In the latter only two of the three parameters of the
model, s and a, were used and the mean square position
fluctuation hx2i has been fixed by a separate analysis of
the MD trajectory. The resulting fit parameters can be read
off from Table 3. It is important to emphasize that the
model parameters are quite strongly correlated, in particu-
lar hx2i and s. Therefore a good estimation of hx2i is crucial
even to estimate tendencies of s with pressure. In this con-
text we found that the direct calculation of hx2i from the
MD trajectories is less reliable than the calculation from
the EISF via expression (13) in the limit q! 0. For ambi-
ent pressure this procedure gives a very similar result as the
direct calculation, but for p = 300 MPa the direct calcula-
tion yields a value which is about 10% smaller than the
one obtained from the EISF. This small difference leads
even to a slight shortening of s with pressure instead to
the lengthening seen in Table 3, and the fit is clearly less
good. If all parameters are left free in the fit, one also finds
a lengthening of s with pressure, and the resulting para-
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Fig. 3. Average atomic mean-square displacement of lysozyme in solution obtained from MD simulation at p = 0.1 MPa and at p = 300 MPa (solid lines).
The broken lines correspond to a fit of the model according to expression (3). See Table 3 for the resulting parameters. More explanations are given in the
text.

Table 3
Parameters for the fractional Ornstein–Uhlenbeck process obtained from
fits to the simulated MSDs and to the simulated intermediate scattering
functions

0.1 MPa 300 MPa

hx2i (nm2) a s (ps) hx2i (nm2) a s (ps)

MSD 6.17 · 10$3 0.54 31.75 4.74 · 10$3 0.54 39.08

Finc(6 nm, t) 4.68 · 10$3 0.53 13.48 3.94 · 10$3 0.50 19.43
Finc(10 nm, t) 3.96 · 10$3 0.51 8.86 3.28 · 10$3 0.49 13.58
Finc(20 nm, t) 2.57 · 10$3 0.52 2.53 2.21 · 10$3 0.45 4.39
Finc(22 nm, t) 2.41 · 10$3 0.50 2.3 2.08 · 10$3 0.44 3.64

The value of hx2i is fixed according to Eq. (13).
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Application 1: Lysozyme under pressure by QENS and 
MD simulations
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Fractional protein dynamics seen by nuclear magnetic resonance
spectroscopy: Relating molecular dynamics simulation and experiment

Vania Calandrini,1,2,a! Daniel Abergel,3,b! and Gerald R. Kneller1,2,4,c!

1Centre de Biophysique Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans, France
2Synchrotron Soleil, L’Orme de Merisiers, B.P. 48, 91192 Gif-sur-Yvette, France
3Département de Chimie, UMR 7203 CNRS et Université Pierre et Marie Curie, Ecole Normale Supérieure,
24 rue Lhomond, 75231 Paris Cedex 05, France
4Université d’Orléans, Chateau de la Source-Av. du Parc Floral, 45067 Orléans, France

!Received 23 April 2010; accepted 13 August 2010; published online 11 October 2010"

We propose a fractional Brownian dynamics model for time correlation functions characterizing the
internal dynamics of proteins probed by NMR relaxation spectroscopy. The time correlation
functions are represented by a broad distribution of exponential functions which are characterized
by two parameters. We show that the model describes well the restricted rotational motion of N–H
vectors in the amide groups of lysozyme obtained from molecular dynamics simulation and that
reliable predictions of experimental relaxation rates can be obtained on that basis. © 2010 American
Institute of Physics. #doi:10.1063/1.3486195$

I. INTRODUCTION

NMR relaxation spectroscopy has proven to be a unique
approach for a site-specific investigation of both global tum-
bling and internal motions of proteins. The molecular mo-
tions modulate the magnetic interactions between the nuclear
spins and lead for each nuclear spin to a relaxation behavior
which reflects its environment. Since its first applications to
the study of protein dynamics, a variety of techniques has
been proposed for the investigation of both backbone and
side chain dynamics. Among them, relaxation measurements
of backbone amide 15N nuclei, which are routinely studied
by NMR, are most widespread.

The relationship between microscopic motions and spin
relaxation rates is provided by Redfield’s theory.1 In the case
of backbone amide 15N, relaxation primarily occurs through
fluctuations of the 15N– 1H-dipole-dipole interactions with
the directly bonded amide proton and of the 15N chemical
shift anisotropy tensor, which is commonly assumed to be
axially symmetric with its axis parallel to the NH bond !for a
general reference, see Ref. 2". The relaxation rates of the 15N
nuclei are determined by time correlation functions !TCFs"
of the form

Cii!t" = %P2!!i!t" · !i!0""& , !1"

where !i!t" is a unit vector pointing along the NH bond of
residue i and P2! . " is the second order Legendre polynomial.
Longitudinal and transverse 15N relaxation rates !R1i and
R2i", and 15N'1H( heteronuclear Overhauser enhancement
!!NHi" are expressed as linear combinations of the spectral
density functions Jii!"", the Fourier transforms of the Cii!t",
which are evaluated at the Larmor frequencies 0, "H, "N,
and "H#N)"H#"N

!NHi = 1 +
$H

$N

d2

R1
!6Jii!"H+N" − Jii!"H−N"" , !2a"

R1i = d2!3Jii!"N" + Jii!"H−N" + 6Jii!"H+N"" + 2c2Jii!"N" ,

!2b"

R2i = d2*2Jii!0" +
3
2

Jii!"N" +
1
2

Jii!"H−N" + 3Jii!"H"

+ 3Jii!"H+N"+ + c2*4
3

Jii!0" + Jii!"N"+ . !2c"

Here d=%0&$H$N /4,10'%rNH
3 & and c=$NB0()N /,15. The

parameters $H and $N are the gyromagnetic ratios of 15N and
1H atoms, respectively, %0 is the vacuum magnetic suscepti-
bility, & is the reduced Planck constant, and ()N is the 15N
chemical shift anisotropy. The NH distance is considered
constant and is fixed to its average value %rNH&.

The Redfield equations show that relaxation measure-
ments probe the relaxation dynamics of a selected nuclear
spin at only five selected frequencies. It is therefore not pos-
sible in practice to obtain a detailed picture about the internal
and global dynamics of proteins by a numerical reconstruc-
tion of Jii!"" from NMR data. In the model-free !MF" ap-
proach by Lipari and Szabo3 the assumption is made that the
internal reorientational correlation function decays exponen-
tially. Various studies of protein dynamics, spanning time
scales from picoseconds to hours4–10 give, however, evidence
that internal protein dynamics is characterized by strongly
nonexponential TCFs which may be described by non-
Markovian stochastic models, such as fractional Brownian
dynamics !fBD" and the continuous time random walk
!CTRW".11 The TCFs resulting from such models are char-
acterized by a superposition of exponential functions, with a
broad spectrum of decay rates. In the context of NMR spec-
troscopy we have recently shown12 that these relaxation

a"Electronic mail: vania.calandrini@cnrs-orleans.fr.
b"Electronic mail: daniel.abergel@ens.fr.
c"Electronic mail: gerald.kneller@cnrs-orleans.fr.
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Limits of fractional Brownian Dynamics models

W (t) t!0⇠ hv2it2 Ballistic regime

W (t)
t!1⇠ 2D�t

�

Self-similarity cannot be true on arbitrarily small time scales, 
but must be seen as a model which holds asymptotically.
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continuous time random walk model,30, 37 and an illustrative
interpretation of the memory kernel in FLEs for the descrip-
tion of subdiffusion in viscoelastic media can be found in
Ref. 38.

In this paper, a theoretical description of anomalous dif-
fusion processes is developed which combines a formally
exact description of single particle dynamics within the
framework of the generalized Langevin equation39, 40 with
an asymptotic analysis of the relevant observables for long
times. Memory effects enter here naturally through the mem-
ory function of the velocity autocorrelation function of the
diffusing particle, which is in turn related to the MSD. The
aim of the paper is to derive generalized Kubo relations for
the relevant transport coefficients, which hold for both normal
and anomalous diffusion, and to formulate general conditions
for anomalous diffusion, enabling a simple physical interpre-
tation without imposing a particular model.

The paper is organized as follows: Section II treats the
derivation of generalized Kubo relations, starting from a the-
orem for asymptotic analysis which is applied to the MSD of
a diffusing particle. In a second step general conditions for
anomalous diffusion are derived, where spatially unconfined
and confined diffusion are distinguished.

In Sec. III, the results are illustrated with semi-analytical
examples and the paper is concluded by a short résumé and
an outlook.

II. THEORY

A. Kubo relation for Dα

Kubo relations establish a connection between macro-
scopic transport coefficients and the microscopic Hamiltonian
dynamics of the system under consideration.41 Each trans-
port coefficient is expressed by an integral over a correspond-
ing time correlation function. In case of diffusion processes
one considers the velocity autocorrelation function (VACF),
cvv (t) = ⟨v(t) · v(0)⟩, and the diffusion coefficient is given by
the well-known relation

D =
∫ ∞

0
dt cvv (t), (2)

if one assumes unconfined normal diffusion.
A generalization of expression (2) covering both normal

and anomalous diffusion can be derived from an appropriate
asymptotic analysis of the MSD. Assuming isotropic diffu-
sion, its asymptotic form may be written as

W (t)
t→∞∼ 2Dα L(t)tα (0 ≤ α < 2), (3)

where L(t) fulfills the conditions

lim
t→∞

L(t) = 1, (4)

lim
t→∞

t
d L(t)

dt
= 0. (5)

For physical reasons L(t) must be positive. The ballistic
asymptotic regime, where α = 2, is not considered in the fol-
lowing. By construction, L(t) belongs to the class of slowly

varying functions,42, 43 which are defined through the weaker
condition limt→∞ L(λt)/L(t) = 1, with λ > 0.

The general asymptotic form (3) of the MSD yields a di-
rect link to a Tauberian theorem due to Hardy, Littlewood, and
Karamata (HLK),42, 43 which establishes a relation between
slowly growing functions and their Laplace transforms,

h(t)
t→∞∼ L(t)tρ ⇔ ĥ(s)

s→0∼ L(1/s)
$(ρ + 1)

sρ+1
(ρ > −1).

(6)
Here ĥ(s) =

∫ ∞
0 dt exp(−st)h(t) (ℜ{s} > 0) denotes the

Laplace transform of h(t). Noting that ĥ(0) =
∫ ∞

0 dt h(t), the
theorem can be intuitively understood. It states that the di-
vergence of the integral

∫ t
0 dτ h(τ ) as t approaches infinity is

reflected in the divergence of the Laplace transform of h(t), as
s approaches zero. From the asymptotic form (3) of the MSD
and the HLK theorem one can conclude that

Ŵ (s)
s→0∼ 2Dα L(1/s)

$(α + 1)
sα+1

. (7)

The relation of this expression to the VACF of the diffusing
particle follows from the convolution relation44

W (t) = 2
∫ t

0
dt ′ (t − t ′)cvv (t ′), (8)

which translates by Laplace transform into

Ŵ (s) = 2 ĉvv (s)
s2

. (9)

Comparison with Eq. (7) shows that

ĉvv (s)
s→0∼ Dα$(α + 1)L(1/s)s1−α. (10)

From expression (10) one can derive a generalized Kubo rela-
tion for the fractional diffusion constant which holds for both
normal and anomalous diffusion processes. The first step con-
sists in solving Eq. (10) for Dα . Using that lims→0 L(1/s) = 1
on account of Eq. (4), one obtains

Dα = lim
s→0

sα−1ĉvv (s)/$(1 + α). (11)

In a second step one recognizes that sα−1ĉvv (s) is the Laplace
transform of the fractional derivative of order α − 1 of
cvv (t) with respect to time. Writing ρ = n − β, where n
= 0, 1, 2, . . . is an integer number and β ≥ 0 is real, the frac-
tional Riemann-Liouville derivative of order ρ of an arbitrary
function g is defined through45

0∂
ρ
t g(t) = ∂

(−)n
t

∫ t

0
dt ′ (t − t ′)β−1

$(β)
g(t ′). (12)

The symbol ∂
(−)n
t denotes a normal left derivative of order n

and negative values of ρ indicate fractional integration. The
index “0” in the symbol for the fractional derivative on the
left-hand side in Eq. (12) refers to the lower limit in the inte-
gral on the right-hand side. Since lims→0 ĝ(s) =

∫ ∞
0 dt g(t),

one finds that the fractional diffusion coefficient is given by
the relation

Dα = 1
$(1 + α)

∫ ∞

0
dt 0∂

α−1
t cvv (t). (13)

For α = 1 the standard Kubo expression (2) for the diffusion
constant is retrieved and for the case α = 0, which describes
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continuous time random walk model,30, 37 and an illustrative
interpretation of the memory kernel in FLEs for the descrip-
tion of subdiffusion in viscoelastic media can be found in
Ref. 38.

In this paper, a theoretical description of anomalous dif-
fusion processes is developed which combines a formally
exact description of single particle dynamics within the
framework of the generalized Langevin equation39, 40 with
an asymptotic analysis of the relevant observables for long
times. Memory effects enter here naturally through the mem-
ory function of the velocity autocorrelation function of the
diffusing particle, which is in turn related to the MSD. The
aim of the paper is to derive generalized Kubo relations for
the relevant transport coefficients, which hold for both normal
and anomalous diffusion, and to formulate general conditions
for anomalous diffusion, enabling a simple physical interpre-
tation without imposing a particular model.

The paper is organized as follows: Section II treats the
derivation of generalized Kubo relations, starting from a the-
orem for asymptotic analysis which is applied to the MSD of
a diffusing particle. In a second step general conditions for
anomalous diffusion are derived, where spatially unconfined
and confined diffusion are distinguished.

In Sec. III, the results are illustrated with semi-analytical
examples and the paper is concluded by a short résumé and
an outlook.

II. THEORY

A. Kubo relation for Dα

Kubo relations establish a connection between macro-
scopic transport coefficients and the microscopic Hamiltonian
dynamics of the system under consideration.41 Each trans-
port coefficient is expressed by an integral over a correspond-
ing time correlation function. In case of diffusion processes
one considers the velocity autocorrelation function (VACF),
cvv (t) = ⟨v(t) · v(0)⟩, and the diffusion coefficient is given by
the well-known relation

D =
∫ ∞

0
dt cvv (t), (2)

if one assumes unconfined normal diffusion.
A generalization of expression (2) covering both normal

and anomalous diffusion can be derived from an appropriate
asymptotic analysis of the MSD. Assuming isotropic diffu-
sion, its asymptotic form may be written as

W (t)
t→∞∼ 2Dα L(t)tα (0 ≤ α < 2), (3)

where L(t) fulfills the conditions

lim
t→∞

L(t) = 1, (4)

lim
t→∞

t
d L(t)

dt
= 0. (5)

For physical reasons L(t) must be positive. The ballistic
asymptotic regime, where α = 2, is not considered in the fol-
lowing. By construction, L(t) belongs to the class of slowly

varying functions,42, 43 which are defined through the weaker
condition limt→∞ L(λt)/L(t) = 1, with λ > 0.

The general asymptotic form (3) of the MSD yields a di-
rect link to a Tauberian theorem due to Hardy, Littlewood, and
Karamata (HLK),42, 43 which establishes a relation between
slowly growing functions and their Laplace transforms,

h(t)
t→∞∼ L(t)tρ ⇔ ĥ(s)

s→0∼ L(1/s)
$(ρ + 1)

sρ+1
(ρ > −1).

(6)
Here ĥ(s) =

∫ ∞
0 dt exp(−st)h(t) (ℜ{s} > 0) denotes the

Laplace transform of h(t). Noting that ĥ(0) =
∫ ∞

0 dt h(t), the
theorem can be intuitively understood. It states that the di-
vergence of the integral

∫ t
0 dτ h(τ ) as t approaches infinity is

reflected in the divergence of the Laplace transform of h(t), as
s approaches zero. From the asymptotic form (3) of the MSD
and the HLK theorem one can conclude that

Ŵ (s)
s→0∼ 2Dα L(1/s)

$(α + 1)
sα+1

. (7)

The relation of this expression to the VACF of the diffusing
particle follows from the convolution relation44

W (t) = 2
∫ t

0
dt ′ (t − t ′)cvv (t ′), (8)

which translates by Laplace transform into

Ŵ (s) = 2 ĉvv (s)
s2

. (9)

Comparison with Eq. (7) shows that

ĉvv (s)
s→0∼ Dα$(α + 1)L(1/s)s1−α. (10)

From expression (10) one can derive a generalized Kubo rela-
tion for the fractional diffusion constant which holds for both
normal and anomalous diffusion processes. The first step con-
sists in solving Eq. (10) for Dα . Using that lims→0 L(1/s) = 1
on account of Eq. (4), one obtains

Dα = lim
s→0

sα−1ĉvv (s)/$(1 + α). (11)

In a second step one recognizes that sα−1ĉvv (s) is the Laplace
transform of the fractional derivative of order α − 1 of
cvv (t) with respect to time. Writing ρ = n − β, where n
= 0, 1, 2, . . . is an integer number and β ≥ 0 is real, the frac-
tional Riemann-Liouville derivative of order ρ of an arbitrary
function g is defined through45

0∂
ρ
t g(t) = ∂

(−)n
t

∫ t

0
dt ′ (t − t ′)β−1

$(β)
g(t ′). (12)

The symbol ∂
(−)n
t denotes a normal left derivative of order n

and negative values of ρ indicate fractional integration. The
index “0” in the symbol for the fractional derivative on the
left-hand side in Eq. (12) refers to the lower limit in the inte-
gral on the right-hand side. Since lims→0 ĝ(s) =

∫ ∞
0 dt g(t),

one finds that the fractional diffusion coefficient is given by
the relation

Dα = 1
$(1 + α)

∫ ∞

0
dt 0∂

α−1
t cvv (t). (13)

For α = 1 the standard Kubo expression (2) for the diffusion
constant is retrieved and for the case α = 0, which describes
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We present a model for the local diffusion-relaxation dynamics of the Cα-atoms in proteins describ-
ing both the diffusive short-time dynamics and the asymptotic long-time relaxation of the position
autocorrelation functions. The relaxation rate spectra of the latter are represented by shifted gamma
distributions, where the standard gamma distribution describes anomalous slow relaxation in macro-
molecular systems of infinite size and the shift accounts for a smallest local relaxation rate in macro-
molecules of finite size. The resulting autocorrelation functions are analytic for any time t ≥ 0. Using
results from a molecular dynamics simulation of lysozyme, we demonstrate that the model fits the
position autocorrelation functions of the Cα-atoms exceptionally well and reveals moreover a strong
correlation between the residue’s solvent-accessible surface and the fitted model parameters. © 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4718380]

Over the recent years, the multi-scale aspect of the in-
ternal dynamics of proteins and macromolecular systems in
general has attracted considerable interest on both the ex-
perimental and theoretical sides.1–9 A characteristic feature
of time correlation functions (TCFs) related to internal diffu-
sive motions is their strongly non-exponential decay. A clas-
sical empirical model is the stretched exponential function,
c(t) = c(0) exp (− [t/τ ]β) (0 < β ≤ 1), which has been used
to model, for example, the kinetics of protein folding.10 The
description of internal protein dynamics through a fractional
Ornstein-Uhlenbeck (fOU) process11–13 leads to the stretched
Mittag-Leffler (ML) function, c(t) = c(0)Eβ(− [t/τ ]β) (0 < β

≤ 1), which has proven to be a good model for the TCF
of position and distance fluctuations in proteins.3, 4, 14, 15 The
ML function is an entire function in the complex plane,16, 17

Eβ(z) =
∑∞

n=0 zn/$(1 + βn), and includes the exponential
function as a special case, E1(z) = exp (z). Since the mod-
els cited above capture the essential features of the measured
correlation functions by a few parameters, they have undoubt-
edly their merits as simple models for an ad hoc interpretation
of experimental data. They have, however, also the unpleas-
ant feature of becoming unphysical for short times. Due to
the “stretched” argument ∝tβ the time derivatives c(n)(0+) do
not exist if 0 < β < 1, although they should exist whenever
the time evolution of the dynamical system under consider-
ation is described by equations of motion.18–20 Consider, for
example, the diffusive motion of an atom in a dense molecular
system in thermal equilibrium. Here, the dynamical variable
is the deviation of the atom with respect to its mean position,
u = x − ⟨x⟩, and the relevant TCF is its position autocor-
relation function (PACF), c(t) = ⟨u · exp(Lt)u⟩. The symbol
⟨. . . ⟩ denotes an equilibrium ensemble average and L is the

a)Electronic mail: gerald.kneller@cnrs-orleans.fr.

time evolution operator for the whole system. It follows from
the construction of the PACFs that c(n)(0+) = ⟨u · Lnu⟩ are
well-defined ensemble averages which should exist. For non-
Hamiltonian diffusive dynamics, where L is a many-particle
Smoluchowski operator,21, 22

Ds = 1
2

d⟨[u(t) − u(0)]2⟩
dt

∣∣∣∣
t=0

= −c(1)(0+), (1)

defines in particular the short-time diffusion coefficient.
In this paper, we develop a realistic minimal model for

the backbone dynamics of proteins which leads to regular
PACFs for the Cα-atoms describing both the diffusive short-
time dynamics and the relaxation for long times. We assume
that u(t) is described by a stationary stochastic process and
write its autocorrelation function in the form

c(t) = ⟨u2⟩ψ(t/τ ), (2)

where ψ(.) is the normalized PACF for a dimensionless time
argument, with ψ(0) = 1, and τ > 0 sets the time scale. For
convenience we set τ = 1 in the following. To express the
multi-scale character of protein dynamics we write the PACFs
as a superposition of exponential functions,

ψ(t) =
∫ ∞

0
dλ p(λ) exp(−λt), (3)

where the relaxation rate spectrum p(λ) satisfies the normal-
ization condition

∫ ∞
0 dλ p(λ) = 1, as well as p(λ) ≥ 0. The

moments of the relaxation rate spectrum are given by

λk =
∫ ∞

0
dλ λkp(λ) = (−1)kψ (k)(0), (4)

and their existence depends on the behavior of p(λ) for λ

→ ∞. For λk to exist the relaxation rate spectrum must decay

0021-9606/2012/136(19)/191101/4/$30.00 © 2012 American Institute of Physics136, 191101-1
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Diffusion as an asymptotic dynamical regime

The laws for (anomalous) diffusion hold in the asymptotic regime
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continuous time random walk model,30, 37 and an illustrative
interpretation of the memory kernel in FLEs for the descrip-
tion of subdiffusion in viscoelastic media can be found in
Ref. 38.

In this paper, a theoretical description of anomalous dif-
fusion processes is developed which combines a formally
exact description of single particle dynamics within the
framework of the generalized Langevin equation39, 40 with
an asymptotic analysis of the relevant observables for long
times. Memory effects enter here naturally through the mem-
ory function of the velocity autocorrelation function of the
diffusing particle, which is in turn related to the MSD. The
aim of the paper is to derive generalized Kubo relations for
the relevant transport coefficients, which hold for both normal
and anomalous diffusion, and to formulate general conditions
for anomalous diffusion, enabling a simple physical interpre-
tation without imposing a particular model.

The paper is organized as follows: Section II treats the
derivation of generalized Kubo relations, starting from a the-
orem for asymptotic analysis which is applied to the MSD of
a diffusing particle. In a second step general conditions for
anomalous diffusion are derived, where spatially unconfined
and confined diffusion are distinguished.

In Sec. III, the results are illustrated with semi-analytical
examples and the paper is concluded by a short résumé and
an outlook.

II. THEORY

A. Kubo relation for Dα

Kubo relations establish a connection between macro-
scopic transport coefficients and the microscopic Hamiltonian
dynamics of the system under consideration.41 Each trans-
port coefficient is expressed by an integral over a correspond-
ing time correlation function. In case of diffusion processes
one considers the velocity autocorrelation function (VACF),
cvv (t) = ⟨v(t) · v(0)⟩, and the diffusion coefficient is given by
the well-known relation

D =
∫ ∞

0
dt cvv (t), (2)

if one assumes unconfined normal diffusion.
A generalization of expression (2) covering both normal

and anomalous diffusion can be derived from an appropriate
asymptotic analysis of the MSD. Assuming isotropic diffu-
sion, its asymptotic form may be written as

W (t)
t→∞∼ 2Dα L(t)tα (0 ≤ α < 2), (3)

where L(t) fulfills the conditions

lim
t→∞

L(t) = 1, (4)

lim
t→∞

t
d L(t)

dt
= 0. (5)

For physical reasons L(t) must be positive. The ballistic
asymptotic regime, where α = 2, is not considered in the fol-
lowing. By construction, L(t) belongs to the class of slowly

varying functions,42, 43 which are defined through the weaker
condition limt→∞ L(λt)/L(t) = 1, with λ > 0.

The general asymptotic form (3) of the MSD yields a di-
rect link to a Tauberian theorem due to Hardy, Littlewood, and
Karamata (HLK),42, 43 which establishes a relation between
slowly growing functions and their Laplace transforms,

h(t)
t→∞∼ L(t)tρ ⇔ ĥ(s)

s→0∼ L(1/s)
$(ρ + 1)

sρ+1
(ρ > −1).

(6)
Here ĥ(s) =

∫ ∞
0 dt exp(−st)h(t) (ℜ{s} > 0) denotes the

Laplace transform of h(t). Noting that ĥ(0) =
∫ ∞

0 dt h(t), the
theorem can be intuitively understood. It states that the di-
vergence of the integral

∫ t
0 dτ h(τ ) as t approaches infinity is

reflected in the divergence of the Laplace transform of h(t), as
s approaches zero. From the asymptotic form (3) of the MSD
and the HLK theorem one can conclude that

Ŵ (s)
s→0∼ 2Dα L(1/s)

$(α + 1)
sα+1

. (7)

The relation of this expression to the VACF of the diffusing
particle follows from the convolution relation44

W (t) = 2
∫ t

0
dt ′ (t − t ′)cvv (t ′), (8)

which translates by Laplace transform into

Ŵ (s) = 2 ĉvv (s)
s2

. (9)

Comparison with Eq. (7) shows that

ĉvv (s)
s→0∼ Dα$(α + 1)L(1/s)s1−α. (10)

From expression (10) one can derive a generalized Kubo rela-
tion for the fractional diffusion constant which holds for both
normal and anomalous diffusion processes. The first step con-
sists in solving Eq. (10) for Dα . Using that lims→0 L(1/s) = 1
on account of Eq. (4), one obtains

Dα = lim
s→0

sα−1ĉvv (s)/$(1 + α). (11)

In a second step one recognizes that sα−1ĉvv (s) is the Laplace
transform of the fractional derivative of order α − 1 of
cvv (t) with respect to time. Writing ρ = n − β, where n
= 0, 1, 2, . . . is an integer number and β ≥ 0 is real, the frac-
tional Riemann-Liouville derivative of order ρ of an arbitrary
function g is defined through45

0∂
ρ
t g(t) = ∂

(−)n
t

∫ t

0
dt ′ (t − t ′)β−1

$(β)
g(t ′). (12)

The symbol ∂
(−)n
t denotes a normal left derivative of order n

and negative values of ρ indicate fractional integration. The
index “0” in the symbol for the fractional derivative on the
left-hand side in Eq. (12) refers to the lower limit in the inte-
gral on the right-hand side. Since lims→0 ĝ(s) =

∫ ∞
0 dt g(t),

one finds that the fractional diffusion coefficient is given by
the relation

Dα = 1
$(1 + α)

∫ ∞

0
dt 0∂

α−1
t cvv (t). (13)

For α = 1 the standard Kubo expression (2) for the diffusion
constant is retrieved and for the case α = 0, which describes
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MSDs for confined (anomalous) diffusion

t/τ

W(t)

does, however, certainly not imply that the di↵usion process is anomalous. In contrast to

unconfined di↵usion, where the anomalies refer to a deviation of the MSD from an asymptot-

ically linear regime, the distinction between normal and anomalous confined di↵usion must

be made on the basis of the function L(t). The latter describes how the MSD and the memory

function converge to their respective plateau values W (1) = 2hu2i and (1) = hv2i/hu2i.

A natural way to define anomalous spatially confined di↵usion is to consider the relaxation

time of the shifted memory function, (t)� (1), which is given by

⌧c =

Z 1

0

dt
(t)� (1)

(0)� (1)
. (34)

Normal di↵usion may then be characterized by a finite value of ⌧c, whereas an infinite

relaxation time indicates long time memory e↵ects leading to anomalous di↵usion. In this

sense the situation corresponds to unconfined subdi↵usion, where
R t

0
d⌧ (⌧) ⌘ g(t) diverges

for t ! 1. To find out if ⌧c diverges, it su�ces to consider the asymptotic form of (t) �

(1). According to (33) we have for ↵ = 0

(t)
t!1⇠ hv2i

hu2i
1

L(t)
, (35)

which confirms that (t) tends to the plateau value (25). In view of (35) ⌧c will diverge if

1

L(t)
� 1

t!1⇠ C t�� and 0 < �  1, (36)

where C is a constant. Any faster decay leads to a finite value for ⌧c.

E. Cage model

The asymptotic forms of the VACF and its memory function which have been derived

above have a simple physical interpretation in terms of the “cage model” for the dynamics of

particles di↵using in liquids.46 Its meaning is easily understood by considering the extreme

case, where the memory function is constant, (t) ⌘ ⌦2. The corresponding VACF has

then the form cvv(t) = hv2i cos ⌦t, reflecting an ongoing “rattling motion” in the persistent

cage of nearest neighbors. In real systems the latter will exist for more or less long time

and it depends on its persistence which type of di↵usion is seen. The following discussion

illustrates this point.
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We present a model for the local diffusion-relaxation dynamics of the Cα-atoms in proteins describ-
ing both the diffusive short-time dynamics and the asymptotic long-time relaxation of the position
autocorrelation functions. The relaxation rate spectra of the latter are represented by shifted gamma
distributions, where the standard gamma distribution describes anomalous slow relaxation in macro-
molecular systems of infinite size and the shift accounts for a smallest local relaxation rate in macro-
molecules of finite size. The resulting autocorrelation functions are analytic for any time t ≥ 0. Using
results from a molecular dynamics simulation of lysozyme, we demonstrate that the model fits the
position autocorrelation functions of the Cα-atoms exceptionally well and reveals moreover a strong
correlation between the residue’s solvent-accessible surface and the fitted model parameters. © 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4718380]

Over the recent years, the multi-scale aspect of the in-
ternal dynamics of proteins and macromolecular systems in
general has attracted considerable interest on both the ex-
perimental and theoretical sides.1–9 A characteristic feature
of time correlation functions (TCFs) related to internal diffu-
sive motions is their strongly non-exponential decay. A clas-
sical empirical model is the stretched exponential function,
c(t) = c(0) exp (− [t/τ ]β) (0 < β ≤ 1), which has been used
to model, for example, the kinetics of protein folding.10 The
description of internal protein dynamics through a fractional
Ornstein-Uhlenbeck (fOU) process11–13 leads to the stretched
Mittag-Leffler (ML) function, c(t) = c(0)Eβ(− [t/τ ]β) (0 < β

≤ 1), which has proven to be a good model for the TCF
of position and distance fluctuations in proteins.3, 4, 14, 15 The
ML function is an entire function in the complex plane,16, 17

Eβ(z) =
∑∞

n=0 zn/$(1 + βn), and includes the exponential
function as a special case, E1(z) = exp (z). Since the mod-
els cited above capture the essential features of the measured
correlation functions by a few parameters, they have undoubt-
edly their merits as simple models for an ad hoc interpretation
of experimental data. They have, however, also the unpleas-
ant feature of becoming unphysical for short times. Due to
the “stretched” argument ∝tβ the time derivatives c(n)(0+) do
not exist if 0 < β < 1, although they should exist whenever
the time evolution of the dynamical system under consider-
ation is described by equations of motion.18–20 Consider, for
example, the diffusive motion of an atom in a dense molecular
system in thermal equilibrium. Here, the dynamical variable
is the deviation of the atom with respect to its mean position,
u = x − ⟨x⟩, and the relevant TCF is its position autocor-
relation function (PACF), c(t) = ⟨u · exp(Lt)u⟩. The symbol
⟨. . . ⟩ denotes an equilibrium ensemble average and L is the

a)Electronic mail: gerald.kneller@cnrs-orleans.fr.

time evolution operator for the whole system. It follows from
the construction of the PACFs that c(n)(0+) = ⟨u · Lnu⟩ are
well-defined ensemble averages which should exist. For non-
Hamiltonian diffusive dynamics, where L is a many-particle
Smoluchowski operator,21, 22

Ds = 1
2

d⟨[u(t) − u(0)]2⟩
dt

∣∣∣∣
t=0

= −c(1)(0+), (1)

defines in particular the short-time diffusion coefficient.
In this paper, we develop a realistic minimal model for

the backbone dynamics of proteins which leads to regular
PACFs for the Cα-atoms describing both the diffusive short-
time dynamics and the relaxation for long times. We assume
that u(t) is described by a stationary stochastic process and
write its autocorrelation function in the form

c(t) = ⟨u2⟩ψ(t/τ ), (2)

where ψ(.) is the normalized PACF for a dimensionless time
argument, with ψ(0) = 1, and τ > 0 sets the time scale. For
convenience we set τ = 1 in the following. To express the
multi-scale character of protein dynamics we write the PACFs
as a superposition of exponential functions,

ψ(t) =
∫ ∞

0
dλ p(λ) exp(−λt), (3)

where the relaxation rate spectrum p(λ) satisfies the normal-
ization condition

∫ ∞
0 dλ p(λ) = 1, as well as p(λ) ≥ 0. The

moments of the relaxation rate spectrum are given by

λk =
∫ ∞

0
dλ λkp(λ) = (−1)kψ (k)(0), (4)

and their existence depends on the behavior of p(λ) for λ

→ ∞. For λk to exist the relaxation rate spectrum must decay
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FIG. 1. Four selected residues in the lysozyme molecule.

All fits show an excellent agreement with the simulation
data and we show here the results for four selected residues
which have been chosen according to their exposure to sol-
vent (see Fig. 1). Residues Ala 9 and Val 29 are buried in
α-helices, whereas Thr 47 and Gly 104 are located in loop re-
gions. Figure 2 shows the superposition of the simulated nor-
malized PACFs (dots) with the fits of ψ(t/τ ; α, β) (solid lines)
in form of a log-log plot. The fit parameters are given in the
plot. A coherent view of the results is obtained by correlating
the mean relaxation rate,

λ = (1 + α)τ−1, (20)

of all Cα-atoms and its spread,

σλ = (λ2 − λ
2
)1/2 = β−1/2τ−1, (21)

FIG. 2. Log-log plot of the simulated position autocorrelation functions for
the Cα-atoms of the residues shown in Figure 1 (dots) and fits of model (13)
(solid lines). For the simulated PACFs the smallest positive time argument is
t = 0.05 ps.

FIG. 3. Upper panel: Solvent accessible surface for the Cα-atoms in
lysozyme. Middle panel: Mean relaxation rate λ (blue line) and correspond-
ing standard deviation σλ (green line). Lower panel: Mean square position
fluctuation ⟨u2⟩ (blue line) and short time diffusion coefficient Ds (green
line). The additional graphics on top of the figure locates the secondary struc-
ture elements. Black rectangles indicate α-helices, grey rectangles short heli-
coidal motifs, and arrows beta sheets.

with the solvent-accessible surface of the respective residue.
Here, the total solvent-accessible surface of all atoms is con-
sidered. The fitted quantities λ and σλ for our model are, re-
spectively, given in the upper and middle panels of Fig. 3,
combining λ (blue line) and σλ (green line) in the middle
panel. On top of the figure we indicate the location of sec-
ondary structure elements and the vertical lines locate the four
selected residues displayed in Fig. 1. The results show that
the PACFs of Cα-atoms in solvent-exposed loop regions re-
lax one or two orders of magnitude more slowly than those
buried in helices, and the spread of the relaxation rates fol-
lows exactly the same trend, which is not trivial since the
mean relaxation and its spread are not described by the same
parameters. The backbone relaxation dynamics in secondary
structure elements is thus faster than the one in the more
floppy, solvent-exposed loop regions, and has a much stronger
non-exponential character. In this context, it is interesting to
look at the static position fluctuations of the Cα-atoms and at
the corresponding short-time diffusion coefficients, which de-
pend on both the amplitudes of the atomic motions and on the
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We present a model for the local diffusion-relaxation dynamics of the Cα-atoms in proteins describ-
ing both the diffusive short-time dynamics and the asymptotic long-time relaxation of the position
autocorrelation functions. The relaxation rate spectra of the latter are represented by shifted gamma
distributions, where the standard gamma distribution describes anomalous slow relaxation in macro-
molecular systems of infinite size and the shift accounts for a smallest local relaxation rate in macro-
molecules of finite size. The resulting autocorrelation functions are analytic for any time t ≥ 0. Using
results from a molecular dynamics simulation of lysozyme, we demonstrate that the model fits the
position autocorrelation functions of the Cα-atoms exceptionally well and reveals moreover a strong
correlation between the residue’s solvent-accessible surface and the fitted model parameters. © 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4718380]

Over the recent years, the multi-scale aspect of the in-
ternal dynamics of proteins and macromolecular systems in
general has attracted considerable interest on both the ex-
perimental and theoretical sides.1–9 A characteristic feature
of time correlation functions (TCFs) related to internal diffu-
sive motions is their strongly non-exponential decay. A clas-
sical empirical model is the stretched exponential function,
c(t) = c(0) exp (− [t/τ ]β) (0 < β ≤ 1), which has been used
to model, for example, the kinetics of protein folding.10 The
description of internal protein dynamics through a fractional
Ornstein-Uhlenbeck (fOU) process11–13 leads to the stretched
Mittag-Leffler (ML) function, c(t) = c(0)Eβ(− [t/τ ]β) (0 < β

≤ 1), which has proven to be a good model for the TCF
of position and distance fluctuations in proteins.3, 4, 14, 15 The
ML function is an entire function in the complex plane,16, 17

Eβ(z) =
∑∞

n=0 zn/$(1 + βn), and includes the exponential
function as a special case, E1(z) = exp (z). Since the mod-
els cited above capture the essential features of the measured
correlation functions by a few parameters, they have undoubt-
edly their merits as simple models for an ad hoc interpretation
of experimental data. They have, however, also the unpleas-
ant feature of becoming unphysical for short times. Due to
the “stretched” argument ∝tβ the time derivatives c(n)(0+) do
not exist if 0 < β < 1, although they should exist whenever
the time evolution of the dynamical system under consider-
ation is described by equations of motion.18–20 Consider, for
example, the diffusive motion of an atom in a dense molecular
system in thermal equilibrium. Here, the dynamical variable
is the deviation of the atom with respect to its mean position,
u = x − ⟨x⟩, and the relevant TCF is its position autocor-
relation function (PACF), c(t) = ⟨u · exp(Lt)u⟩. The symbol
⟨. . . ⟩ denotes an equilibrium ensemble average and L is the

a)Electronic mail: gerald.kneller@cnrs-orleans.fr.

time evolution operator for the whole system. It follows from
the construction of the PACFs that c(n)(0+) = ⟨u · Lnu⟩ are
well-defined ensemble averages which should exist. For non-
Hamiltonian diffusive dynamics, where L is a many-particle
Smoluchowski operator,21, 22

Ds = 1
2

d⟨[u(t) − u(0)]2⟩
dt

∣∣∣∣
t=0

= −c(1)(0+), (1)

defines in particular the short-time diffusion coefficient.
In this paper, we develop a realistic minimal model for

the backbone dynamics of proteins which leads to regular
PACFs for the Cα-atoms describing both the diffusive short-
time dynamics and the relaxation for long times. We assume
that u(t) is described by a stationary stochastic process and
write its autocorrelation function in the form

c(t) = ⟨u2⟩ψ(t/τ ), (2)

where ψ(.) is the normalized PACF for a dimensionless time
argument, with ψ(0) = 1, and τ > 0 sets the time scale. For
convenience we set τ = 1 in the following. To express the
multi-scale character of protein dynamics we write the PACFs
as a superposition of exponential functions,

ψ(t) =
∫ ∞

0
dλ p(λ) exp(−λt), (3)

where the relaxation rate spectrum p(λ) satisfies the normal-
ization condition

∫ ∞
0 dλ p(λ) = 1, as well as p(λ) ≥ 0. The

moments of the relaxation rate spectrum are given by

λk =
∫ ∞

0
dλ λkp(λ) = (−1)kψ (k)(0), (4)

and their existence depends on the behavior of p(λ) for λ

→ ∞. For λk to exist the relaxation rate spectrum must decay
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FIG. 1. Four selected residues in the lysozyme molecule.

All fits show an excellent agreement with the simulation
data and we show here the results for four selected residues
which have been chosen according to their exposure to sol-
vent (see Fig. 1). Residues Ala 9 and Val 29 are buried in
α-helices, whereas Thr 47 and Gly 104 are located in loop re-
gions. Figure 2 shows the superposition of the simulated nor-
malized PACFs (dots) with the fits of ψ(t/τ ; α, β) (solid lines)
in form of a log-log plot. The fit parameters are given in the
plot. A coherent view of the results is obtained by correlating
the mean relaxation rate,

λ = (1 + α)τ−1, (20)

of all Cα-atoms and its spread,

σλ = (λ2 − λ
2
)1/2 = β−1/2τ−1, (21)

FIG. 2. Log-log plot of the simulated position autocorrelation functions for
the Cα-atoms of the residues shown in Figure 1 (dots) and fits of model (13)
(solid lines). For the simulated PACFs the smallest positive time argument is
t = 0.05 ps.

FIG. 3. Upper panel: Solvent accessible surface for the Cα-atoms in
lysozyme. Middle panel: Mean relaxation rate λ (blue line) and correspond-
ing standard deviation σλ (green line). Lower panel: Mean square position
fluctuation ⟨u2⟩ (blue line) and short time diffusion coefficient Ds (green
line). The additional graphics on top of the figure locates the secondary struc-
ture elements. Black rectangles indicate α-helices, grey rectangles short heli-
coidal motifs, and arrows beta sheets.

with the solvent-accessible surface of the respective residue.
Here, the total solvent-accessible surface of all atoms is con-
sidered. The fitted quantities λ and σλ for our model are, re-
spectively, given in the upper and middle panels of Fig. 3,
combining λ (blue line) and σλ (green line) in the middle
panel. On top of the figure we indicate the location of sec-
ondary structure elements and the vertical lines locate the four
selected residues displayed in Fig. 1. The results show that
the PACFs of Cα-atoms in solvent-exposed loop regions re-
lax one or two orders of magnitude more slowly than those
buried in helices, and the spread of the relaxation rates fol-
lows exactly the same trend, which is not trivial since the
mean relaxation and its spread are not described by the same
parameters. The backbone relaxation dynamics in secondary
structure elements is thus faster than the one in the more
floppy, solvent-exposed loop regions, and has a much stronger
non-exponential character. In this context, it is interesting to
look at the static position fluctuations of the Cα-atoms and at
the corresponding short-time diffusion coefficients, which de-
pend on both the amplitudes of the atomic motions and on the
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Quasielastic incoherent neutron scattering (QENS) is an important
tool for the exploration of the dynamics of complex systems such
as biomolecules, liquids, and glasses. The dynamics is reflected in
the energy spectra of the scattered neutrons. Conventionally these
spectra are decomposed into a narrow elastic line and a broad
quasielastic band. The band is interpreted as being caused by
Doppler broadening due to spatial motion of the target molecules.
We propose a quantum-mechanical model in which there is no
separate elastic line. The quasielastic band is composed of sharp
lines with twice the natural line width, shifted from the center by
a random walk of the protein in the free-energy landscape of the
target molecule. The walk is driven by vibrations and by external
fluctuations. We first explore the model with the Mössbauer ef-
fect. In the subsequent application to QENS we treat the incoming
neutron as a de Broglie wave packet. While the wave packet
passes the protons in the protein and the hydration shell it
exchanges energy with the protein during the passage time
of about 100 ns. The energy exchange broadens the ensemble
spectrum. Because the exchange involves the free-energy land-
scape of the protein, the QENS not only provides insight into
the protein dynamics, but it may also illuminate the free-energy
landscape of the protein–solvent system.

quasielastic neutron scattering | neutron wave packet |
protein free-energy landscape

Quasielastic effects are a key to understanding the dynamics
of complex systems, from water to proteins (1, 2). A novice

trying to understand quasielastic incoherent neutron scattering
(QENS) is easily mystified. “Quasielastic” is usually taken to
mean broadening of the elastic line due to spatial diffusion of
the scattering particle. This definition is vague. We introduce
a model that permits an unambiguous definition. It describes the
QENS of proteins as involving a random walk in the free-energy
landscape (FEL), driven by external fluctuations and by thermal
vibrations. During the walk, the neutrons exchange energy with
the protein, thus broadening the energy spectrum.
In QENS the energy spectrum I(ΔE) of the scattered neutrons

is measured as a function of the energy transfer ΔE relative to
the energy of the elastic line at ΔE = 0. At present the QENS
spectra are separated into a narrow elastic peak and a broad
quasielastic band shown schematically in Fig. 1A. The band is
taken to consist of broad Lorentzians with width Γh centered at
ΔE = 0 as sketched in Fig. 1B. The broadening is attributed to
spatial motion of the target atoms, for instance by continuous
diffusion, by jumps from one lattice site to another, or by con-
formational changes in proteins. The motions lead to different
width Γh for different proteins. We call this model SMM, for
“spatial motion model,” and discuss it in more detail later. We
have introduced a radically different model, ELM, for “energy
landscape model” (3). In the ELM, there is no separate elastic
line pinned to the center. The entire spectrum is composed of
a very large number of spectral lines with twice the natural
line width as shown in Fig. 1C. Such a spectrum is called
“inhomogeneous” (4, 5). The lines are shifted from the center

by transitions among the conformational substates of the FEL.
Different proteins experience different energy shift. The shift
energies are taken from the spectrum of low-energy soft modes
of the system. We explain the ELM in more detail below. The
two models are complementary because every transition in the
energy landscape involves a change in the protein conformation
and vice versa. The ideal model for the QENS would treat both
aspects together. Such a model does not yet exist and we are left
exploring which model explains the experimental data more
convincingly, does not contradict experimental evidence, and
uses fewer fit parameters. The present work treats protein; other
systems such as water may lead to different conclusions.

Mössbauer Effect
Neutron scattering is not the best technique to study the con-
cepts of protein dynamics because its instrumental energy reso-
lution is poor. This fact is evident in Fig. 2A, where the re-
solution function R(ΔE) hides the central part of the QENS
spectrum (6). The spectra of the SMM and of the ELM have
similar wings, but differ unmistakably near the center. The SMM
claims to see a sharp elastic line and an underlying broad band;
the ELM spectrum is smooth and without a separate sharp line.
To distinguish the two models, the energy resolution must have
about the same width as the elastic line. The QENS violates this
condition. Fortunately there is a stand-in for the QENS with
a superb energy resolution, namely the Mössbauer effect (7,
8), which also displays quasielastic effects. We therefore treat
the Mössbauer effect first and then apply what we learned to
the QENS. In the Mössbauer experiments a radionuclide, usually
57Fe, is the source of the gamma radiation. The nuclide 57Fe

Significance

Quasielastic incoherent neutron scattering (QENS) is a key
tool for the exploration of complex systems, such as liquids,
polymers, glasses, and biomolecules. A considerable number
of neutron facilities exist and more are being planned. Un-
derstanding QENS is important, both for comprehending and
applying the science and making efficient use of the facilities.
We claim that the present explanation of QENS is incomplete.
We propose a wave-mechanical model, consistent with neu-
tron diffraction. It is based on the free-energy landscape and
treats the neutrons as de Broglie wave packets. The model is
supported by experiments and has predictive power. It pro-
vides significant insight into the dynamics of proteins and may
lead to a better understanding of biological processes.
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tool for the exploration of the dynamics of complex systems such
as biomolecules, liquids, and glasses. The dynamics is reflected in
the energy spectra of the scattered neutrons. Conventionally these
spectra are decomposed into a narrow elastic line and a broad
quasielastic band. The band is interpreted as being caused by
Doppler broadening due to spatial motion of the target molecules.
We propose a quantum-mechanical model in which there is no
separate elastic line. The quasielastic band is composed of sharp
lines with twice the natural line width, shifted from the center by
a random walk of the protein in the free-energy landscape of the
target molecule. The walk is driven by vibrations and by external
fluctuations. We first explore the model with the Mössbauer ef-
fect. In the subsequent application to QENS we treat the incoming
neutron as a de Broglie wave packet. While the wave packet
passes the protons in the protein and the hydration shell it
exchanges energy with the protein during the passage time
of about 100 ns. The energy exchange broadens the ensemble
spectrum. Because the exchange involves the free-energy land-
scape of the protein, the QENS not only provides insight into
the protein dynamics, but it may also illuminate the free-energy
landscape of the protein–solvent system.

quasielastic neutron scattering | neutron wave packet |
protein free-energy landscape

Quasielastic effects are a key to understanding the dynamics
of complex systems, from water to proteins (1, 2). A novice

trying to understand quasielastic incoherent neutron scattering
(QENS) is easily mystified. “Quasielastic” is usually taken to
mean broadening of the elastic line due to spatial diffusion of
the scattering particle. This definition is vague. We introduce
a model that permits an unambiguous definition. It describes the
QENS of proteins as involving a random walk in the free-energy
landscape (FEL), driven by external fluctuations and by thermal
vibrations. During the walk, the neutrons exchange energy with
the protein, thus broadening the energy spectrum.
In QENS the energy spectrum I(ΔE) of the scattered neutrons

is measured as a function of the energy transfer ΔE relative to
the energy of the elastic line at ΔE = 0. At present the QENS
spectra are separated into a narrow elastic peak and a broad
quasielastic band shown schematically in Fig. 1A. The band is
taken to consist of broad Lorentzians with width Γh centered at
ΔE = 0 as sketched in Fig. 1B. The broadening is attributed to
spatial motion of the target atoms, for instance by continuous
diffusion, by jumps from one lattice site to another, or by con-
formational changes in proteins. The motions lead to different
width Γh for different proteins. We call this model SMM, for
“spatial motion model,” and discuss it in more detail later. We
have introduced a radically different model, ELM, for “energy
landscape model” (3). In the ELM, there is no separate elastic
line pinned to the center. The entire spectrum is composed of
a very large number of spectral lines with twice the natural
line width as shown in Fig. 1C. Such a spectrum is called
“inhomogeneous” (4, 5). The lines are shifted from the center

by transitions among the conformational substates of the FEL.
Different proteins experience different energy shift. The shift
energies are taken from the spectrum of low-energy soft modes
of the system. We explain the ELM in more detail below. The
two models are complementary because every transition in the
energy landscape involves a change in the protein conformation
and vice versa. The ideal model for the QENS would treat both
aspects together. Such a model does not yet exist and we are left
exploring which model explains the experimental data more
convincingly, does not contradict experimental evidence, and
uses fewer fit parameters. The present work treats protein; other
systems such as water may lead to different conclusions.

Mössbauer Effect
Neutron scattering is not the best technique to study the con-
cepts of protein dynamics because its instrumental energy reso-
lution is poor. This fact is evident in Fig. 2A, where the re-
solution function R(ΔE) hides the central part of the QENS
spectrum (6). The spectra of the SMM and of the ELM have
similar wings, but differ unmistakably near the center. The SMM
claims to see a sharp elastic line and an underlying broad band;
the ELM spectrum is smooth and without a separate sharp line.
To distinguish the two models, the energy resolution must have
about the same width as the elastic line. The QENS violates this
condition. Fortunately there is a stand-in for the QENS with
a superb energy resolution, namely the Mössbauer effect (7,
8), which also displays quasielastic effects. We therefore treat
the Mössbauer effect first and then apply what we learned to
the QENS. In the Mössbauer experiments a radionuclide, usually
57Fe, is the source of the gamma radiation. The nuclide 57Fe
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polymers, glasses, and biomolecules. A considerable number
of neutron facilities exist and more are being planned. Un-
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applying the science and making efficient use of the facilities.
We claim that the present explanation of QENS is incomplete.
We propose a wave-mechanical model, consistent with neu-
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emits a γ-ray with energy EMö = 14.412497 keV and a mean life
τMö = 141 ns corresponding to a rate coefficient kMö = 1/τMö =
7.1 × 107 s−1 and a natural line width ΓMö = 4.66 neV. Usually,
the 57Fe nucleus recoils; the emitted gamma ray loses the recoil
energy and shifts out of resonance with the 14.4-keV transition.
However, if the 57Fe atom is embedded in a solid, some of the
atoms do not recoil so that the emitted gamma rays carry the full
energy EMö and have the natural line width ΓMö. The Mössbauer
spectrum is measured by the transmission of γ-rays from a 57Fe
source moving with a velocity v through a stationary sample
containing 57Fe embedded for instance in a protein and kept at
the temperature T. A fraction f(T) of the incoming recoilless

Mössbauer photons elastically excites the 14.4-keV level. In
the thin-absorber limit the transmission Tr(ΔE) is related to the
scattering amplitude S(ΔE) by Tr (ΔE) = 1 − const. S(ΔE),
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Fig. 1. (A) Conventionally the elastic line and the quasielastic band in
neutron scattering are treated as separate phenomena. (B) The broad
band is usually assumed to be composed of Lorentzians of different widths
and amplitudes, centered at ΔE = 0 (black curves). The sum is shown in red.
(C ) The proposed model (ELM) is composed of a very large number of
narrow, shifted Lorentzians and has no separate elastic line. B and C
adapted from ref. 4.
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Fig. 2. (A) Energy spectrum of perdeuterated metmyoglobin measured
with QENS (red circles). The resolution function R(E) is scaled to maximum at
zero energy and assumed to be approximately Gaussian (blue lines). The
spectrum involves 72% H atoms from hydration water and 28% from the
protein. Adapted from Achterhold et al. (6). (B) Mössbauer spectrum for car-
bonmonoxy–myoglobin at low temperature. Adapted from ref. 9. (C) The
spectrum measured using the Mössbauer effect for hydrated metmyoglobin at
295 K. Adapted from ref. 10. Hydration is 0.4 for A and C. Note the different
energy scales in A and B.
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the 57Fe nucleus recoils; the emitted gamma ray loses the recoil
energy and shifts out of resonance with the 14.4-keV transition.
However, if the 57Fe atom is embedded in a solid, some of the
atoms do not recoil so that the emitted gamma rays carry the full
energy EMö and have the natural line width ΓMö. The Mössbauer
spectrum is measured by the transmission of γ-rays from a 57Fe
source moving with a velocity v through a stationary sample
containing 57Fe embedded for instance in a protein and kept at
the temperature T. A fraction f(T) of the incoming recoilless
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spectrum measured using the Mössbauer effect for hydrated metmyoglobin at
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energy scales in A and B.

Frauenfelder et al. PNAS | September 2, 2014 | vol. 111 | no. 35 | 12765

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

PH
YS

IC
S

H. Frauenfelder at al., PNAS 111, 12764 (2014).



where ΔE = EMö v/c. Mössbauer spectra are evaluated by plot-
ting Tr(ΔE) versus ΔE or versus the corresponding source ve-
locity v in mm/s, where 1 mm/s corresponds to 48.8 neV. Fig. 2 B
and C displays Mössbauer spectra (9, 10). At 80 K, the spectrum
can be fit with a single Lorentzian with about twice the natural
line width ΓMö. At 295 K the spectrum is broad and can be fit
either with a sharp line and a broad band (SMM) or with a broad
spectrum consisting of a very large number of Mössbauer lines
without a central narrow line (ELM).

ELM
The Mössbauer photons emitted by a stationary 57Fe source al-
ways have the energy EMö = 14.4 keV, the lifetime τMö = 141 ns,
and the natural line width ΓMö = 4.66 neV. The resonance levels
in the 57Fe absorber have the same energy and line width. In
each observed event, a Mössbauer photon is resonantly absorbed
by a 57Fe atom in the target. At low temperatures the spectrum
shows a narrow line with a width of about 2ΓMö as in Fig. 2B. If
the target 57Fe atom is in a protein and observed at ambient
temperature, the spectrum shows broad wings as in Fig. 2C. In
the ELM we do not introduce a separate sharp central line, but
interpret the observed spectrum as being smooth, composed of
lines with width 2ΓMö (Fig. 1C). Each 57Fe atom has a different
resonance energy owing to the protein being in a different con-
formational substate. An incoming quantum with energy EMö can
only be absorbed by a transition with the same energy EMö. If the
absorption spectrum does not show the line at EMö, but at EMö +
ΔE, the target must have provided the energy ΔE during the
lifetime τMö. We propose that the energy fluctuations in the
protein–solvent system are responsible for the energy shifts. A
protein can assume a large number of different conformations
with energies up to a few eV (11–14). The 57Fe atom is coupled
to the protein–solvent system and its FEL. At very low temper-
atures, transitions between substates are too slow to be observed.
A protein in a given substate remains in that substate, and the
Mössbauer spectrum consists of a single narrow line. At high
temperatures, however, a protein fluctuates rapidly among sub-
states. The Mössbauer photon is a wave packet (15) that
exchanges energy with the 57Fe atom during the passage time
given by the Mössbauer lifetime τMö. During this time the protein
makes a random walk in the energy landscape as shown in Fig. 3
(3). When the Mössbauer quantum is registered the spectrometer
records the absorption line at EMö + ΔE. ΔE does not depend on

the energy of the initial substate and can be positive or negative.
The result is a broad band. If ΔE << kBT, the band is symmetric
with the center set at ΔE = 0 as in Figs. 1 and 2. The energy for the
random walk is provided by the heat bath in which the protein
lives (16). The transitions in the FEL are driven by three types of
fluctuations known from the physics of solids, glasses, and super-
cooled liquids (17). They are the α-fluctuations in the bulk solvent
(13, 18), the βh-fluctuations in the hydration shell (19–21), and
vibrations (22). The α-processes are structural fluctuations in the
solvent; they modulate the shape of the protein and can thereby
induce transitions among the substates. Their rate coefficient
kα(T) is inversely proportional to the solvent viscosity; the
α-fluctuations are unobservable in solids. The βh-fluctuations are
dielectric fluctuations in the hydration shell. Their rate coefficient
kβ(T) depends on the degree of hydration and they are absent in
dehydrated proteins (23, 24). Here we use experimental data
from systems where the α-fluctuations are absent. We have
treated the effect of thermal vibration previously (3). Thus, we
restrict the treatment on the effect of the βh-fluctuations.
The exploration of the ELM starts with the elastic fraction f(T),

the primary result of most experiments. Unfortunately many papers
do not report f(T), but invert the Lamb–Mössbauer relation

f ðTÞ= exp
!
-q2

D
x2ðTÞ

E"
[1]

and publish the mean-squared displacement (msd), <x2(T)>.
Here q is the momentum transfer. This relation is only valid in

the Gaussian approximation, which can be wrong in complex
systems (25). This leaves us in a quandary. We can either use Eq.
1 to extract f(T) or we can use the msd despite its limited validity.
We select the second route and plot in Fig. 4 the msd from three
Mössbauer experiments (26–28) and three QENS experiments
(29, 30). The figure shows four striking features: (i) The curves
are all similar despite the fact that they involve very different
targets, techniques, samples, and times. (ii) The msd increases
nearly linearly from about 10 K to a temperature TD ∼ 180 K.
The slope is similar for the Mössbauer experiments and the QENS.
TD is approximately the same for QENS and the Mössbauer effect.
(iii) At TD, the slope of the msd in hydrated proteins increases
dramatically. This effect is called “protein dynamical transition,” or
PDT (29). (iv) In dehydrated proteins, the PDT is absent and the
nearly linear T dependence of the msd continues to at least 300 K.
We now compare the two models in their ability to explicate these
features. The SMM can explain feature (ii) as being caused by
vibrations (31), but has little to say for the rest. The ELM explains
all features: (i) The similarity implies underlying general mecha-
nisms. The principal features of the ELM, namely the existence of
the FEL and the control through fluctuations, are similar in all
systems in Fig. 4. (ii) The approximately linear increase with
temperature of the msd below about 180 K is explained in both
models as being caused by the thermal vibrations (3). (iii) The
ELM quantitatively explains the PDT: The change in slope is due
to the kinetic onset of the βh-fluctuations in the hydration shell
(3, 18, 19, 32). Fig. 3 implies that sizable shifts can only be observed
if the βh-fluctuations are faster than the characteristic Mössbauer
rate or if

τβ < τM€o: [2]

This simple relation is significant because it pinpoints the
temperature TD where the protein dynamics changes from vibra-
tion-dominated to external-fluctuation controlled. Below TD
thermal vibrations dominate and proteins are essentially non-
functional. Above TD the external fluctuations are crucial; they
shift the lines from the center thereby decreasing f(T), increasing
the msd, and producing the broad spectrum. (iv) In the absence
of the external fluctuations no dynamical transition occurs.

Fig. 3. Random walk of a protein in the energy landscape. In the Mössbauer
effect, the incoming photon hits a protein in a specific substate. During the
lifetime τMö, the protein makes a random walk in the energy landscape,
gaining or losing the energy ΔE. The jumps in the FEL are caused by the βh-
fluctuations in the hydration shell. The time for one jump of magnitude ±δE
is τβ. The total energy shift is approximately given by ΔE ∼ ± δE(τMö/τβ)1/2. The
model is assumed to apply also to QENS.
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During its flight through the sample, the neutron wave packet 
records the net energy transition of the system from the 
initial energy level E to the final level E+ΔE. 

• The description is not quantitative
• The neutron is considered as a passive probe
• Momentum transfer is not considered
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FIGURE 1. Sketch of a neutron scattering experiment. The neu-
trons hit the sample with an energy E0 = !2k2

0/2m and leave it
with E = !2k2/2m after the collision. The vectors k0 et k are the
corresponding momenta in units of !.

where I(q, t) is the intermediate scattering function. I(q, t) can be split into a
coherent and an incoherent part,

I(q, t) = Icoh(q, t) + Iinc(q, t) , (10)

where Icoh(q, t) and Iinc(q, t) are defined as

Icoh(q, t) =
∑

α,β

bα,cohbβ,coh

〈
exp

(
iqT · Rβ(t)

)
exp

(
−iqT · Rα(0)

)〉
, (11)

Iinc(q, t) =
∑

α

b2
α,inc

〈
exp

(
iqT · Rα(t)

)
exp

(
−iqT · Rα(0)

)〉
, (12)

respectively. The symbol ⟨. . .⟩ denotes a quantum statistical average over a
thermodynamic ensemble, and Rα is the position operator of atom α. The
quantities bα,coh et bα,inc are the coherent and incoherent scattering length, re-
spectively, of atom α. They have values of the order of a fm (1 fm = 10−15 m),
which is about the size of an atomic nucleus. The total scattering cross section of
atom α is given by

σα,tot = 4π
(
b2
α,coh + b2

α,inc

)
, (13)

and refers to a bound atom.
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The article presents an energy landscape-oriented interpretation of
neutron scattering spectra, where the the incoming neutrons induce
transitions between di↵erent energy levels of the scattering system.
The corresponding transition probabilities depend on the momentum
transfer from the neutron to the sample and can be expressed in
terms of Franck-Condon type overlap integrals of the corresponding
energy eigenfunctions in momentum space. The theory is illustrated
for two simple model systems.
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Abbreviations: QENS: quasi-elastic neutron scattering

Introduction

Aafter the discovery of the neutron [1] the scattering of
thermal neutrons was rapidly recognized to be a revolu-

tionary technique for studying condensed matter systems on
the atomic level. At comparable kinetic energies with those
of the target atoms, their wave length corresponds to typi-
cal interatomic distances, making them ideal probes for both
dynamical and structural properties of the sample under con-
sideration.

The most widespread interpretation of neutron scattering
experiments on liquids and soft matter systems relies on Van
Hove’s theory [2], where the di↵erential neutron scattering
cross section is expressed in terms of spatio-temporal corre-
lation functions for the atomic displacements. Van Hove’s
theory provides a conceptually appealing framework for the
interpretation of neutron scattering intensities if the structural
dynamics of the system under consideration is dominated by
a special type of motion. The analysis of neutron scattering
spectra in terms of models for specific motions is, however, not
useful for the analysis of neutron spectra from complex sys-
tems, where the atomic motions are characterized by a wide
spectrum of motion types and time scales. It is also often
overlooked that the appeal of Van Hove’s approach is based
on the classical limit “~ ! 0” of the scattering law, which does
not only imply that the structure and dynamics of the sample
can be described by the laws of classical mechanics, but also
that recoil e↵ects, i.e. the impact of the neutrons on the scat-
tering system, are completely neglected. Van Hove discussed
this point in an interesting article [3], which remained how-
ever almost unknown in the neutron scattering community. A
classical limit of the scattering law can be performed without
neglecting recoil e↵ects, but the resulting correlation functions
loose their simple physical interpretation [4].

Recently, Frauenfelder and collaborators published two arti-
cles, in which neutron scattering experiments from proteins as
prominent representatives of complex systems are presented
from the perspective of Mößbauer spectroscopy [5, 6]. Here
the conventional interpretation of neutron scattering spectra
in terms of Van-Hove type “spatial motion models” (SMM)
are opposed to “energy landscape models” (ELM) for com-
plex systems, where the scattered neutron wave packet carries

information about the net energy transition of the scattering
system during its flight through the sample. The scattered
neutron is here a passive “observer” which probes the energy
landscape [7] of the scattering system without influencing its
dynamics. This “neutron Doppler e↵ect” corresponds exactly
to the assumption which is implicitly made in the Van Hove
type interpretation of neutron scattering experiments and it
is not realistic for scattering atoms with low e↵ective masses
and/or scattering events with large momentum transfers.

The aim of this article is to develop an exact theoreti-
cal framework for neutron scattering which combines Frauen-
felder’s ELM picture with a full quantum mechanical treat-
ment of the scattering kinematics. The theory is illustrated
for two simple model systems.

Basic neutron scattering theory
Di↵erential scattering cross section. In the framework of stan-
dard scattering theory, neutron scattering experiments are de-
scribed within the Born approximation, using the Fermi pseu-
dopotential to model the short-ranged interactions between
the neutron and the atomic nuclei in sample under considera-
tion [8]. The incident neutrons are described by plane waves
and have thus a well defined initial momentum. Considering
that they undergo a momentum change p

0

= ~k
0

! p = ~k
during the scattering process and that the sample contains
N atoms in total, the di↵erential scattering cross section per
atom is given by the relation

d2�

d⌦d!
=

|k|
|k

0

|S(q,!), [1]

where S(q,!) is referred to as dynamic structure factor and
carries the information about the microscopic structure and
dynamics of the system under consideration. It is defined
through the relations

S(q,!) = 1
2⇡

Z

+1

�1
dt e�i!tF(q, t), [2]

F(q, t) =
1
N

X

↵�

�↵�

D

e�iq·ˆr↵(0)eiq·ˆr�(t)
E

, [3]
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theory provides a conceptually appealing framework for the
interpretation of neutron scattering intensities if the structural
dynamics of the system under consideration is dominated by
a special type of motion. The analysis of neutron scattering
spectra in terms of models for specific motions is, however, not
useful for the analysis of neutron spectra from complex sys-
tems, where the atomic motions are characterized by a wide
spectrum of motion types and time scales. It is also often
overlooked that the appeal of Van Hove’s approach is based
on the classical limit “~ ! 0” of the scattering law, which does
not only imply that the structure and dynamics of the sample
can be described by the laws of classical mechanics, but also
that recoil e↵ects, i.e. the impact of the neutrons on the scat-
tering system, are completely neglected. Van Hove discussed
this point in an interesting article [3], which remained how-
ever almost unknown in the neutron scattering community. A
classical limit of the scattering law can be performed without
neglecting recoil e↵ects, but the resulting correlation functions
loose their simple physical interpretation [4].

Recently, Frauenfelder and collaborators published two arti-
cles, in which neutron scattering experiments from proteins as
prominent representatives of complex systems are presented
from the perspective of Mößbauer spectroscopy [5, 6]. Here
the conventional interpretation of neutron scattering spectra
in terms of Van-Hove type “spatial motion models” (SMM)
are opposed to “energy landscape models” (ELM) for com-
plex systems, where the scattered neutron wave packet carries

information about the net energy transition of the scattering
system during its flight through the sample. The scattered
neutron is here a passive “observer” which probes the energy
landscape [7] of the scattering system without influencing its
dynamics. This “neutron Doppler e↵ect” corresponds exactly
to the assumption which is implicitly made in the Van Hove
type interpretation of neutron scattering experiments and it
is not realistic for scattering atoms with low e↵ective masses
and/or scattering events with large momentum transfers.

The aim of this article is to develop an exact theoreti-
cal framework for neutron scattering which combines Frauen-
felder’s ELM picture with a full quantum mechanical treat-
ment of the scattering kinematics. The theory is illustrated
for two simple model systems.

Basic neutron scattering theory
Di↵erential scattering cross section. In the framework of stan-
dard scattering theory, neutron scattering experiments are de-
scribed within the Born approximation, using the Fermi pseu-
dopotential to model the short-ranged interactions between
the neutron and the atomic nuclei in sample under considera-
tion [8]. The incident neutrons are described by plane waves
and have thus a well defined initial momentum. Considering
that they undergo a momentum change p

0

= ~k
0

! p = ~k
during the scattering process and that the sample contains
N atoms in total, the di↵erential scattering cross section per
atom is given by the relation

d2�

d⌦d!
=

|k|
|k

0

|S(q,!), [1]

where S(q,!) is referred to as dynamic structure factor and
carries the information about the microscopic structure and
dynamics of the system under consideration. It is defined
through the relations

S(q,!) = 1
2⇡

Z

+1

�1
dt e�i!tF(q, t), [2]

F(q, t) =
1
N

X

↵�

�↵�

D

e�iq·ˆr↵(0)eiq·ˆr�(t)
E

, [3]
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Self-Scattering from hydrogen dominates 
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where r̂↵ are the position operators of the atomic nuclei and
q = (p

0

� p)/~ and ! = (E
0

� E)/~ denote, respectively,
the momentum and energy transfer from the neutron to the
sample in units of ~. The weighted sum of time correlation
functions, F(q, t), is the intermediate scattering function and
the weighting factors are related to the coherent and inco-
herent scattering lengths of the atoms, �↵� = b⇤↵,cohb�,coh +
�↵� |b↵,inc|2. The latter are in general complex and deter-
mine the corresponding total neutron scattering cross sections
through �↵ = 4⇡(|b↵,coh|2 + |b↵,inc|2).

In the following it will be for simplicity assumed that the
sample under consideration contains a large amount of hy-
drogen atoms, which is typical for proteins and soft matter
systems in general. It will also be assumed that the hydrogen
atoms in the system under consideration are physically equiva-
lent. Since incoherent scattering from hydrogen dominates by
far all other contributions [8, 9], the intermediate scattering
function can then be approximated by

F(q, t) ⇡ |bH,inc|2Fs(q, t), [4]

where Fs(q, t) is the self-part of one “representative” scatter-
ing atom (arbitrarily chosen to be ↵ = 1),

Fs(q, t) =
D

e�iq·ˆr1(0)eiq·ˆr1(t)
E

. [5]

Analogously to [2] we introduce the corresponding dynamic
structure factor through

Ss(q,!) =
1
2⇡

Z

+1

�1
dt e�i!tFs(q, t), [6]

and the rest of the paper will be devoted to the discussion of
Fs(q, t) and Ss(q,!).

Wick’s form of the intermediate scattering function. In an
early paper on neutron scattering theory, GC Wick used an
elegant trick to cast the intermediate scattering function into
a form which emphasizes the kinematics of the scattering pro-
cess [10]. The trick is based on the fact that position operators
are generators for translations in momentum space (and vice
versa). Applied to the intermediate scattering function it leads
to the identity

Fs(q, t) =
1
Z
tr
n

e�� ˆHe�iq·ˆreit
ˆH/~eiq·ˆre�it ˆH/~

o

=
1
Z
tr
n

e�� ˆHeit
ˆH0

(q)/~e�it ˆH/~
o

, [7]

where Ĥ is the Hamilton operator of the sample and Ĥ 0(q)
is obtained by shifting the momentum of the scattering atom
by ~q,

Ĥ =
N
X

↵=1

p̂

2

↵

2m↵
+ V (r̂

1

, . . . , r̂N ) , [8]

Ĥ 0(q) =
N
X

↵=1

(p̂↵ + �
1↵~q)2

2m↵
+ V (r̂

1

, . . . , r̂N ) . [9]

As usual, V (.) denotes the potential energy and

Z = tr{e�� ˆH} [10]

is the partition function. Here � = (kBT )
�1, with kB being

the Boltzmann constant and T the absoute temperature. The
Hamilton operator Ĥ 0(q) carries thus the “kick” which the
scattering atom receives from the scattered neutron.

Fig. 1. Sketch of a Franck-Condon type line spectrum for neutron scattering.

The slight asymmetry indicates the detailed balance relation.

Recoil e↵ects.Defining the frequency moments of the dynamic
structure factor through

h!ni ⌘
Z

+1

�1
d! !nSs(q,!) = (�i)n @n

t Fs(q, t)|t=0

, [11]

it follows directly from Wick’s form of the intermediate scat-
tering function that

h!i = ~|q|2
2M

. [12]

The short time behavior of the intermediate scattering func-
tion is thus entirely determined by the scattering kinematics
and Expression (12) is the so-called recoil moment.

Franck-Condon principle for discrete energy spectra
Formalism.Suppose now that the eigenvalue spectrum of Ĥ

is discrete, such that Ĥ|�ni = En|�ni (n = 0, 1, 2, . . .) and
|�ni form a basis in a corresponding Hilbert space of square-
integrable functions. The eigenstates of the perturbed Hamil-
tonian, Ĥ 0(q), here denoted as |�0

n(q)i, constitute another ba-
sis and it follows from the completeness of the two bases that
the intermediate scattering function can be formally expressed
as

Fs(q, t) =
1
Z

X

m,n

e��Emei(E
0
n�Em)/~ |amn(q)|2 , [13]

where
amn(q) = h�0

n(q)|�mi [14]

are the projections of the perturbed eigenstates onto the un-
perturbed ones.

The transition amplitudes amn(q) take a particularly sim-
ple form if one works in momentum space representation,
where momentum operators are replaced by normal vectors,
p̂↵ ! p↵, and position operators by di↵erential operators,
x̂↵ ! i~@/@p↵. The Hamiltonian takes here the form

Ĥ =
N
X

↵=1

|p|2↵
2m↵

+ V (i~@/@p
1

, . . . i~@/@pN ) [15]

and one sees immediately that the eigenfunctions of the shifted
version have the same functional form as those of the original
one. Defining �m(p) ⌘ hp|�mi to be the the eigenfunctions of
the unperturbed Hamiltonian in momentum space, we have

Ĥ�n(p) = En�n(p), [16]

Ĥ 0(q)�n(p+ ~Q) = En�n(p+ ~Q). [17]

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

Van-Hove theory in the classical limit 

Diffusion models for the Van Hove correlation function
(➜ “spatial motion models”)

emits a γ-ray with energy EMö = 14.412497 keV and a mean life
τMö = 141 ns corresponding to a rate coefficient kMö = 1/τMö =
7.1 × 107 s−1 and a natural line width ΓMö = 4.66 neV. Usually,
the 57Fe nucleus recoils; the emitted gamma ray loses the recoil
energy and shifts out of resonance with the 14.4-keV transition.
However, if the 57Fe atom is embedded in a solid, some of the
atoms do not recoil so that the emitted gamma rays carry the full
energy EMö and have the natural line width ΓMö. The Mössbauer
spectrum is measured by the transmission of γ-rays from a 57Fe
source moving with a velocity v through a stationary sample
containing 57Fe embedded for instance in a protein and kept at
the temperature T. A fraction f(T) of the incoming recoilless

Mössbauer photons elastically excites the 14.4-keV level. In
the thin-absorber limit the transmission Tr(ΔE) is related to the
scattering amplitude S(ΔE) by Tr (ΔE) = 1 − const. S(ΔE),
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Fig. 1. (A) Conventionally the elastic line and the quasielastic band in
neutron scattering are treated as separate phenomena. (B) The broad
band is usually assumed to be composed of Lorentzians of different widths
and amplitudes, centered at ΔE = 0 (black curves). The sum is shown in red.
(C ) The proposed model (ELM) is composed of a very large number of
narrow, shifted Lorentzians and has no separate elastic line. B and C
adapted from ref. 4.
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Fig. 2. (A) Energy spectrum of perdeuterated metmyoglobin measured
with QENS (red circles). The resolution function R(E) is scaled to maximum at
zero energy and assumed to be approximately Gaussian (blue lines). The
spectrum involves 72% H atoms from hydration water and 28% from the
protein. Adapted from Achterhold et al. (6). (B) Mössbauer spectrum for car-
bonmonoxy–myoglobin at low temperature. Adapted from ref. 9. (C) The
spectrum measured using the Mössbauer effect for hydrated metmyoglobin at
295 K. Adapted from ref. 10. Hydration is 0.4 for A and C. Note the different
energy scales in A and B.
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A somewhat forgotten paper….

ISF in the Heisenberg picture

“Kicked” Hamiltonian Normal Hamiltonian

G. Wick, The scattering of neutrons by systems containing light nuclei;
Physical Review 94, 1228 (1954).

Franck-Condon picture of neutron scattering  
From plane wave scattering to energy landscapes

Wick’s form of the intermediate scattering function
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Eigenvalues and eigenfunctions for the Hamiltonians

Line spectrum for the dynamic structure factor

Franck-Condon type transition probabilities in 
momentum space

Franck-Condon picture of neutron scattering
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where r̂↵ are the position operators of the atomic nuclei and
q = (p

0

� p)/~ and ! = (E
0

� E)/~ denote, respectively,
the momentum and energy transfer from the neutron to the
sample in units of ~. The weighted sum of time correlation
functions, F(q, t), is the intermediate scattering function and
the weighting factors are related to the coherent and inco-
herent scattering lengths of the atoms, �↵� = b⇤↵,cohb�,coh +
�↵� |b↵,inc|2. The latter are in general complex and deter-
mine the corresponding total neutron scattering cross sections
through �↵ = 4⇡(|b↵,coh|2 + |b↵,inc|2).

In the following it will be for simplicity assumed that the
sample under consideration contains a large amount of hy-
drogen atoms, which is typical for proteins and soft matter
systems in general. It will also be assumed that the hydrogen
atoms in the system under consideration are physically equiva-
lent. Since incoherent scattering from hydrogen dominates by
far all other contributions [8, 9], the intermediate scattering
function can then be approximated by

F(q, t) ⇡ |bH,inc|2Fs(q, t), [4]

where Fs(q, t) is the self-part of one “representative” scatter-
ing atom (arbitrarily chosen to be ↵ = 1),

Fs(q, t) =
D

e�iq·ˆr1(0)eiq·ˆr1(t)
E

. [5]

Analogously to [2] we introduce the corresponding dynamic
structure factor through

Ss(q,!) =
1
2⇡

Z

+1

�1
dt e�i!tFs(q, t), [6]

and the rest of the paper will be devoted to the discussion of
Fs(q, t) and Ss(q,!).

Wick’s form of the intermediate scattering function. In an
early paper on neutron scattering theory, GC Wick used an
elegant trick to cast the intermediate scattering function into
a form which emphasizes the kinematics of the scattering pro-
cess [10]. The trick is based on the fact that position operators
are generators for translations in momentum space (and vice
versa). Applied to the intermediate scattering function it leads
to the identity

Fs(q, t) =
1
Z
tr
n

e�� ˆHe�iq·ˆreit
ˆH/~eiq·ˆre�it ˆH/~

o

=
1
Z
tr
n

e�� ˆHeit
ˆH0

(q)/~e�it ˆH/~
o

, [7]

where Ĥ is the Hamilton operator of the sample and Ĥ 0(q)
is obtained by shifting the momentum of the scattering atom
by ~q,

Ĥ =
N
X

↵=1

p̂

2

↵

2m↵
+ V (r̂

1

, . . . , r̂N ) , [8]

Ĥ 0(q) =
N
X

↵=1

(p̂↵ + �
1↵~q)2

2m↵
+ V (r̂

1

, . . . , r̂N ) . [9]

As usual, V (.) denotes the potential energy and

Z = tr{e�� ˆH} [10]

is the partition function. Here � = (kBT )
�1, with kB being

the Boltzmann constant and T the absoute temperature. The
Hamilton operator Ĥ 0(q) carries thus the “kick” which the
scattering atom receives from the scattered neutron.

ω

S(q,ω)

Fig. 1. Sketch of a Franck-Condon type line spectrum for neutron scattering.

The slight asymmetry indicates the detailed balance relation.

Recoil e↵ects.Defining the frequency moments of the dynamic
structure factor through

h!ni ⌘
Z

+1

�1
d! !nSs(q,!) = (�i)n @n

t Fs(q, t)|t=0

, [11]

it follows directly from Wick’s form of the intermediate scat-
tering function that

h!i = ~|q|2
2M

. [12]

The short time behavior of the intermediate scattering func-
tion is thus entirely determined by the scattering kinematics
and Expression (12) is the so-called recoil moment.

Franck-Condon principle for discrete energy spectra
Formalism.Suppose now that the eigenvalue spectrum of Ĥ

is discrete, such that Ĥ|�ni = En|�ni (n = 0, 1, 2, . . .) and
|�ni form a basis in a corresponding Hilbert space of square-
integrable functions. The eigenstates of the perturbed Hamil-
tonian, Ĥ 0(q), here denoted as |�0

n(q)i, constitute another ba-
sis and it follows from the completeness of the two bases that
the intermediate scattering function can be formally expressed
as

Fs(q, t) =
1
Z

X

m,n

e��Emei(E
0
n�Em)/~ |amn(q)|2 , [13]

where
amn(q) = h�0

n(q)|�mi [14]

are the projections of the perturbed eigenstates onto the un-
perturbed ones.

The transition amplitudes amn(q) take a particularly sim-
ple form if one works in momentum space representation,
where momentum operators are replaced by normal vectors,
p̂↵ ! p↵, and position operators by di↵erential operators,
x̂↵ ! i~@/@p↵. The Hamiltonian takes here the form

Ĥ =
N
X

↵=1

|p|2↵
2m↵

+ V (i~@/@p
1

, . . . i~@/@pN ) [15]

and one sees immediately that the eigenfunctions of the shifted
version have the same functional form as those of the original
one. Defining �m(p) ⌘ hp|�mi to be the the eigenfunctions of
the unperturbed Hamiltonian in momentum space, we have

Ĥ�n(p) = En�n(p), [16]

Ĥ 0(q)�n(p+ ~Q) = En�n(p+ ~Q). [17]
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Detailed balance and recoil

It follows from the symmetry properties of the transition 
properties

Franck-Condon picture of neutron scattering

Detailed balance

pmn(q) = pnm(�q)

Fs(q, t) = Fs(�q,�t + i�~),
Ss(q,!) = e�~!Ss(�q,�!),

Z

+1

�1
d! !Ss(q,!) =

~q2
2m

Franck-Condon picture of neutron scattering

Detailed balance

pmn(q) = pnm(�q)

Fs(q, t) = Fs(�q,�t + i�~)
Ss(q,!) = e�~!Ss(�q,�!)

Z

+1

�1
d! !Ss(q,!) =

~q2
2m

that the detailed balance relations are fulfilled

The scattering kinematics is reflected in the recoil moment 

Franck-Condon picture of neutron scattering

Detailed balance

pmn(q) = pnm(�q)

Fs(q, t) = Fs(�q,�t + i�~)
Ss(q,!) = e�~!Ss(�q,�!)

Z

+1

�1
d! !Ss(q,!) =

~q2
2m
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The vector p comprises here the Cartesian coordinates of all
atomic momenta and the components of Q are defined such
that the operation p + ~Q shifts only the momentum of the
scattering atom, i.e. Q

1

= qx, Q
2

= qy, Q
3

= qz, and
Qj = 0 for 3 < j  3N . It follows then from [17] that
�0
n(p;q) = �n(p+ ~Q), such that the coe�cients amn(q) can

be expressed as overlap integrals involving the shifted and un-
shifted energy eigenfunctions of the unperturbed Hamiltonian
in momentum space,

amn(q) =

Z

d3Np�⇤
n(p+ ~Q)�m(p). [18]

The squared transition amplitudes,

pmn(q) ⌘ |amn(q)|2 , [19]

fulfill the relations
X

m

pmn(q) =
X

n

pmn(q) = 1, [20]

pmn(0) = �mn, [21]

and can thus be interpreted as probabilities for the neutron
scattering-induced transitions |�mi ! |�ni of the sample dur-
ing the scattering event. Using the notation (19), the inter-
mediate scattering function and the corresponding dynamic
structure factor take the form

Fs(q, t) =
1
Z

X

m,n

e��Emeit(En�Em)/~pmn(q), [22]

Ss(q,!) =
1
Z

X

m,n

e��Empmn(q)� (! � [En � Em]/~) , [23]

where the partition function is given by

Z =
X

m

e��Em . [24]

The symmetry property

pmn(q) = pnm(�q) [25]

leads to the detailed balance relations

Fs(q, t) = Fs(�q,�t+ i�~), [26]

Ss(q,!) = e�~!Ss(�q,�!), [27]

which reflect the fact that energy loss of the scattered neutrons
more likely than energy gain [8].

The Dirac distributions in the double sum (23) express en-
ergy conservation for the transition Em ! En and Fig. 1
shows a sketch of a such a line spectrum. Each Dirac distri-
bution is here slightly broadened to make it visible. Splitting
the double sum in Expression (23) into terms with m 6= n and
m = n, one obtains, respectively, a decomposition into an in-
elastic and an elastic component of the spectrum. The latter
is usually written as

S(el)

s (q,!) = EISF (q)�(!), [28]

where

EISF (q) =
1
Z

X

m

e��Empmm(q) [29]

is the Elastic Incoherent Structure Factor.

The construction of the transition probabilities re-
minds the Franck-Condon theory of vibronic transitions in

p
~q
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0
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2

3

4
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3�
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E
TT �

Fig. 2. Neutron scattering in the Franck-Condon representation. The model

system is here the harmonic oscillator and one considers the 0 ! 3 excitation. T
and T 0 are the kinetic energies, respectively, before and after the collision with the

neutron and T 0(p) = T (p+ ~q).

molecules [11, 12]. In the latter case one considers, however,
overlap integrals of energy eigenfunctions in coordinate space,
which correspond to the molecular electronic spectra before
and after the absorption or emission of a photon. The absorp-
tion/emission of the photon changes here the potential energy
of the molecule and this change entails a shift of its minimum
in space, i.e. a shift of the atomic equilibrium configuration.
In the case of neutron scattering it is instead the kinetic en-
ergy of the atomic nuclei in the sample which is shifted due to
the momentum transfer ~q of the neutron. Fig. 2 illustrates
this point for the harmonic oscillator which will be discussed
in the following.

Harmonic oscillator.The harmonic oscillator is the simplest
spectroscopic model system with a discrete spectrum of eigen-
values. The potential energy function is here a quadratic func-
tion of the displacement coordinate, x,

V (x) =
1
2
M⌦2x2,

where M is the mass of the oscillator and ⌦ its (angular) fre-
quency. Since both the potential and the kinetic energy are
quadratic functions in time, the stationary Schrödinger equa-
tion in momentum and position space have the same form if
appropriate dimensionless variables are introduced,

�00(⇠) +

✓

✏� ⇠2

4

◆

�(⇠) = 0.

Here ✏ = E/~⌦ is the energy in units of ~⌦ and in the following
⇠ =

p

2/(~M⌦)p. The solution of the stationary Schrödinger
equation for an oscillator leads to the well-known equidistant
eigenvalue spectrum, En = (n + 1/2)~⌦, and the associated
eigenfunctions have the form

�m(⇠) = exp(�⇠2/4)Hem (⇠) /
p
m!,

where Hem(x) = Hm

�

x/
p
2
�

/
p
2m and Hm(x) are the Her-

mite polynomials [13].

The transition amplitudes and probabilities for the har-
monic oscillator can be computed analytically. Introducing
the dimensionless momentum transfer

y(q) =

r

2~
M⌦

q, [30]
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they are found to be (details are skipped here)

amn(q) = e�
y2

8 2m�n

r

m!
n!

yn�mL(n�m)

m

✓

y2

4

◆

, [31]

pmn(q) = e�
y2

4 (�1)m+nL(n�m)

m

✓

y2

4

◆

L(m�n)

n

✓

y2

4

◆

, [32]

where L
(↵)

m (.) denote the generalized Laguerre polynomi-
als [13]. Relation [32] follows from the symmetry property

L
(n�m)

m (x) = L
(m�n)

n (x)(�x)m�n(n!/m!). A few examples for
the transition probabilities are given in Fig. 3.

With the above definitions, the intermediate scattering func-
tion takes the form

Fs(q, t) =
1
Z

X

m,n

e��~⌦(m+1/2)ei(n�m)⌦tpmn(q), [33]

and the partition function is given by Z = e
1
2�~⌦/(e�~⌦ � 1).

The double series [33] can be summed up to (details are omit-
ted)

Fs(q, t) = ei
y(q)2

4 (sin(⌦t)+i(1�cos(⌦t)) coth( �⌦~
2 )), [34]

which is equivalent with the formula stated in the classical
textbook by Lovesey [8].

It follows from (33) that the dynamic structure factor can
be written as a weighted double sum of Dirac distributions,
each corresponding to a transition Em ! En,

Ss(q,!) =
1
Z

X

m,n

e��~⌦(m+1/2)�
�

! � [n�m]⌦
�

pmn(q). [35]

Note that the usual form found in textbooks (see e.g. Ref. [8])
is derived from Expression (34), which leads to a weighted
single sum of Dirac lines.

Franck-Condon principle for continuous energy spectra
Formalism.We consider now the situation that the scattering
system under consideration has a continuous energy spectrum
and that its energy eigenstates |�(X)i are described by a set of
continuous real-valued variables X ⌘ {x

1

, . . . , xf}. It follows
then that

Ĥ|�(X)i = E(X)|�(X)i, [36]

where E(X) expresses the energy in the variables X. We as-
sume further that the eigenstates are normalized such that

h�(X 0)|�(X)i =
(

1 if X = X 0,

0 otherwise.
[37]

The quantum states are counted via an appropriate density of
states, ⇢(X), such that m ! dm = ⇢(X)dfX etc., and it is
convenient to work with probability densities instead of prob-
abilities. The transition probability density is in particular
defined as

P (X 0|X,q) = ⇢(X 0)|a(X 0|X,q)|2, [38]

with

a(X 0|X,q) =

Z

d3Np�⇤(p+ ~Q;X 0)�(p;X), [39]

and �(p;X) ⌘ hp|�(X)i, and it must fulfill the condition

P (X 0|X,0) = �(X �X 0). [40]
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Fig. 3. Probabilities pmn(y) for the transition m ! n of the harmonic oscil-

lator. The definition of y is given by Eq. [30].

Similarly, we define the equilibrium probability density

P
eq

(X) = ⇢(X)
e��E(X)

Z
[41]

where Z =
R

dfX ⇢(X) exp(��E(X)). With these prerequi-
sites the intermediate scattering function takes the form

Fs(q, t) =

Z Z

dfXdfX 0 P
eq

(X)

⇥ ei(E(X0
)�E(X))t/~P (X 0|X,q), [42]

and the resulting dynamic structure factor reads

Ss(q,!) =

Z Z

dfXdfX 0 P
eq

(X)P (X 0|X,q)

⇥ �(! � [E(X 0)� E(X)]/~), [43]

in analogy with [23]. The integration overX 0 can be performed
formally and yields

Ss(q,!) = ~
X

k

Z

dX P
eq

(X)
P (X 0

k(X,!)|X,q)
|rXE(Xk)|

, [44]

where X 0
k(.) denotes the ensemble of all roots solving the equa-

tion E(X 0) = E(X)+~! and rX is the gradient with respect
to X.

Ideal gas.The ideal gas is the simplest model system for a
system with a continuous distribution of quantum states. Be-
tween collisions individual molecules move freely, without the
influence of forces. The quantum state of a freely moving par-
ticle is characterized by the three components of its sharply
defined momentum, p

0

. The corresponding wave functions in
position space are plane waves, hx|�(p

0

)i / exp(ip
0

· x) and
lead to a momentum representation of the form hp|�(p

0

)i =
�(p�p

0

). These wave functions have, however, the unpleasant
feature of being not square-normalizable and they are there-
fore not suited for the calculation of Franck-Condon type of
overlap integrals. For this reason the state of the scatter-
ing atom is described by a square-normalized Gaussian wave
packet of very small but finite width ✏ > 0,

�(p;p
0

) =
1

(2⇡✏2)3/4
e
� (p�p0)2

4✏2 , [45]

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

Some transition probabilities as a 
function of momentum transfer
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Ccntinuous energy spectra

ˆH|�(X )i = E (X )|�(X )i h�(X 0
)|�(X )i =

(

1 if X = X 0,

0 otherwise

Complex systems

Ccntinuous energy spectra

ˆH|�(X )i = E (X )|�(X )i

Continuous counting 

Ccntinuous energy spectra

ˆH|�(X )i = E (X )|�(X )i h�(X 0
)|�(X )i =

(

1 if X = X 0,

0 otherwise

m ! dm = ⇢(X )d f X

X is a set of variables describing 
the state of the system

The energy levels of complex systems are 
quasi-continuously distributed.

ρ(X) is the density of states of the system.



The scattering functions are determined by the 
transition probabilities and the density of states, ρ(X).

Ccntinuous energy spectra

ˆH|�(X )i = E (X )|�(X )i h�(X 0
)|�(X )i =

(

1 if X = X 0,

0 otherwise

m ! dm = ⇢(X )d f X

Ss(q,!) =
Z Z

d f Xd f X 0⇢(X )p
eq

(X )

⇢(X 0
)p(X 0|X ,q)�(! � [E (X 0

)� E (X )]/~)

The dynamic structure factor is a continuous 
function in ω



Conclusions

• Energy landscapes are an intuitive concept to understand 
protein structural dynamics, but they are NOT directly probed 
by neutron scattering.


• Diffusion-based EL models tacitly the classical limit, where 
recoil effects are absent and the neutron acts an “observer”. 


• What is really measured in neutron scattering experiments is 
the reaction of the target to the impact of the neutron. The 
scattering of neutrons induces transitions on the energy 
landscape and the corresponding momentum transfer-
dependent transition probabilities determine the measured 
intensities.
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