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The present article gives an overview of analytical and simulation approaches to describe the relaxation dynamics
of proteins. Particularly emphasised are recent developments of theoretical models, such as fractional Brownian
dynamics. The latter connects dynamical events seen on the pico- to nanoscond time scale, accessible to
quasielastic neutron scattering, and functional dynamics of proteins on much longer time scales.

I. Introduction

There is now ample evidence that the internal dynamics of
proteins is as closely related to their function as their folded
structure. Using single molecule fluorescence photon correla-
tion spectroscopy (FCS), Xie and coworkers demonstrated this
recently by following the functional dynamics of a protein in
real time.1 The study revealed that functional dynamics of a
protein takes place on time scales which are comparable to
those required for protein folding: i.e. on time scales in the
millisecond to second range. Nevertheless a correlation between
the dynamics and the function of a protein can also be seen with
spectroscopic techniques which give access to fast motions in a
protein, such as elastic and quasielastic scattering of thermal
neutrons (QENS). Using elastic incoherent neutron scattering
Ferrand et al. found for example2 that the function of bacter-
iorhodopsin is correlated with a dynamical transition, the so-
called ‘‘glass transition’’, at about 200 K, which is also seen for
other proteins, such as myoglobin,3 superoxide dismutase,4 and
a-amylase.5 The dynamical transition is characterised by the
onset of stochastic motions which are absent at low tempera-
tures, where the internal dynamics of proteins is dominated by
harmonic vibrations. At the same time the atomic fluctuations
increase much more rapidly with temperature than below the
transition temperature, indicating an increased flexibility of the
protein. The transition from one regime to the other is not very
sharp, but takes place over a temperature range of a few 10 K.
It depends crucially on the environmental conditions, such as
membrane hydration and solvent.2,6–8

Using the simple mechanical model of a harmonic oscillator,
Zaccai proposed to relate protein function to an effective
internal force constant which describes the internal flexibility
or ‘‘resilience’’ of a protein.9 Such a model can describe the
position fluctuations seen by elastic neutron scattering below
and above the glass transition. No extension of this quite
successful simple model has been proposed to include also
the description of the stochastic internal dynamics which is
seen by quasielastic neutron scattering (QENS). The reason
might be that a harmonic potential is often associated with
vibrational motions and not with stochastic motions, as they
are seen by QENS. Many QENS studies have been devoted to

the study of protein dynamics as a function of hydration at
ambient temperature,6,7,10–14 and are usually interpreted in
terms of the model by Volino and Dianoux of Brownian
motion in a spherical cavity.15 This model accounts for the
confinement of atomic motions in proteins, but cannot describe
the empirical fact that correlation functions related to internal
protein dynamics exhibit long-time memory effects leading to
strongly non-exponentially decaying correlation functions.
These long-time memory effects are reflected in a non-expo-
nential decay of the intermediate scattering functions which
can be directly observed by neutron spin echo spectroscopy.16

On much longer time scales a non-exponential relaxation
dynamics of proteins has been observed by the single molecule
FCS experiments mentioned above.1,17 Here the internal pro-
tein dynamics has been described by fractional Brownian
dynamics (FBD), more precisely by a fractional Ornstein–
Uhlenbeck (OU) process. The mathematical concept of FBD
has been introduced a long time ago by Mandelbrot and Ness18

in order to model non-Markovian stochastic processes with
long-time memory effects. It has been used since then to model
such different phenomena as water levels in reservoirs and the
time evolution of stock markets. In the context of protein
dynamics the model of FBD has been used first to describe the
kinetics of oxygen rebinding upon laser flash photolysis.19 Over
the recent years the concept of FBD has stimulated the
derivation of generalised Fokker–Planck equations which de-
scribe non-Markovian diffusion processes with long time
memory in presence of external forces.20–25

The concept of fractional Fokker–Planck equations (FFPE)
is an interesting route to extend the simple oscillator model for
the flexibility of proteins in order to describe QENS from
internal protein motions and to bridge the gap to spectroscopic
experiments which are sensitive to much longer time scales.
The motivation of this paper is to give a short overview of
FFPEs, to show how the theory can be used to derive analy-
tical models for QENS from proteins, and to give evidence for
fractional Brownian dynamics in proteins by appropriate
analyses of molecular dynamics simulations.

II. Fractional Fokker–Planck equation

A. Generic form

The Fokker–Planck equation (FPE) is one of the fundamental
equations in nonequilibrium statistical mechanics.26–28 It
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describes the time evolution of the transition probability
density for a Markovian stochastic process, assuming that
small increments in time lead to small increments in the
stochastic variable under consideration. From a physical point
of view Fokker–Planck equations describe diffusion processes
in the presence of systematic forces. For Fokker–Planck
operators with a discrete spectrum of eigenvalues the Marko-
vian hypothesis leads to solutions and associated correlation
functions which exhibit a multiexponential decay in time, with
a well defined slowest relaxation mode. In order to generate
correlation functions with algebraic long-time tails, as they are
often observed in relaxation processes of complex systems, the
fractional Fokker–Planck equation (FFPE) has been intro-
duced more recently.20–23 It is effectively a phenomenological
generalisation of the Fokker–Planck equation which leads by
construction to non-exponentially decaying solutions. Assum-
ing that O is the stochastic variable under consideration, the
fractional Fokker–Planck equation reads

@PðO; tÞ
@t

¼ ~t1�a0D1�a
t LFPPðO; tÞ: ð2:1Þ

Here P(O,t) � P(O,t |O0,t0) is the transition probability density
for a move from O0 at time t0 to O at time t, and LFP is the
standard Fokker–Planck operator

LFP ¼ �
@

@O
a1ðOÞ þ

1

2

@2

@O2
a2ðOÞ; ð2:2Þ

where a1(O) and a2(O) are, respectively, the drift and fluctua-
tion coefficients which depend in general on O. The symbol

0Dt
1�a denotes the Riemann–Liouville operator for a frac-

tional derivative of order 1 � a.29 For an arbitrary function f
the latter is defined as

0D
1�a
t f ðtÞ ¼ d

dt

Z t

0

dt
ðt� tÞa�1

GðaÞ f ðtÞ: ð2:3Þ

Here G( � ) is the gamma function.30 In general, a fractional
derivative of order b4 0 is a normal derivative of order n, with
n being the smallest integer number Zb, which is preceded by
a fractional integration of order n � b. The scaling factor
~t (~t 4 0) in (2.1) has been introduced to ensure the correct
dimension of the right-hand side. The FFPE (2.1) is to be
solved with the initial condition P(O, 0) ¼ d(O � O0). One
recognises that the standard FPE equation is retrieved in the
limit a - 1.

B. General form of the solution

The construction of the FFPE (2.1) is most easily understood
by looking at its Laplace transform, which is defined as f̂(s) ¼R
N

0 dt exp(�st)f(t) for an arbitrary function f(t) (<s} 4 0).
Performing first an integration of both sides of the FFPE from
0 to t yields

Pðt;OÞ � PðO; 0Þ ¼ ~t1�a
Z t

0

dt
ðt� tÞa�1

GðaÞ LFPPðO; tÞ;

and a subsequent Laplace transform leads to

P̂ðs;OÞ � PðO; 0Þ
s

¼ ~t1�as�aLFPPðO; tÞ:

Using that P(O,0) ¼ d(O � O0) one obtains thus

P̂ðO; sÞ ¼ 1

s� ½s~t�1�aLFP

dðO� O0Þ: ð2:4Þ

We assume now that LFP has a discrete spectrum of
eigenvalues. The Dirac distribution may then be expressed in
terms of the biorthogonal set of right and left eigenfunctions of

LFP, which are defined by the relations26,28

LFPPn(O) ¼ �lnPn(O), (2.5)

LþFPQn(O) ¼ �lnQn(O), (2.6)

respectively, and fulfil (Pn,Qk) ¼ dnk, where dnk is the Kroneck-
er delta. The operator LþFP is adjoint to LFP, such that
(g, LFPf) ¼ (LþFPg,f), and one has Pn(O) ¼ Qn(O)Peq(O).
The scalar product of two functions f and g is here defined
as (f, g) ¼

RþN
�N dO f(O)g(O). Inserting the representation

dðO� O0Þ ¼
X
n

PnðOÞQnðO0Þ: ð2:7Þ

into expression (2.4) yields thus

P̂ðO; sÞ ¼
X
n

1

sþ ðs~tÞ1�aln
PnðOÞQnðO0Þ: ð2:8Þ

One can now make use of the relation

Eað�taÞ ¼
1

2pi

I
C

ds
expðstÞ

sð1þ s�aÞ ; ð2:9Þ

where Ea(z) is the Mittag–Leffler function31

EaðzÞ ¼
X1
k¼0

zk

Gð1þ akÞ: ð2:10Þ

The above series expansion shows that Ea(z) is a generalised
exponential function, where the gamma function G(1 þ ak)
replaces the factorial k! in the series representation of a normal
exponential function. Therefore the functions Ea(�ta) may be
considered as generalised stretched exponential functions.
Using the above relations and the rescaled eigenvalues

la,n :¼ ~t1�aln, (2.11)

the inverse Laplace transform of eqn. (2.8) can be cast into the
form

PðO; tÞ ¼
X
n

PnðOÞQnðO0ÞEað�la;ntaÞ: ð2:12Þ

The generalised stretched exponential functions decay
monotonically to zero with t - N, and for large times one
can make the approximation

Eað�la;ntaÞ �
l�1n;at

�a

Gð1� aÞ : ð2:13Þ

The solution of a FFPE has thus by construction an algebraic
long-time tail. In the limit a - 1 each generalised stretched
exponential in eqn. (2.12) is replaced by exp(�lnt), and one
retrieves the eigenfunction representation for the solution of a
Fokker–Planck equation.28 The transition from a FPE to its
fractional counterpart leads thus to the replacement of
exp(�lnt) - Ea (�la,nta) in the eigenfunction expansion of
the general solution.
A remark concerning the equilibrium density is in place here.

If the Fokker–Planck operator describes a system close to
thermal equilibrium, it possesses only negative eigenvalues,
except for one which is zero and which is associated to the
eigenfunctions P0(O) ¼ Peq(O), representing the equilibrium
density. The corresponding left eigenfunction is given byQ0(O)¼
1. Ordering the (negative) eigenvalues ln such that l0 o l1 o
l2. . ., where l0 ¼ 0, it follows from the proportionality relation
eqn. (2.11) that also la,0 o la,1, o la,2. . ., and in particular
la,0 ¼ l0 ¼ 0. This shows that the equilibrium solution of
a FFPE is the same as the one of the corresponding
standard FPE,

PeqðOÞ ¼ lim
t!1

PðO; tÞ ¼ P0ðOÞ: ð2:14Þ
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It should also be emphasised that a discrete eigenvalue spec-
trum of a Fokker–Planck operator leads to a strict maximum
relaxation time

tmax ¼ l1
�1 (2.15)

in the case of normal Brownian dynamics.

C. Correlation function and its Fourier spectrum

From the general form, eqn. (2.12), of the solution of a FFPE
one can derive a formula for the correlation function cOO(t) :¼
hO(t)O(0)i. Using the relation between the Pn(O) and Qn(O)
and one obtains

cOOðtÞ ¼
Z Z

dO0 dOOO0PðO; tjO0; 0ÞPeqðO0Þ

¼
X1
n¼1

Z
dOOPnðOÞ

� �2

Eað�la;ntaÞ: ð2:16Þ

It should be noted that the sum in eqn. (2.16) starts with n ¼ 1
since there is no net drift in the equilibrium state, and thereforeR
dO OP0(O) ¼ 0.
In experiments one measures often the Fourier spectrum of a

time correlation function and not the time correlation function
itself. The generalised stretched exponential functions intro-
duced in eqn. (2.9) have the convenient feature that they
possess an analytical Fourier transform.32 Defining c̃OO(o) ¼RþN
�N dt exp(�iot)cOO(t), one obtains

~cOOðoÞ ¼
X1
n¼1

Z
dOOPnðOÞ

� �2

Laðo; ta;nÞ; ð2:17Þ

where La(o;t) is the generalised Lorentzian (here ta,n � t for
brevity)

Laðo; tÞ ¼ 2t sinðap=2Þ
jotjðjotja þ 2 cosðap=2Þ þ jotj�aÞ ; 0oa � 1:

ð2:18Þ

The relaxation times ta,n are given by

ta,n ¼ la,n
�(1/a), n a 0, (2.19)

where la,n are the rescaled eigenvalues which have been defined
in eqn. (2.11) and which appear in definition (2.16) of the
correlation function. It is important to note that La(o;t)
is singular at o ¼ 0 if a a 1. This is due to the fact that
Ea(�(t/t)a) is a self-similar function which has no characteristic
time scale. The limiting behaviour for large frequencies,

La(o;t) p o�(11a), (2.20)

differs from that of a Lorentzian, L(o,t) ¼ 2t/(1 þ [ot]2),
which decays as po�2.

III. A simple model for QENS from proteins

In the following it will be shown how a FFPE approach can be
used to construct a simple model for internal protein dynamics,
as it is observed by quasielastic neutron scattering. Two
essential features must be taken into account in this case:

(a) The model must describe diffusive motions which are
confined in space.

(b) The resulting correlation functions must exhibit long-
time memory effects leading to a non-exponential decay in
time.

Such a model is the fractional Ornstein–Uhlenbeck process
which describes non-Markovian diffusion of a Brownian par-
ticle in a harmonic potential. As already mentioned, this model
has been recently used to model spectra from fluorescence
photon correlation spectroscopy.17 In contrast to the model
by Volino and Dianoux,15 the confinement of the atomic
motions is not modelled by a boundary condition, but by a

quadratic potential

VðxÞ ¼ K

2
x2: ð3:21Þ

Here K 4 0 is the force constant of the elastic force F(x) ¼
�Kx which tends to restore the equilibrium position x ¼ 0 of
the Brownian particle. The latter is a tagged, ‘‘representative
atom’’ which describes the motion of all atoms in a protein.
The potential (3.21) must be interpreted as an effective poten-
tial, which represents the envelope of a rugged multiminima
potential energy surface,33 as it is shown in Fig. 1. At low
temperatures the tagged atom is trapped in one of the local
minima and performs harmonic vibrations. If the temperature
is raised above the transition temperature Tg of about 200 K,
the tagged atom can easily escape the local minima and
performs diffusive motions in the effective envelope potential.
To account for long-time memory effects, which are character-
istic for relaxation processes in complex systems, the motion of
the tagged atom is not described by the standard Ornstein–
Uhlenbeck process, but by its fractional counterpart. The force
constant K describes effectively the softness or ‘‘resilience’’ of
the protein, which suffices to obtain a qualitative description of
elastic neutron scattering from proteins.9

A. Fractional Fokker–Planck equation and its solution

In the following O - x describes the position of a Brownian
particle, which diffuses in the harmonic potential (3.21). In this
case the drift coefficient in the Fokker–Planck operator (2.2) is
set to a1(x) ¼ �Zx and the fluctuation coefficient to a2(x) ¼ 2D,
where Z is an inverse relaxation time and D is the short time
diffusion coefficient. The Ornstein–Uhlenbeck process has been
extensively studied in the past, and the left and right eigenfunc-
tions of the corresponding Fokker–Planck operator

LFP ¼ Z
@

@x
xþD

@2

@x2
ð3:22Þ

are well known.26,28 One obtains

QnðxÞ ¼
1ffiffiffiffiffiffiffiffiffi
2nn!
p Hnðx

ffiffiffiffiffiffiffiffiffiffiffi
Z=2D

p
Þ ð3:23Þ

for the left eigenfunctions corresponding to the negative eigen-
values

ln ¼ nZ, n ¼ 0,1,2,. . . (3.24)

Here Hn( � ) is the nth Hermite polynomial.30 As outlined
above, the right eigenfunctions are given by Pn(x) ¼
Peq(x)Qn(x), where Peq(x) ¼ P0(x) is the equilibrium density.

Fig. 1 Sketch of the potential energy surface of a protein.
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The latter reads here

PeqðxÞ ¼
ffiffiffiffiffiffiffiffiffi
Z

2pD

r
exp � Zx2

2D

� �
: ð3:25Þ

Since the equilibrium density must be proportional to the
Boltzmann factor, Peq(x) p exp(�bV(x)), it follows from
eqn. (3.25) that

D

Z
¼ kBT

K
: ð3:26Þ

Here b ¼ 1/kBT is the inverse temperature divided by the
Boltzmann constant kB and K is the force constant of the
quadratic potential in eqn. (3.21). Defining the scaled positions

x0 ¼ xffiffiffiffiffiffiffiffiffi
hx2i

p ð3:27Þ

where hx2i is the mean square position fluctuation

hx2i ¼ kBT

K
ð3:28Þ

and the scaled relaxation constant

Za ¼ ~t1�aZ, (3.29)

one obtains from eqn. (2.12)20,23

Pðx0; tÞ ¼
exp �x02=2
� �
ffiffiffiffiffiffi
2p
p

X1
n¼0

1

2nn!
Hn

x0ffiffiffi
2
p
� �

Hn
x00ffiffiffi
2
p
� �

Eað�nZataÞ:

ð3:30Þ

Here Ea( � ) is the Mittag–Leffler function defined in eqn. (2.10).

B. The autocorrelation function and its memory function

The autocorrelation function of the scaled variable x0 is
obtained from the general expression (2.16), using that here
O - x0 and

R
dx0 x0Pn(x

0) ¼ dn,1. Defining the normalized
autocorrelation function c(t) � cx0x0(t), one obtains

c(t) ¼ Ea(�Zata). (3.31)

In the limit a - 1 the exponentially decaying correlation
function of the standard Ornstein–Uhlenbeck process is re-
trieved. Fig. 2 shows c as given by eqn. (3.31) for a ¼ 1/2 (solid
line), its limit for a - 1 (dashed line), and for comparison also
the ‘‘normal’’ stretched exponential exp(�[t/t]a) with a ¼ 1/2.
The latter is also known as Kohlrausch–Williams–Watt
(KWW) function and has been used extensively to model
dielectric relaxation processes.34 For identical parameters t
and a it decays more rapidly with time than the correlation
function, eqn. (3.31), but still slower than an exponential

function. The inset shows the memory function of c(t) which
is discussed below. It is worthwhile noting that the correlation
function of the fractional Ornstein–Uhlenbeck process has the
analytical form c(t) ¼ exp([t/t])erfc([t/t]1/2) if a ¼ 1/2.31

The Fourier spectrum of c(t) is a single generalised Lor-
entzian,

~cðoÞ ¼ 2ta sinðap=2Þ
otaj j otaj jaþ2 cosðap=2Þ þ otaj j�að Þ ; 0oa � 1;

ð3:32Þ

where ta is given by

ta ¼ Za
�1/a (3.33)

Fig. 3 shows the Fourier transforms of the correlation func-
tions depicted in Fig. 2. The spectrum corresponding to a
fractional Ornstein–Uhlenbeck process is almost featureless. It
reflects that the memory function has no characteristic time
scale and is self-similar in the sense of a fractal on the
frequency axis: any zoom on the spectrum yields a similar
pattern. The KWW model does in general not lead to an
analytical form for the Fourier transform of the associated
time correlation function. An exception is the case a ¼ 1/2,
which is depicted in Fig. 3. For practical applications the
Fourier transform of the KWW model may be approximated
by algebraic functions.35

The non-exponential decay of c(t) can be quantified by using
the concept of memory functions, which have been introduced
by Zwanzig.36 In the full Hamiltonian description of a many
body system the autocorrelation function c(t) of any phase
space variable fulfils a Volterra-type equation of the form

d

dt
cðtÞ ¼ �

Z t

0

dt xðt� tÞcðtÞ; ð3:34Þ

where the kernel x( � ) is the memory function associated with
c(t). The latter can be formally expressed in terms of all phase
space variables. One sees easily that an exponential decay of
c(t) can be produced by a memoryless process where x(t) ¼
(1/t)d(t). In this case eqn. (3.34) becomes a simple differential
equation, with c(t) ¼ exp(�t/t) as solution. A comprehensive
introduction into the theory of memory functions can be found
in the monograph by Boon and Yip.37 Here it matters only that
relation (3.34) is exact and that any physical model for a
correlation function is thus essentially a model for the memory
function. In this context it is important to note that the
commonly used Kohlrausch–Williams–Watt model, in which
the correlation function is described as stretched exponential,
c(t) ¼ exp(�[t/t]a) (0 o a r 1), has no associated memory
function. From a statistical mechanics point of view it does
thus not belong to the class of ‘‘admissible’’ models.32

Fig. 2 Model correlation function for the fractional OU process with
a ¼ 1/2 (solid line), the exponential exp(�[t/t]) (dashed line), and the
stretched exponential exp(�[t/t]a) for a ¼ 1/2 (dashed–dotted line).

Fig. 3 The Fourier spectra corresponding to the model correlation
functions depicted in Fig. 2.
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As the position of a Brownian particle is one of the variables
spanning the phase space of the solute particle itself and the
surrounding solvent, its autocorrelation function should verify
a memory function equation of the form (3.34). The memory
function associated with a fractional Ornstein–Uhlenbeck pro-
cess has been recently derived in ref. 32, using the Laplace
transform of the memory function eqn. (3.34). The latter can
be derived from relation (2.9), the rhs of which can be inter-
preted as an inverse Laplace transform. We skip the mathe-
matical subtleties which are discussed in ref. 32 and give
directly the result. For any time t 4 0 the memory function
has the form

xðtÞ ¼ a� 1

GðaÞt2a
t

ta

� �a�2
; t40; ð3:35Þ

for 0 o a o 1 and fulfils at the same timeR
N

0 dt x(t) ¼ 0. (3.36)

As discussed in ref. 32, x(t) is a distribution. For any e 4 0 it
may be represented by a normal function which has the form
(3.35) for t Z e, and by an expression of the form x(t) ¼ A þ
Bt for 0 r t o e. In the limit e - 01 the form of x(t) for t A
[0,e) does not matter, as long as eqn. (3.36) is fulfilled and x(t) is
continuous. Property (3.35) indicates long time memory effects
through an algebraic decay of the memory function and
property (3.36) the absence of a characteristic time scale. The
latter is defined through t�1 ¼

R
N

0 dt x(t), as in the case of
memoryless Brownian motion.

C. Mean-square displacement

For small times the non-exponential decay of c(t) leads to a
‘‘subdiffusive’’ increase of the mean square displacement
(MSD), instead of an increase pt, which is characteristic for
Einstein diffusion. We note first that the MSD is given by (here
the unscaled variable x is used)

Wxx(t) ¼ h[x(t) � x(0)]2i ¼ 2hx2i (1 � c(t)) (3.37)

for motions which are confined in space, where hx2i o N.
Relation (3.31) shows that

Wxx(t) ¼ 2hx2i (1 � Ea(�Zata)) (3.38)

for a fractional Ornstein–Uhlenbeck process. Using this result
shows that for small times

W(t) E 2Dat
a (3.39)

where Da ¼ ~t1�aD/G(1 þ a) and D ¼ kBTZ/K is the normal
short time diffusion constant. For the standard Ornstein–
Uhlenbeck process one finds, in contrast, that the mean square
displacement for small times is given by W(t) E 2Dt, which
corresponds to Einstein diffusion.

D. Dynamic structure factor

The fundamental quantity measured in neutron scattering
experiments is the dynamic structure factor, S(q, o). Here q
and o are, respectively, the momentum and energy transfer
from the neutron to the sample in units of �h. Formally the
dynamic structure factor can be written as,

Sðq;oÞ ¼ 1

2p

Z þ1
�1

dt expð�iotÞIðq; tÞ; ð3:40Þ

where I(q,t) is the intermediate scattering function. For the
moment it will be assumed that the scattering system can be
described by a single representative atom which moves under
the influence of isotropic forces and whose dynamics is de-
scribed by a FFPE. Since the intermediate scattering function

is a time correlation function,38,39 one writes by analogy with
eqn. (2.16)

Iðq; tÞ ¼
Z Z

dx0 dx expðiq½x� x0�ÞPðx; tjx0; 0ÞPeqðx0Þ

¼
X1
n¼0

Z
dx expðiqxÞPnðxÞ

����
����
2

Eað�la;ntaÞ:

ð3:41Þ

In contrast to eqn. (2.16) the sum in eqn. (3.41) runs from 0 to
N, since the term with n ¼ 0 does not vanish here. This term
yields in effect the elastic incoherent structure factor (EISF),
which is defined as the limit of I(q,t) for t - N,

EISFðqÞ ¼
Z

dx expðiqxÞP0ðxÞ
����

����
2

: ð3:42Þ

Inserting expression (3.41) into the definition (3.40) of the
dynamic structure factor, one recognises easily that the term
corresponding to n ¼ 0 yields a contribution of the form
EISF(q)d(o) and gives thus rise to elastic scattering. Moreover
the EISF is the same for the FFPE and its non-fractional
counterpart.
If the dynamical model is the fractional Ornstein–Uhlenbeck

process, the intermediate scattering function takes the form

Iðq; tÞ ¼ expð�q2hx2iÞ
X1
n¼0

q2nhx2in

n!
Eað�nZataÞ: ð3:43Þ

In the limit a - 1 the generalised stretched exponential
functions become normal exponential functions, Ea(�nZata)-
exp(�nZt). Since exp(�nZt) ¼ exp(�Zt)n, the series in eqn.
(3.43) represents the function exp(q2hx2i exp[�Zt]) in this case,
and one retrieves the intermediate scattering function corres-
ponding to the standard OU process,

lim
a!1

Iðq; tÞ ¼ expð�q2hx2ið1� exp½�Zt�ÞÞ: ð3:44Þ

In the general case, where 0 o a o 1, a closed form such as
eqn. (3.44) cannot be given, since Ea(�nZata) a Ea(�Zata)n.
The values of the intermediate scattering function for t ¼ 0
and t - N do, however, not depend on a. Since Ea(0) ¼ 1
it follows that I(q, 0) ¼ 1, and for t - N one obtains
the EISF,

EISF(q) ¼ exp(�q2hx2i). (3.45)

The dynamic structure factor is obtained by the Fourier trans-
form eqn. (3.40), inserting expression (3.43):

Sðq;oÞ ¼ expð�q2hx2iÞ dðoÞ þ
X1
n¼1

q2nhx2in

n!

1

2p
Laðo; ta;nÞ

( )
:

ð3:46Þ

The generalized Lorentzians La(o;t) are given by eqn. (2.18).
Combining eqns. (2.11), (2.19) and (3.24) one finds that the
relaxation rates are given by

ta;n ¼
~t

ðnZ~tÞ1=a
: ð3:47Þ

In the limit a - 1 an analytical expression does not only exist
for the intermediate scattering function, but also for the
dynamic structure factor. As outlined in the Appendix, one
finds that

lim
a!1

Sðq;oÞ ¼ EISFðqÞ dðoÞ þ 1

Z
w q2hu2i;o

Z

� �� �
; ð3:48Þ

where w( � , � ) is given by

wða;oÞ ¼ 1
pRfð�aÞ

�iogðio;�aÞg; o 6¼ 0: ð3:49Þ

As usual, g( � , � ) denotes the incomplete gamma function.30
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Figs. 4 and 5 show, respectively, the dynamic structure
factor for the fractional OU process (a ¼ 0.5) and its standard
counterpart. The fractional OU process leads to an almost
featureless form of S(q, o). Here 20 terms in the series (3.46)
have been taken into account, checking empirically the con-
vergence in the given q-range. The fact that QENS spectra
from hydrated protein powders depend very little on q has been
observed by many experimentalists and makes possible to
average the experimental spectra over several detectors, in
order to obtain a better statistics. In case of normal Brownian
dynamics the dynamic structure factor has a finite width, which
is well visible in Fig. 5 and which is separately given in Fig. 6.
For large q-values the Dq2-law of free diffusion is recovered, as
for the model of diffusion in a spherical cavity.15

E. An application to QENS reference data

In the following we discuss the application of the fractional OU
process as a model for QENS caused by internal motions in
myoglobin. For this purpose the data from Doster et al. are
used,3 which have been obtained from D2O-hydrated myoglo-
bin powders. The use of hydrated protein powders has been
quite popular in the past, since global protein motions need not
be considered for such a system. To cover a large energy
transfer range the data have been combined from measure-
ments with two different spectrometers at the Institut Laue-
Langevin in Grenoble. The spectra for energy transfers DE o
0.1 meV have been obtained with the backscattering spectro-
meter IN13 and those for DE4 0.1 meV with the time-of-flight
spectrometer IN6. The respective energy resolutions (HWHM)
are dE ¼ 8 meV and dE ¼ 50 meV.

If the fractional Ornstein–Uhlenbeck process is used as a
model for experimental experimental QENS data, one works
effectively with 3 free parameters, which are (a) the parameter
a, (b) the relaxation constant ta,1 defined by relation (3.47), and
(c) the mean square fluctuation hx2i. With increasing order n
the relaxation times ta,n are obtained through ta,n ¼ n�1/ata,1.
The model spectrum must be fitted to experimental data which

are necessarily obtained in a finite frequency window. The
instrumental resolution defines the lower end of this window
and for high frequencies mechanical or other physical condi-
tions limit the highest detectable energy of a neutron. Since the
experimental spectra are not known outside a certain frequency
window they cannot be properly normalized for comparison
with the model spectrum, for which

RþN
�N do S(q,o) ¼ I(q,0) ¼

1. In addition the model spectrum is singular for o - 0 if a is
not exactly equal to one. Only in the latter case one obtains a
profile with a finite, absolute amplitude to which the data can
be adjusted. To match the experimental and the model spec-
trum, an additional free amplitude parameter must therefore
be introduced into the model. The fit of the model spectrum,
eqn. (3.46) to the experimental QENS data published in ref. 3,
which is shown in Fig. 8, has nevertheless been obtained by
using three free parameters, since the parameter q2hx2i could
be fixed by using data from elastic scans and MD simulations.
Fig. 7 shows the EISF for myoglobin at 277 K and 320 K
obtained from elastic neutron scattering,3 as compared to
molecular dynamics simulation data at 300 K,40 and a fit of
the Gaussian model eqn. (3.45) to the simulation data (solid
line and filled circles). The fit was performed in the range q o
20 nm�1. This value can be considered as an upper limit for the
applicability of FBD models, since such models can certainly
not describe very localised motions which are seen for larger q-
values. FBD models give a global view of the internal dynamics
of proteins. The fit of the Gaussian EISF (3.45) yields here
hx2i ¼ 1.25 � 10�3 nm2. To obtain the appropriate value for q

Fig. 4 Dynamic structure factor corresponding to a fractional OU
process. The o-axis and the ordinate are on a logarithmic scale. The
smallest value for q2hx2i is 0.01.

Fig. 5 For comparison with Fig. 4: Dynamic structure factor corre-
sponding to a standard OU process.

Fig. 6 HWHM of the QENS spectrum for a standard Ornstein–
Uhlenbeck process as a function of q2.

Fig. 7 Experimental EISF of myoglobin for 277 K (squares), 320 K
(triangles) from ref. 3, compared to MD simulation results for 300 K40

(solid line), and a fit of the Gaussian model in eqn. (3.45) for q2 o
500 nm�2.
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the data listed in the above reference for the experiment on IN6
have been used. The incident wavelength was l0 ¼ 0.51 nm,
and the scattering angle y ¼ 58.81. Approximating q E qel ¼
2k0sin(y/2), where qel is the elastic momentum transfer, and
k0 ¼ 2p/l0 is the wavenumber corresponding to the wavelength
of the incident neutrons, one finds q ¼ 12.04 nm�1 and
q2hx2i ¼ 0.181.

The value for q2hx2i obtained from the EISF can now be
used for the fit of the FBD model in eqn. (3.46). Table 1 shows
the parameters a and t as a function of the number nc of terms
which is considered in eqn. (3.46). For the nc ¼ 5 the series has
practically converged. One finds that a E 0.5 and t E 24 ps.
The amplitude factors are not shown here.

Since the fractional Ornstein–Uhlenbeck process is a model
which is based on the representation of protein dynamics by an
‘‘effective’’ atom, localised specific motions cannot be de-
scribed within the model and only low frequencies, describing
slow relaxation processes, should be considered. Fig. 8 gives an
idea how the experimental data could be extrapolated to
frequencies below the resolution limit, which is indicated by
the vertical dashed line. The latter refers to the IN13 spectro-
meter which has been used in the low frequency region. It
should be noted that o in Fig. 8 is an angular frequency.

IV. Simulation-based modelling of protein

dynamics

A. Motivation for combined neutron scattering and simulation

experiments

With the development of computers in the early 1950’s simula-
tion methods have become an indispensable tool for theorists
and experimentalists, which allow to study condensed matter
systems on an intermediate complexity scale between an ana-
lytical model and a real system. Since the pioneering work of
Rahman on liquid argon,41 molecular dynamics (MD) simula-
tions have been used in a vast number of applications in solid
state physics, physical chemistry, and in biology. A compila-

tion of early papers can be found in ref. 42 and refs. 43 and 44
are classic textbooks on molecular dynamics and Monte Carlo
simulations. The combination of neutron scattering experi-
ments and MD simulations is a particularly powerful method
to study the structure and dynamics of condensed matter on
the atomic scale. Both methods cover the same time and length
scales, roughly 1 Å to 100 Å and 1 ps to 10 ns, respectively, and
the comparison is very direct since neutrons interact with the
atomic nuclei, which are the simulated objects. If recoil effects
can be neglected in the scattering experiment45 and if the
dynamics of the scattering system is determined by the laws
of classical mechanics, the coherent and the incoherent inter-
mediate scattering functions can be computed from MD
simulations via

Icohðq; tÞ ¼
1

N

X
i;j

bi;cohbj;cohhexpðiqT � ½RiðtÞ � Rjð0Þ�Þi;

ð4:50Þ

Iincðq; tÞ ¼
1

N

X
i

b2i;inchexpðiqT � ½RiðtÞ � Rið0Þ�Þi: ð4:51Þ

Here Ri(t) are the trajectories of the N atomic positions and
bi,coh and bi,inc are, respectively, the coherent and incoherent
scattering lengths of atom i.38,39 The symbol T denotes a
transposition. MD simulations have the enormous advantage
that information on the simulated system is available at all
description levels, ranging from the trajectory of an individual
atom to averages and correlation functions involving the whole
simulated system. In the recent past they have been used to
interpret neutron scattering experiments from systems ranging
from molecular liquids to proteins. A broader overview on
combined neutron scattering and simulation studies can be
found in ref. 46 and an update will appear soon. In the context
of this paper the articles40,47–49 and the review50 are of interest.
A simple application in which MD simulations are used to

interpret QENS from proteins has been published in ref. 40.
The basic question addressed in this article is which type of
motion contributes most to the quasielastic scattering spectrum
of neutrons from myoglobin at room temperature. The experi-
mental data which have been used in ref. 40 are the same as
those used above to fit the FBD model.3 Figs. 10 and 11
confront the simulation results with the experimental data,
using two different trajectories for data analysis: the ‘‘raw’’
MD trajectory, and a trajectory in which internal side-chain
motions have been filtered out and only rigid-body motions of
the side chains are left. One notices first that the EISF is well
estimated by the raw simulation data, which indicates that the
atomic fluctuations measured by elastic neutron scattering and
those obtained from simulation are very similar. The agree-
ment of the QENS spectra is less good for o4 0.5 meV, which
may be explained by the fact that the experimental spectrum
has been modified by subtracting a vibrational background.3

In any case the agreement is excellent in the safe quasielastic
region. The rigid body trajectories have been produced by
fitting to each side chain and each time frame a respective
reference structure, which was taken to be the initial structure
in the MD production run. The simulation results show that
elastic and quasielastic neutron scattering from myoglobin
(and quite probably from all globular proteins) is essentially
produced by rigid-body small-step diffusion of whole residues
(see Fig. 9). Internal motions on the residue scale do almost not
contribute to quasielastic and elastic neutron scattering. This
interpretation of the QENS results is very different from the
one in ref. 3, where the EISF is fitted by an asymmetric two-site
jump model, thus assuming jump diffusion and not a contin-
uous diffusion process.
Most, if not all combined MD and neutron scattering studies

of protein dynamics, which have been published so far, have

Fig. 8 Fit of the model in eqn. (3.46) to the experimental QENS data
in ref. 3 at 300 K (solid line and squares, respectively). Here the energy
transfer is given in THz (angular frequency). Apart from a global
amplitude factor, the fitted parameters are t ¼ 24.12 ps and a ¼ 0.51.
More explanations are given in the text. The vertical dashed line
indicates the resolution of the spectrometer IN13 at the Institut
Laue-Langevin in Grenoble, which is 8 meV E 0.012 THz (angular
frequency).

Table 1 Parameters for the fit of the fractional Ornstein–Uhlenbeck

model shown in Fig. 8

nc ¼ 1 nc ¼ 2 nc ¼ 5 nc ¼ 10

a 0.501 0.508 0.509 0.509

t/ps 20.9 23.1 23.3 23.3
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been devoted to investigate relatively fast, ‘‘liquid-like’’ and
vibrational motions, as well as the coupling between solvent
and protein dynamics. In the following it will be shown that
MD simulations can also reveal the presence of very slow
relaxation modes, which are a priori too slow to be fully seen
on the MD/QENS time scale.

B. Anomalous diffusion

One of the very first analyses of a MD simulation is the
calculation of the average mean-square displacement of all or
a part of the atoms in the simulated system,

WðtÞ ¼ 1

N

XN
j¼1

wjh½RjðtÞ � Rjð0Þ�2i: ð4:52Þ

Here N is the number of atoms under consideration, and wj are
appropriate weights, with

PN
j¼1wj ¼ N. Fig. 13 shows the

simulated average mean-square displacement of a lysozyme
protein in solution at ambient temperature and pressure. The
protein is depicted in Fig. 12. The simulation has been per-
formed for one lysozyme protein in a solution of 3403 water
molecules in a rectangular box of 6.16 � 4.19 � 4.61 nm3 at
ambient temperature and pressure, using the Amber94 poten-
tial which includes an adapted TIP3P water model.51 More
details can be found in ref. 52 and will be published elsewhere.
The weights in (4.52) have been chosen proportional to the
squared incoherent scattering lengths of the 1960 explicit
lysozyme atoms, wj p bj,inc

2. This weighting scheme corres-
ponds in practise to considering only the hydrogen atoms,
since the bound incoherent scattering cross section, sH,inc ¼
4pbH,inc

2, is much larger than all other scattering cross sec-
tions.38,39 It is important to note that global translations and

rotations of the lysozyme molecule have been subtracted prior
to analysis. In this way only internal protein motions are left.
The subtraction of global motions has been achieved by
performing for each time frame of the original MD trajectory
a rigid-body fit of the lysozyme structure onto the initial
structure in the trajectory.53

The solid line in Fig. 13 shows the neutron-weighted average
mean-square displacement of the atoms in lysozyme together
with a fit of the FBD model (3.38). Assuming isotropic diffu-
sion, the mean square fluctuation hx2i is here to be replaced by
hu2i, where hu2i ¼ hx2i þ hy2i þ hz2i is the position fluctuation
in Cartesian coordinates. One writes thus,

W(t) ¼ 2hu2i (1 � Ea(�[t/t]a)). (4.53)

where t corresponds to the relaxation time scale ta,1 defined in
eqn. (3.47). The fit has been performed for the parameters t
and a only, providing hu2i ¼ 0.019 nm2 from a separate
calculation from the MD trajectory. The resulting parameters
are t ¼ 33.5 ps and a ¼ 0.49. These values are remarkebly
similar to those found in Table 1 and which correspond to the
fit of the QENS data for myoglobin shown in Fig. 8. The
inconsistent behaviour of the simulated mean-square displace-
ment with respect to the plateau value W(N) ¼ 2(u2) (hori-
zontal dotted line) is typical for MD simulations and indicates
that the simulation is not long enough to establish the con-
vergence of W(t) to the plateau value predicted by the same

Fig. 10 EISF of myoglobin from simulation40 at T ¼ 300 K (solid line
and dashed line) and experiment3 (squares¼ 277 K, triangles¼ 320 K).
The solid line shows the result obtained from straightforward analysis
of the MD trajectory and the dashed line has been obtained by filtering
out internal motions of the protein side-chains.

Fig. 11 Results for the quasielastic spectrum corresponding to
Fig. 10, where the experimental data are given for 300 K. In contrast
to the simulated spectrum, the experimental spectrum has been
modified by subtracting a vibrational background.3

Fig. 9 Left: protein backbone of myoglobin. Right: 31 selected side
chains.

Fig. 12 A lysozyme molecule represented by its covalent bond
structure (left) and a cartoon showing the secondary structure elements
(right).
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simulation. It must be emphasised that the latter is a purely
static quantity and requires less data for the same statistical
accuracy than the study of extremely slow relaxation processes.
Therefore the average position fluctuation can be obtained
with some confidence, although it must be clearly stated that
the exact value is not known. In this context it is worthwhile
recalling that MD simulation yields position fluctuations which
are close to the ones obtained by elastic neutron scattering (see
Fig. 10). Using the scaling behaviour of the fractional Ornstein–
Uhlenbeck process, one can estimate a typical convergence
time ofW(t), even if the latter is much longer than the length of
the underlying MD trajectory. For this purpose one can make
use of approximation (2.13) and write

WðtÞ � 2hu2i 1� ðt=tÞ
�a

Gð1� aÞ

� �
: ð4:54Þ

The mean square displacement converges thus very slowly to
its plateau value W(N). If tp defines the time where W(t) has
attained p% of the plateau value, one obtains for a ¼ 0.5 a
value of tp ¼ 127 t for p ¼ 95 and tp ¼ 3183 t for p ¼ 99. These
values must be compared, respectively, to tp ¼ 3.00 t and tp ¼
4.61 t for exponential relaxation. One recognises that normal
exponential relaxation is clearly not an appropriate model for
internal protein dynamics.

C. Slow collective relaxation

1. Memory function for density fluctuations. So far the
internal dynamics of proteins has been discussed in the light
of single particle dynamics. Recent MD simulation results
show that FBD is also a good model for collective relaxation.32

In the following we take the Fourier-transformed particle
density fluctuation of a protein to be the dynamical variable
of interest,

drðq; tÞ ¼ rðq; tÞ � hrðq; tÞi;withrðq; tÞ

¼
XN
j¼1

wi expðiq � RjðtÞÞ: ð4:55Þ

To be able to make contact with experiment, the weights wj are
chosen to be proportional to the coherent neutron scattering
length of atom j.38 With this choice the correlation function
associated with dr(q, t) is the coherent intermediate scattering
function (the asterisk denotes the complex conjugate),

c(q,t) ¼ hdr*(q,0)dr(q,t)i (4.56)

Since dr(q,t) can be interpreted as a dynamical variable in
phase space there is a memory function which is associated

with its autocorrelation function, such that

d

dt
cðq; tÞ ¼ �

Z t

0

dt xðq; t� tÞcðq; tÞ: ð4:57Þ

For the following discussions it is useful to consider the
Laplace transformed memory function equation, which may
be solved for ĉ(s,q) ¼

R
0
N dt exp(�st)c(t,q),

ĉðs; qÞ ¼ SðqÞ
sþ x̂ðs; qÞ

; ð4:58Þ

as well as for x̂(s,q),

x̂ðs; qÞ ¼ SðqÞ
cðs; qÞ � s: ð4:59Þ

Here it has been used that S(q) ¼ c(q,0) is the static structure
factor. Eqn. (4.58) has been the starting point for the the
development of many analytical models.37 If we set x(q,t) ¼
Dq2d(t) (q ¼ |q |), the Laplace transform is a constant in s,
x̂(q,s) ¼ Dq2, and it follows from eqn. (4.58) by inverse Laplace
transformation,

cðq; tÞ
SðqÞ ¼

I
C

ds
expðstÞ

sþ x̂ðs; qÞ
¼ expð�Dq2tÞ: ð4:60Þ

This corresponds to the Vineyard approximation for the
coherent intermediate scattering function, c(q,t) ¼ c(q,0)cs(q,t),
where the self-correlation function, cs(q,t), describes free diffu-
sion of a single particle. In general, any rational form of ĉ(s,q)
will lead to a multiexponential decay of c(q,t).

2. Autoregressive model. To compute memory functions
associated with the coherent scattering function one starts
from the discretised version of the memory function, eqn.
(4.57),

cðq; nþ 1Þ � cðq; nÞ
Dt

¼ �
Xn
k¼0

Dtxðq; n� kÞcðq; kÞ: ð4:61Þ

From a mathematical point of view the above relation is a
recurrence relation where c(q,n) is given and x(q,n) is unknown.
As we have shown in ref. 54, the problem can be solved by
using autoregressive modelling of the underlying time series
dr(q,n) � dr(q,nDt) together with analytical properties of its
z-transform. Here Dt is the sampling time step. The reader is
referred to ref. 54 for a detailed description of the algorithm
and the application described here has been recently published
in ref. 32.
Formally, eqn. (4.61) can be solved by one-sided z-transfor-

mation, which is defined as F4(z) ¼
P

n¼0
Nz�nf(n) for an

arbitrary function f(n) � f(nDt). One obtains

X4ðq; zÞ ¼
1

Dt2
zSðqÞ

C4ðq; zÞ
þ 1� z

� �
; ð4:62Þ

This equation is absolutely equivalent to relation (4.59). For
eqn. (4.62) to be useful one needs a reliable estimate of C4(q,z).
Such an estimate can be obtained from an autoregressive (AR)
model for the underlying time series dr(q,n),

drðq; tÞ ¼
XP
k¼1

akðqÞdrðq; t� kDtÞ þ eðq; tÞ: ð4:63Þ

Here P is the order of the AR process, ak(q) are (q-dependent)
coefficients and e(q,t) is white noise with zero mean and
variance s2(q). In ref. 54 the set of coefficients {ak,s

2} is fitted
to the MD trajectory, using the Burg algorithm.55–57 Within

Fig. 13 Average atomic mean square displacement for lysozyme from
MD simulation (solid line), a fit of expression (4.53) which is predicted
by a fractional OU process (dashed line), and the asymptotic value
which has been obtained by a separate calculation from the MD
trajectory (dotted line).
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the AR model C4(q,z) takes the form

C4ðq; zÞ ¼
XP
k¼1

bkðqÞ
zkðqÞ

z� zkðqÞ
: ð4:64Þ

Here {bk(q)} is a set of P constants which depend parametri-
cally on q,

bkðqÞ ¼
1

aPðqÞ
�zkðqÞP�1sðqÞ2QP

j¼l;j 6¼k ðzkðqÞ � zjðqÞÞ
QP

l¼1 ðzkðqÞ � zlðqÞ�1Þ
;

ð4:65Þ

and zk(q) is the kth root of the characteristic polynomial

pðz; qÞ ¼ zP �
XP
k¼1

akðqÞzP�k:

Expression (4.64) can now be used in expression (4.62) for the
z-transformed memory function. The inverse transform into
the time domain can be performed by polynomial division,
comparing the resulting expression with the definition X4(z) ¼P

N

n¼0 x(n)z
�n.

All physical quantities derived from the AR model are
represented in terms of the parameter set {ak,s} or expressions
derived from these coefficients. The dynamic structure factor is
for example given by

Sðq;oÞ ¼ Dts2ðqÞ
1�

PP
k¼1 akðqÞ exp½�iokDt�

	 

1�

PP
m¼1 a

�
mðqÞ exp½iomDt�

	 
 :
ð4:66Þ

and the intermediate scattering function is obtained by the
inverse z-transform

cðq; nÞ ¼
I
C

ds zn�1C4ðq; nÞ ð4:67Þ

which leads to the discrete analogue of a multiexponential
correlation function,

cðq; nÞ ¼
XP
k¼1

bkðqÞzkðqÞn; n 	 0: ð4:68Þ

One sees easily that all poles zk must be in the interior of the
unit circle for c(q,n) to stay bound for n - N. This is
guaranteed by the Burg algorithm. Another important point
to be made here is that the ARmodel leads by construction to a
multiexponential correlation function, which can a priori not
represent algebraically decaying correlation functions. The
largest accessible time scale can be estimated by

TAR E PDt (4.69)

and the smallest observable time scale is the sampling time
step, Dt. As it will be shown in the following, the AR model
can, however, approximate the algebraic behaviour of correla-
tion functions.

3. Results for lysozyme. Fig. 14 shows two estimations for
the coherent dynamic structure factor of lysozyme (solid lines:
see explanations below) for q ¼ 10 nm�1, which have been
obtained by AR modelling from an MD trajectory, and a fit of
the model spectrum

Sðq;oÞ ¼ SðqÞta sinðap=2Þ
p otaj jð otaj jaþ2 cosðap=2Þ þ otaj j�aÞ ; 0oa � 1;

ð4:70Þ

which corresponds to a fractional Ornstein–Uhlenbeck process
(broken line). The corresponding time correlation has the form

c(q,t) ¼ S(q)Ea(�[t/t]a), (4.71)

where S(q) is the static structure factor. The physical inter-
pretation of the model is that the harmonic potential defines a
restoring force which tends to bring a fluctuation of the particle
density back to the homogeneous density, where dr(q,t) ¼ 0.
The calculations have been performed on the the basis of the

same MD trajectory which has been used to compute the mean
square displacement shown in Fig. 13. For the AR estimation
two sets of parameters have been used: (a) P ¼ 1000 with Dt ¼
0.4 ps (thick solid line) and (b) P ¼ 1000 with Dt¼ 0.04 ps (thin
solid line). The inset shows the corresponding memory func-
tions. Only the data of (a) have been used for the fit of the FBD
model, optimising at the same time the agreement with the
Fourier spectrum and the memory function. The fitted model
spectrum must be interpreted as a trend, allowing for oscilla-
tions due to collective motions around that trend.32 The fit
parameters, which have been obtained by setting c(q,0) ¼ 1, are
found to be t ¼ 2.9 ps and a ¼ 0.5. The latter indicates a
strongly non-exponential relaxation behaviour, as in the case
of single particle relaxation dynamics which is reflected in the
form of the mean-square displacement (see Fig. 13). One
recognises that not only the form of the spectrum, but also
the characteristic shape of the memory function are well
represented by the FBD model. The clearly insufficient fre-
quency resolution of the dynamic structure factor estimated
with parameter set (b) is compensated by a memory function
which is better resolved for small times and shows a remark-
able overall agreement with the model memory function up to
Dt ¼ 0.04 ps. As mentioned above, the sampling time step
defines the resolution of the correlation function and TAR ¼
PDt is an estimation for the accessible time scale in the AR
model. Consequently, the memory function cannot be obtained
for times t o Dt and the integral 1/

R
N

0 dt x(t), which defines a
maximum relaxation time, cannot be infinity, as for the model
memory function. Keeping the fundamental limits for the
simulation results in mind, one sees that the fractional OU
process is a very good model for the relaxation of the particle
density towards its equilibrium value.
Since the simulation results for the dynamic structure factor

and the corresponding memory function have been obtained
by AR modelling of the underlying time series, it is important
to verify that these estimations are reliable. Fig. 15 shows the
superposition of the dynamic structure factor given in Fig. 14
(thick line) and a spectrum with has been computed by discrete

Fig. 14 Coherent dynamic structure factor of lysozyme estimated
from MD simulation and AR model (thick solid line: P ¼ 1000, Dt ¼
0.4 ps, thin solid line: P ¼ 1000, Dt ¼ 0.04 ps) and fit of the power
spectrum associated with a fractional Ornstein–Uhlenbeck process
(dashed line), which has been fitted to the AR model with P ¼ 1000,
Dt ¼ 0.4 ps. The inset shows the corresponding memory functions
(solid lines) together with the model memory function for t 4 0 for a
fractional OU process (dashed line).
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Fourier transform from the corresponding intermediate scat-
tering function58

cðq; nÞ ¼ 1

Nt � jnj
XNt�jnj�1

j¼0
rðq; jÞ�rðq; j þ nÞ: ð4:72Þ

Here Nt is the number of time steps in the MD trajectory and
r(q,n) instead of dr(q,n) ¼ r(q,n) � hr(q,n)i has been auto-
correlated. This leads to an ‘‘elastic peak’’ centred at o ¼ 0
which has been left out here. The conventionally computed
spectrum in Fig. 15 is clearly more noisy than the AR
spectrum. It must, however, emphasized that smoothness is
not a guarantee for correctness. In order to smooth the Fourier
spectrum shown in Fig. 15 the time correlation function c(q,n)
has been multiplied with a Gaussian window function, before
performing the discrete Fourier transform. To obtain a fre-
quency resolution comparable to the AR model a width of
s ¼ 600 ps (sn E 2.7 � 10�4 THz) has been used.

D. A coarse-grained model for protein dynamics

1. Double harmonic approximation of the energy landscape.

In the preceding sections it has been shown that the slow
relaxation dynamics at lower q-values can be described by a
single-particle OU process with algebraic memory. Another
way to describe multi-scale relaxation dynamics in proteins is
to consider a multicomponent Ornstein–Uhlenbeck process.
This has been recently demonstrated for the protein C-phyco-
cyanin59 (see Fig. 16), where the latter is modelled by a set of
coupled Langevin oscillators which represent each a whole
residue (see Fig. 17). The position of each oscillator coincides
with the position of the corresponding Ca-atom on the protein
backbone. The model is inspired by Fig. 1. Each residue

performs small underdamped vibrational motions in a local
well and purely diffusive, strongly overdamped motions in the
harmonic envelope potential. The two types of motions are
supposed to be uncorrelated, such that

I(q,t) E Ivib(q,t)Idiff(q,t). (4.73)

Here the suffixes ‘‘vib’’ and ‘‘BD’’ denote, respectively, ‘‘vibra-
tional’’ and ‘‘diffusion’’.

2. Langevin models. Both the local weekly damped vibra-
tional motions and the diffusion in the harmonic envelope
potential can be derived from a multi-component Ornstein–
Uhlenbeck process in phase space. The corresponding Fokker–
Planck equation has the form

@P

@t
¼ Aij

@

@Oi
ðOjPÞ þ Bij

@2P

@Oi@Oj
; ð4:74Þ

where {Oi} (i ¼ 1. . .N) denotes the ensemble of phase-space
coordinates of N Brownian particles. The latter can be repre-
sented as a 6N-dimensional column vector X ¼ (x,v) compris-
ing the deviations x of the Brownian particles from their
respective equilibrium positions and the corresponding velo-
cities v. Correspondingly, the coefficients {Aij} and {Bij} can be
represented as 6N � 6N matrices A and B, respectively, which
have the following block structure:

A ¼ 0 �1
j c

� �
; B ¼ 0 0

0 kBTc

� �
: ð4:75Þ

Here and in the following mass-weighted coordinates are used,
i.e. xi !

ffiffiffiffiffi
mi
p

xi and vi !
ffiffiffiffiffi
mi
p

vi, with mi being the mass
associated with coordinate number i. The matrix j is derived
from the second derivatives of the interaction potential V,
evaluated at the equilibrium position xeq,

kij ¼
@2V

@xi@xj

����
xeq

; ð4:76Þ

and c is a positive definite (mass-weighted) friction matrix. In
SI units the elements of j have the dimension s�2 and those of c

the dimension s�1. From a moment expansion of the Fokker–
Planck equation (4.74) for a short time increment dt one
obtains a stochastic differential equation which corresponds
to the Langevin equation,

dv

dt
þ c � vþ j � x ¼ f sðtÞ: ð4:77Þ

The random acceleration fs(t) is white noise with

hf sðtÞi ¼ 0; hf sðtÞ � f T
s ðt0Þi ¼ 2kBTcdðt� t0Þ: ð4:78Þ

Two limits of the Langevin description are important in the
following, since they describe the vibrational and the diffusional
motion in the local and global harmonic potential, respectively.

Fig. 15 Comparison of Scoh(q,o) (q ¼ 10 nm�1) computed from AR
model with P¼ 1000, Dt¼ 0.4 ps (solid line), and by using the standard
method via discrete Fourier transform of a conventionally computed
time correlation function (dashed line).

Fig. 16 Backbone of a C-phycocyanin dimer. Shown are the chains A,
B from entry 1CPC of the Brookhaven Protein Data Bank, which
correspond to the simulated system analysed in ref. 59.

Fig. 17 A coarse-grained model for a dimer of the C-phycocyanine
molecule. Each residue is represented by a point-like Langevin oscil-
lator (bullet), and the springs indicate harmonic coupling between the
residues. More explanations are given in the text.
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(a) In the zero friction limit the Langevin equation becomes

d2x

dt2
þ j � x ¼ 0: ð4:79Þ

All static and dynamical quantities are described in terms of
the normal modes {dn} and the normal frequencies {on} which
are defined through

j � dn ¼ o2
ndn, n ¼ 1. . .3N. (4.80)

Since j is positive definite, its eigenvectors form a 3N-dimen-
sional orthonormal basis, with dTm � dn ¼ dmn.

(b) In the high friction limit the motion is strongly over-
damped and the acceleration term in the Langevin equation
can be neglected,

c � dx

dt
þ j � x ¼ f sðtÞ: ð4:81Þ

Introducing the matrices

g ¼ c�1 � j, D ¼ kBTc�1, (4.82)

the equation of motion becomes

dx

dt
þ g � x ¼ vsðtÞ; ð4:83Þ

where the random velocity vs(t) ¼ c�1 � fs(t) has the properties

hvs(t)i ¼ 0, hvs(t) � vTs (t0)i ¼ 2Dd(t � t0). (4.84)

The Fokker–Planck description associated with the high fric-
tion limit has the form

@P

@t
¼ Zij

@

@xi
ðxjPÞ þDij

@2P

@xi@xj
: ð4:85Þ

In a similar way as the normal modes describe the vibrational
modes in the limit of vanishing friction, the eigenvectors and
eigenvalues of the matrix g, which are defined through

g � un ¼ lnun, n ¼ 1,. . .,3N, (4.86)

describe the relaxation dynamics in the high friction limit. To
show the analogy with the normal modes, the eigenvectors un
are called ‘‘Brownian modes’’ in the following. Since c and j

are both positive definite matrices, the same is true for g ¼
c�1 � j. As the normal modes, the Brownian modes thus form
an orthonormal basis, um � un ¼ dmn.

3. Neutron scattering related quantities. The model of
coupled Langevin oscillators can be used as a basis to derive
spectroscopic quantities related to neutron scattering.60 For
this purpose it is convenient to introduce dynamic form factors
and to decompose the position of atom i as

Ri(t) ¼ Req
i þ xi(t), (4.87)

where Req
i is its equilibrium position and xi the displacement

with respect to Req
i , whose dynamics is described by a multi-

component Ornstein–Uhlenbeck process. With these defini-
tions the dynamic form factors are defined as

fij(q,t) ¼ hexp(iqT � [xi(t) � xj(0)])i. (4.88)

The intermediate scattering functions are then linear combina-
tions of the fij,

Icohðq; tÞ ¼
1

N

X
i;j

bi;cohbj;coh expðiqT � ½Req
i � Req

j �Þfijðq; tÞ;

ð4:89Þ

Iincðq; tÞ ¼
1

N

X
i

b2i;incfiiðq; tÞ: ð4:90Þ

It is convenient to write fij(q,t) in the form

fij(q,t) ¼ fij(q,N)f 0ij(q,t), (4.91)

wherefij(q,N) is a static average which is described by the
properties of the force constant matrix j only. Using the
normal modes dn and the corresponding normal frequencies
oa defined above one has for the Langevin model

fijðq;1Þ ¼ exp � kBT

2

X3N
n¼1

o�2n ½ðdT
n �QðiÞÞ

2 þ ðdT
n �QðjÞÞ

2�
 !

:

ð4:92Þ

Here the vector Q(i) has the projection property

Q(i) � x ¼ q � xi, (4.93)

where xi is the three-dimensional subvector of x describing the
displacement of atom i.
Within the Langevin model the form of the functions f 0ij(q,t)

depends on the friction matrix and will be given here for the
limiting cases of zero and high friction.
(a) In the limit of vanishing friction the normal modes and

frequencies suffice to construct the dynamic form factors,

f 0ijðq; tÞ ¼ exp
X3N
n¼1

2y
ðnÞ
ij ðqÞ cosðontÞ

 !
; ð4:94Þ

with y(n)ij (q) given by

y
ðnÞ
ij ðqÞ ¼

kBT

2o2
n
ðdT
n �QðiÞÞðdT

n �QðjÞÞ: ð4:95Þ

(b) In the high friction limit one finds instead

f 0ijðq; tÞ ¼ exp
X3N
n¼1

y
ðnÞ
ij ðqÞ expð�lntÞ

 !
; ð4:96Þ

where yij
(n)(q) involves the Brownian modes un defined in eqn.

(4.86) and the mass-weighted force constant matrix j,

y
ðnÞ
ij ðqÞ ¼ kBT

ðuTn �QðiÞÞðuTn �QðjÞÞ
uTn � j � un

: ð4:97Þ

The above expressions show that the effects of friction can in
general not be accounted for by introducing friction a poster-
iori for each normal mode. This approach is only valid in the
limit of low friction.60

The long time limits of the dynamic form factors may be
used to express the EISF via

EISFðqÞ ¼ 1

N

X
i

b2i;inc exp �kBT
X3N
n¼1

o�2n ðdT
n �QðiÞÞ

2

 !
:

ð4:98Þ

Since static thermal averages are entirely defined by the
potential function, the EISF can be expressed in the normal
modes and normal frequencies only.

4. Application to C-phycocyanin. In the following we show
an application of the coarse-grained Langevin model to C-
phycocyanin.59 The essential question is here how the envelope
potential is to be parametrised. In the article cited above we
adopted the choice,

Vdiff(x) ¼ lVvib(x), (4.99)

where l is a positive real number with 0 o l o 1. Here

VvibðxÞ ¼
1

2
xT � j � x ð4:100Þ
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is a harmonic potential at the residue level. Such a potential
must first be constructed from an all-atom force field, such as
Amber94.51 The details of such a method are described in ref.
59. Eqn. (4.99) stipulates that the envelope potential has
exactly the same form as the local potential, and 0 o l o 1
corresponds to a global softening of Vdiff(x) with respect to
Vvib(x). In principle Vvib(x) must be constructed for each
protein. To circumvent this problem the following approach
has been suggested in ref. 59: The matrix j is explicitly
constructed for a small protein, crambin. In a second step we
assumed that one can construct a generic force field of the form

VðxÞ ¼ 1

2

X
ij

kðReq
ij ÞðjR

eq
ij þ xij j � jReq

ij jÞ
2: ð4:101Þ

Splitting according to eqn. (4.87) the position of each residue
into the equilibrium position Req

i and a deviation from the
latter, xi, we define Req

ij ¼ Req
j � Req

i and xij ¼ xj� xi. We found
the empirical law k(r)p r for close distances up to 0.4 nm, and
k(r) p r�6 for larger distances. It is interesting to note that r ¼
0.4 nm corresponds to the distance between two consecutive
Ca-atoms in a polypeptide chain.

The second essential input to the model is the friction matrix.
For the results presented here, each residue was assigned a
friction constant, assuming thus a diagonal friction matrix. For
each residue the mean-square displacement of a single Lange-
vin oscillator was fitted to the mean square displacement
computed from the same MD trajectory. We found that the
friction constants obtained in this way are roughly propor-
tional to the atomic density around the respective residue.
Combining this finding with the empirical harmonic force law
described above, we have thus obtained a ‘‘transferable’’
Langevin model which does not need to be re-parametrised
for each protein. As a consequence of the impact of the atomic
density on the residue friction constants one observes that
friction inside a protein is stronger than at the protein surface,
where the residues are in contact with water, which has a lower
atomic density than a protein.

Fig. 18 shows the incoherent intermediate scattering func-
tion for the Ca-atoms in C-phycocyanine obtained by direct
calculation from MD simulation, as compared to the corre-
sponding result obtained from the model of coupled Langevin
oscillators. The intermediate scattering function has been
decomposed as indicated in eqn. (4.73). In order to account
for a finite lifetime of the motions in a local potential mini-
mum, we modified the corresponding dynamic form factors for
vibrational motion as follows,

f 0ijðq; tÞ ¼ exp
X3N
n¼1

2y
ðnÞ
ij ðqÞ cosðontÞwðtÞ

 !
: ð4:102Þ

Here w(t) ¼ exp(�[t/t]2) is a Gaussian window function, where
t describes the lifetime of the vibrations. The steep initial
decrease of the total intermediate scattering function could
be adjusted with t E 20 ps. The scaling constant l in eqn.
(4.99) was fitted such as to match the corresponding EISFs
shown in Fig. 19. We found l ¼ 0.115. Although the local and
the global potential surface are a priori not related, the fit is
remarkably good and indicates a self-similarity of the structure
of the energy landscape in proteins. It is also worth noting that
ln(EISF)(q2) is not linear, as this is the case for Gaussian single
particle models, such as the OU process, which lead to a
Gaussian form for the intermediate scattering function and
the corresponding EISF. In contrast to a single particle model,
the simulation-based model of many coupled Langevin oscil-
lators can account for motional heterogeneity. This is easily
seen from expression (4.98), where each particle contributes a
Gaussian function in q with a different width, such that the
average is not Gaussian anymore. This apparent non-Gaussian
behaviour must be distinguished from real non-Gaussian
behaviour, as it is obtained for rotational diffusion models.39

Although a number of quite drastic simplifications has been
made to parametrise the Langevin oscillator model, the model
is remarkably close to reality, which means that the essential
features are still captured. In contrast to the models involving
memory functions, multiscale relaxation is here described by
coupling many degrees of freedom. Fig. 20 (solid line and
diamonds) shows the distribution of the inverse relaxation
times

tn
�1 ¼ ln (4.103)

Fig. 18 Intermediate incoherent scattering function for the Ca atoms
in C-phycocyanine by direct calculation from MD simulation (solid
line) and from the model of coupled Langevin oscillators (dashed line).

Fig. 19 EISF corresponding to Fig. 18. The dotted line represents a
linear extrapolation of ln(EISF)(q2) from small q-values.

Fig. 20 Inverse relaxation times corresponding to the intermediate
scattering function depicted in Fig. 18 (solid line and diamonds) and
fitted relaxation spectrum corresponding to a fractional OU process
(dashed line). The resulting parameters are here t ¼ 2.98 ps and
a ¼ 0.76.
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which are nothing but the eigenvalues ln of the drift matrix g

defined in eqn. (4.82). They describe the relaxation of the
position correlation matrix

c(t) ¼ hx(0) � xT(t)i (4.104)

from which the dynamic form factors f 0ij(q,t), eqn. (4.96), are
formally computed via f 0ij(q,t) ¼ exp(Q(i)T � c(t) �Q(j)). It should
be noted that the histogram exhibits a strong increase for small
inverse relaxation times, indicating that no maximum relaxa-
tion time can be observed within the simulation time span.

5. Relaxation spectra. To establish a relation between the
relaxation spectrum for coupled Brownian oscillators pre-
sented in Fig. 20 and the corresponding quantity for the
fractional Ornstein–Uhlenbeck process, we write the (normal-
ised) correlation function associated with the latter in the form

cðtÞ ¼
Z 1
0

dl pðlÞ expð�ltÞ: ð4:105Þ

Here p(l) Z 0 and it follows from c(0) ¼ 1 that p(l) is
normalised, Z 1

0

dl pðlÞ ¼ 1: ð4:106Þ

Using the definition of the Laplace transform, one finds that

ĉðsÞ ¼
Z 1
0

dl
pðlÞ
sþ l

: ð4:107Þ

Formally, the relation between ĉ(s) and p(l) is a Stieltjes
transform, which may be inverted to give61

pðlÞ ¼ lim
e!0þ

1

p
=fĉð�½lþ ie�Þg: ð4:108Þ

In case of exponential decay, where c(t) ¼ exp(�[t/t]), one has
ĉ(s) ¼ 1/(s þ t�1) and p(l) ¼ d(l � t�1) contributes a single
inverse relaxation time, l ¼ t�1. In the case of the fractional
OU process one has instead

ĉðsÞ ¼ 1

sð1þ ½st��aÞ ; 0oa � 1; ð4:109Þ

and the relaxation spectrum is found to be

pðlÞ ¼ t
p

ðtlÞa�1 sinðpaÞ
ðtlÞ2a þ 2ðtlÞa cosðpaÞ þ 1

; 0oao1: ð4:110Þ

The calculation is very similar to the one which leads to the
Fourier spectrum presented in (2.18). Expression (4.110) coin-
cides with the result found by Glöckle and Nonnenmacher in
ref. 19, but the calculation is simpler. The dashed line in Fig. 20
shows a fit of the function (4.110) to the histogram of inverse
relaxation times which has been obtained from the Brownian
mode model. The fit shows a qualitative agreement for t ¼ 2.98
ps and a ¼ 0.76, indicating a relaxation behaviour closer to
exponential relaxation than the mean square displacement
shown in Fig. 13 (t ¼ 33.5, a ¼ 0.49). Here it must be kept
in mind that the Brownian mode model describes protein
motion on the residue level, whereas the mean square displace-
ment in Fig. 13 contains also contributions from relaxation of
very fast motions, such as side-chain rotations and vibrations.
Therefore, the relaxation spectra should only be compared for
small relaxation rates. The essential point is their overall
agreement in this region.

V. Conclusion

In this article it has been shown that new insights into
quasielastic neutron scattering can be obtained by developing

what one could call simulation-based models, where computer
simulations are used as an essential input. Two approaches
have been presented to describe non-exponential relaxation
in a complex system like a protein: fractional Brownian
dynamics of a single particle, and ‘‘normal’’ Brownian
dynamics of many coupled particles. In both cases only
modest momentum transfers can be considered since both
models describe a protein on a coarse-grained scale. Localised
motions, such as rapid side-chain rotations, cannot be
described within these models. Roughly speaking, the concept
of fractional Brownian dynamics leads to the introduction
of generalized Lorentzians, which describe empirically to
the very broad QENS spectra obtained from internal
protein dynamics. The example of the fractional OU process
has shown that the QENS spectra can be quite well reproduced
with essentially one additional parameter compared to the
fit of a Lorentzian. In contrast to the Kohlrausch-Williams-
Watt model, where correlation functions are empirically
described by stretched exponentials, the fractional OU
process leads to a correlation function whose Fourier
transform has a quite simple analytical form and possesses
moreover a well-defined memory function.32 The latter
model has thus advantages from a practical and a theoretical
point of view, although it must be clearly stated that its is
still empirical at this stage. The study of the average mean
square displacement of the atoms in Lysozyme has shown
that FBD models may be used to extrapolate the dynamics
in a certain way to very long time scales, or equivalently to low
frequencies. In this respect FBD models describe what is
called in mode coupling theory the ‘‘a-regime’’ of the
dynamic structure factor, describing the slow relaxation
processes.62 It will be interesting to exploit the extrapola-
tion properties of FBD models in combination with
computer simulations to gain more insight into the influence
of temperature and pressure onto the slow relaxation pro-
cesses in proteins, in particular to establish a signature of
protein function in these processes. A more practical question
which can be addressed in this context is how elastic and
quasielastic neutron scattering experiments on systems with
a vast spectrum of time scales must be interpreted in view
of the fact that these techniques work with a relatively small
time window.63

Clearly, some effort has to be made now to develop a
physical picture of fractional Brownian dynamics and also to
make a closer contact with mode coupling theory. Here
computer simulation will certainly be crucial. The model of
coupled Langevin oscillators gives a hint that FBD in proteins
may be formally obtained by coupling a very large number of
viscoelastic elements. Such models can indeed explain ‘‘frac-
tional’’ responses of end-to-end distances in polymers due
to external forces.64 It must be clearly stated that fractional
BD, with absolutely no characteristic time scale, is certainly
an idealized mathematical model of a physical system which
has a very broad, but limited distribution of relaxation
times. This point can be illustrated by the simulation study
of lysozyme, which revealed a signature of fractional BD in
the collective dynamics of this protein. Here the underlying
time series of the Fourier transformed particle density has
been modelled with a large but necessarily finite number
of up to 1000 coefficients, corresponding to 1000 relaxation
times. An important aspect of the computer experiment is
that not only the Fourier spectrum of intermediate scattering
function can be fitted by the FBD model, but also the memory
function. Such a coincidence is far from being trivial. A
certainly very optimistic interpretation of such computer
experiments is that protein dynamics around the native
state, which does not exhibit rare transitions from one global
minimum to another, is essentially already developed on the
nanosecond time scale, although the total relaxation may take
much longer.
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Appendix A: S(q,x) for the Ornstein–Uhlenbeck

process

To derive the dynamic structure factor belonging to the inter-
mediate scattering function (3.44), one uses that the latter is of
the form f(t) ¼ exp(�a)g(t), where

g(t) ¼ exp(a exp(�t)), (1.1)

a ¼ q2hx2i, and Zt - t is a dimensionless time. Since I(q,t) is a
classical correlation function, it is even in time, and one can
stipulate g(�t) ¼ g(t). Therefore the Fourier transform of g(t)
is given by g̃(o) ¼ 2<{ĝ(io)}, where ĝ(s) ¼

R
0
N dt exp(�st)g(t)

is the Laplace transform of g(t). By substituting u ¼ a exp(�t)
one finds that

ĝ(s) ¼ (�a)�s g(s,�a), (1.2)

where g(s,a) is the incomplete gamma function,30

gðs; aÞ ¼
R a
0 du expð�uÞus�1; <fsg40: ð1:3Þ

It follows thus that

f̃ (o) ¼ exp(�a)2<{a�io g(io,�a)}, o a 0. (1.4)

Using that S(o) ¼ ~I(o)/(2p) (the q-dependence is omitted) and
applying the scaling law of the Laplace transform, g(Zt) 2
Z�1ĝ(sZ�1), one obtains expression (3.48). It is important to
note that g̃(o) does not exist for o ¼ 0, since g(s,a) is defined
only if <{s} 4 0. Therefore one must define g̃(o) ¼
lime-012<{ĝ(io þ e)}, or exclude o ¼ 0. The value at o ¼ 0 is
not important anyway, since the elastic line, exp(�a)d(o),
which completes the spectrum, is a Dirac distribution.
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