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ABSTRACT
In this paper, we show that subtle changes in the internal dynamics of human acetylcholinesterase upon ligand binding can be extracted from
quasielastic neutron scattering data by employing a nonexponential relaxation model for the intermediate scattering function. The relaxation
is here described by a stretched Mittag-Leffler function, which exhibits slow power law decay for long times. Our analysis reveals that binding
of a Huperzine A ligand increases the atomic motional amplitudes of the enzyme and slightly slows down its internal diffusive motions. This
result is interpreted within an energy landscape picture for the motion of the hydrogen atoms.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5094625

Thermal incoherent neutron scattering is a powerful tool to
study the dynamical properties of condensed soft matter systems at
nanometric length scales and time scales between subpicoseconds
and several nanoseconds.1 Due to the dominance of incoherent scat-
tering from hydrogen atoms, neutron scattering gives a molecule-
averaged view of the dynamics of hydrogen-rich macromolecules,
such as (bio)polymers. For an overview, the reader may consult
Refs. 2 and 3. A particularly interesting field of application is here
the study of functional enzyme dynamics upon ligand binding.4,5

In the following, we will be concerned with analyzing quasielas-
tic neutron scattering (QENS) spectra from hydrated powders of
human acetylcholinesterase (hAChE) with and without a nonco-
valently bound Huperzine A (HupA) ligand. The data have been
collected on the IN6 spectrometer at the Institut Laue-Langevin in
Grenoble. The experimental details have been published recently,
and a corresponding previous data analysis did not reveal systematic
dynamical changes upon binding of the HupA ligand.6–8 The term
“dynamical changes” concerns here the change of motional ampli-
tudes, which are probed by elastic scattering, and the change of the

diffusional/relaxational dynamics, which is probed by quasielastic
scattering.

Due to the dominant incoherent scattering of the hydrogen
atoms, the differential scattering cross section of the hydrogen-rich
hAChE powders, i.e., the measured intensities, may be approximated
by

d2σ
dΩdω

≈ ∣bH,inc∣2
∣k∣
∣k0∣

S(q,ω), (1)

where bH,inc is the incoherent scattering length of hydrogen and S(q,
ω) is the dynamic structure factor. The latter is the quantity of inter-
est in neutron spectroscopy and its arguments q = k0 − k and ω are
the momentum and energy transfers from the neutrons to the scat-
tering hydrogen atoms in units of h̵. The dynamic structure factor is
the time Fourier transform of the intermediate scattering function,
F(q, t),

S(q,ω) = 1
2π ∫

+∞

−∞
dt e−iωtF(q, t), (2)
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which is a quantum time correlation function. In protein powder
samples, where rigid-body motions of whole protein molecules are
suppressed, the QENS spectrum has an elastic component and F(q,
t) has the generic form

F(q, t) = EISF(q) + (1 − EISF(q))φ(q, t), (3)

where EISF(q) stands for “elastic incoherent structure factor” and
�(q, t) is a relaxation function fulfilling �(q, 0) = 1 and limt→∞�(q,
t) = 0. Defining ρ̂α(q, t) = exp(iq ⋅ r̂α(t)) to be the Fourier trans-
formed single particle density of hydrogen atom α at position r̂α(t),
we have

EISF(q) = 1
N ∑α∈H

∣⟨ρ̂α(q)⟩∣2, (4)

φ(q, t) = 1
N ∑α∈H

⟨δρ̂†α(q, 0)δρ̂α(q, t)⟩
⟨δρ̂†α(q, 0)δρ̂α(q, 0)⟩

, (5)

where δρ̂α(q, t) = ρ̂α(q, t) − ⟨ρ̂α(q, 0)⟩. The symbol ⟨⋯⟩ indicates a
quantum thermal average and �(q, t) is a quantum time correlation
function fulfilling

φ(q, t) = φ(−q,−t + iβh̵), (6)

with β = (kBT)−1. For the following considerations, we introduce
the symmetrized relaxation function

φ(+)(t) = φ(t + iβh̵/2)
φ(iβh̵/2) , (7)

where the q-dependence can be omitted due to the fact that �(−q, t)
= �(q, t) in powder samples. By construction, �(+)(q, 0) = 1, and we
write with (3),

F(+)(t) = EISF + (1 − EISF)φ(+)(t). (8)

The overwhelming part of QENS studies is and has been interpreted
by using the classical limit of Van Hove’s theory,9 using classical
diffusion models to describe the dynamics of the hydrogen atoms.
In this case, F(+)(t) is replaced by the classical limit of the interme-
diate scattering function, Fcl(t) = limh̵→0F(t). Besides the fact that
recoil effects are neglected, the use of such models becomes to some
extent meaningless for complex molecular systems, such as proteins,
where each atom participates in a large spectrum of motion types
with an associated large spectrum of time scales.10 Based on these
insights, we propose a corresponding analysis of QENS data using
a simple minimal model for the intermediate scattering function.
The relaxation function �(+) (t) is here represented by a stretched
Mittag-Leffler (ML) function

φ(+)(t) = Eα(−[∣t∣/τ]α) (0 < α ≤ 1, τ > 0), (9)

which behaves for large arguments asφ(+)(t) ∼ ∑M
k=1(−1)k+1(t/τ)−kα/

Γ(1 − αk). Mα > 1 assures that all terms with a slow power law
decay ∝ t−γ, with 0 < γ < 1, are included. The Mittag-Leffler func-
tion has the series representation11 Eα(z) = ∑∞n=0 z

n/Γ(1 + αn) and
can be considered as a generalization of the exponential function,
which is retrieved for α = 1. Our choice for the relaxation func-
tion is motivated by earlier work on protein dynamics studied by

FIG. 1. F(q, t) obtained from the resolution-deconvolved QENS spectra (points)
and corresponding model fits (solid lines) for q = 0.5, 0.9, 1.5 Å−1 from top to
bottom. Blue and red correspond, respectively, to free and HupA-inhibited hAChE

neutron scattering, where it describes the relaxation of the position
autocorrelation function.12

Figure 1 displays the intermediate scattering function obtained
from the resolution-deconvolved QENS spectra for three different
q-values and the corresponding fits of Expression (8) with �(+)(t)
according to (9). We define here q ≡ |q|. The extraction of the inter-
mediate scattering function from the experimental QENS spectrum
is described in the supplementary material. Figure 2 shows for a
selected q-value the resolution-broadened model (and by definition
noise-free) symmetrized dynamic structure factor

S(+)exp (ω) = R(ω) ∗ S(ω), (10)

where “∗” denotes a convolution integral, S(+)exp (ω) ∝ exp(−βh̵ω/2)
Sexp(ω) is the symmetrized experimental dynamic structure fac-
tor13 which is normalized such that F(+)exp (0) = 1, and R(ω) is
the resolution function. The latter has been obtained from a vana-
dium run and has approximately Gaussian shape, with a FWHM
of ≈70 µeV. With (8), it follows then that

S(ω) = EISFδ(ω) + (1 − EISF)φ̃(+)(ω), (11)

FIG. 2. Experimental QENS spectra for q = 1 Å−1 (points) and corresponding
convolution-broadened model fits (solid lines) in lin-log representation. Blue and
red correspond, respectively, to free and HupA-inhibited hAChE.

J. Chem. Phys. 150, 161104 (2019); doi: 10.1063/1.5094625 150, 161104-2

Published under license by AIP Publishing

https://scitation.org/journal/jcp
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-150-016917


The Journal
of Chemical Physics COMMUNICATION scitation.org/journal/jcp

FIG. 3. EISF obtained from the fit of Expression (8), with �(+)(t) defined by Eq. (9),
for free and HupA-inhibited hAChE (blue and red dots, respectively). The fits are
supplemented by estimated here almost invisible error bars.

where14

φ̃(+)(ω) =
sin( πα2 )

π∣ω∣((τ∣ω∣)−α + (τ∣ω∣)α + 2 cos( πα2 ))
. (12)

The model spectra shown in Fig. 2 have been computed by dis-
crete Fourier transform of Fexp(t) = r(t)F(t) for the full accessible
time range of IN6, which is here tmax = 206 ps, and r(t) denotes the
resolution window in the time domain.

Figure 3 displays the fitted EISF for free and HupA-inhibited
hAChE. The results show that the EISF in the latter case is slightly
smaller than its counterpart for the free variant. This reflects that
the average motional amplitudes of the (hydrogen) atoms become
slightly larger in presence of the HupA ligand. This is compat-
ible with the results described in Peters et al.8 and the work
by Balog et al., who find by atomic detail normal mode analy-
sis that binding of the cancer drug methotrexate softens the low-
frequency/large amplitude vibrations of its target protein, dihydro-
folate reductase5 and explain in this way earlier neutron scatter-
ing results.15 The “softening” of the low frequency modes leads,
in fact, to smaller force constants for the local harmonic potential
of the (hydrogen) atoms and thus to larger motional amplitudes.
However, this result cannot be generalized since inverse cases are
also reported in the literature. Examples can be found in Refs. 8
and 16.

While the EISF expresses the amplitudes of the atomic motions,
the parameters τ and α describe their relaxation dynamics and

thus truly dynamical properties of hAChE. The q-dependence of
τ and α is summarized in Fig. 4. Blue and red points again rep-
resent the fitted parameters for free and HupA-inhibited hAChE,
respectively, and the corresponding solid lines correspond to lin-
ear fits. One observes that both series for the τ-parameter decay
with q, where the one for inhibited hAChE displays larger val-
ues as the one for the free counterpart. The decrease of τ with
q, which is seen for both free and inhibited hAChE, reflects the
fact that localized motions are faster than large scale motions,
whereas the general increase of τ upon inhibition of hAChE indi-
cates slower relaxation of the inhibited variant. In contrast to the
scale parameter τ, the form parameter α of the relaxation func-
tion exhibits a much weaker q-dependence, where the values for
the inhibited variant of hAChE are slightly smaller than those of
the free one. Noting that α = 1 corresponds to exponential relax-
ation, this means that the corresponding relaxation dynamics is
less exponential for the inhibited variant. In order to understand
the physical meaning of the α-parameter, we write the stretched
Mittag-Leffler function as a continuous superposition of exponential
functions,

Eα(−tα) = ∫
∞

0
p(λ) exp(−λt)dλ, (13)

which expresses the dynamical heterogeneity in a system that is com-
posed of a large number of atoms and where each atom contributes
exponentially with a different relaxation constant, λ. Here both t and
λ are dimensionless and

p(λ) = 1
π

sin(πα)
λ(λα + λ−α + 2 cos(πα)) (14)

is a normalized relaxation rate spectrum fulfilling ∫∞0 p(λ)dλ = 1.
Higher moments of p(λ) do not exist.

The relaxation rate spectrum, p(λ), may be related to an energy
barrier spectrum by assuming that the classical Fourier transformed
single particle density, δρ(q, t) = exp(iq ⋅ r(t)) − ⟨exp(iq ⋅ r(0))⟩,
diffuses in a “rough” harmonic potential. Abbreviating x(t) ≡ δρ(q,
t), we write V(x) = V0(x) + δV (x), where V0(x) = Kx2/2 and
δV(x) define, respectively, its smooth and rough component (see
panel (a) of Fig. 5). The smooth component, V0(x), tends to bring
x ≡ δρ to zero, while the rough component, δV(x), hinders this pro-
cess by trapping x in one of the local minima which are separated
by a fixed energy barrier, ∆E. The diffusion in the smooth poten-
tial is described by an Ornstein-Uhlenbeck process, where the dis-
placement autocorrelation function relaxes exponentially, ⟨x(t)x(0)⟩

FIG. 4. Parameters α and τ for free
and HupA-inhibited hAChE as a func-
tion of q (blue and red, respectively).
Points correspond to fitted parameters
and solid lines to linear fits. The fits are
supplemented by estimated error bars.
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FIG. 5. (a) Sketch of a rough har-
monic potential, where the minima are
separated by a fixed energy barrier.(b)
Model energy barrier spectrum for free
and inhibited hAChE (bluish and reddish
curves, respectively) from top to bottom
for q = 0.5, 0.6, . . ., 1.6/Å.

= ⟨x2⟩exp(−η0t), and where the relaxation constant and the diffusion
constant are related through D0 = ⟨x2⟩η0. We use now Zwanzig’s
model17 for the effective diffusion in an arbitrary rough potential,
D = D0 exp(−[β∆E]2), where β = 1/(kBT), which translates thus for
an harmonic potential into η = η0 exp(−[β∆E]2) for the relaxation
constant. Introducing the dimensionless energy barrier � = β∆E and
defining λ = η/η0, we may write

λ = exp(−�2), (15)

which leads to

P(�) = 1
π

2� sin(πα)
exp(α�2) + exp(−α�2) + 2 cos(πα) (16)

for the distribution of the dimensionless energy barriers, �. Panel
(b) of Fig. 5 shows the resulting energy barrier distributions for
free and inhibited hAChE (blueish and reddish curves) as a func-
tion of q, which indicate that binding of the HupA ligand shifts
the energy barriers to slightly higher values and leads at the same
time to a slight broadening. Ligand binding thus leads to a “rough-
ening” of the effective potential energy surface. For both series of
energy barriers, one observes a shift of the distribution to higher val-
ues with increasing q, which corresponds to looking at increasingly
localized motions. This means that localized motions take place in
a rougher potential than those involving the whole protein, and we
note that the energy barrier shift upon fixing of the HupA ligand is

FIG. 6. Sketch of the effective energy landscapes for free and HupA inhibited
hAChE (blue and red curves, respectively). More explanations are given in the
text.

more pronounced. Figure 6 resumes the analysis of the QENS exper-
iments on free and HupA-inhibited hAChE in one single sketch.
The blue and the red curve correspond here, respectively, to the
potential energy surface for free and inhibited hAChE, where the
irregularity of the energy barriers correspond to the motional het-
erogeneity of the dynamics. The reduced curvature in the case of
inhibited hAChE (red curve) reflects the abovementioned vibra-
tional mode softening and explains the observed reduction of the
EISF. The corresponding increased roughness of the energy sur-
face indicates the energy barrier shift to higher values upon ligand
binding.

The present work shows that a careful data analysis with an
appropriate model for the intermediate scattering function, which
essentially reflects its asymptotic slow power law relaxation, allows
for an observation of subtle but systematic changes of the enzyme
dynamics upon ligand binding. The intuitive interpretation of the
results has been obtained by employing Zwanzig’s physical model
of diffusion in a rough quadratic potential, which translates relax-
ation rate spectra into energy barrier spectra. It is also worth not-
ing that the typical barrier heights we find in our study are of the
same order of magnitude as those given in Frauenfelder’s paper on
protein energy landscapes,18 although the latter have been obtained
from flash photolysis experiments, which probe in much longer time
scales than neutron scattering, and from another protein (myog-
mobin). This indicates the “universality”and self-similarity of pro-
tein dynamics.

We finally note that all numerical and many symbolic cal-
culations have been performed with the Wolfram Mathematica
package.19

See supplementary material for the resolution deconvolution of
the experimental QENS spectra and the corresponding calculation of
the intermediate scattering function.

We thank the ILL for the beam time and M. M. Koza for help
on IN6. We thank P. Masson and F. Nachon for the permission to
use and to reanalyze the data.

REFERENCES
1M. Bée, Quasielastic Neutron Scattering: Principles and Applications in Solid State
Chemistry, Biology and Materials Science (Adam Hilger, Bristol, 1988).
2F. Gabel, D. Bicout, U. Lehnert, M. Tehei, M. Weik, and G. Zaccai, Q. Rev.
Biophys. 35, 327 (2002).

J. Chem. Phys. 150, 161104 (2019); doi: 10.1063/1.5094625 150, 161104-4

Published under license by AIP Publishing

https://scitation.org/journal/jcp
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-150-016917
https://doi.org/10.1017/s0033583502003840
https://doi.org/10.1017/s0033583502003840


The Journal
of Chemical Physics COMMUNICATION scitation.org/journal/jcp

3J. Smith, M. Krishnan, L. Petridis, and N. Smolin, “Integration of neutron scat-
tering with computer simulation to study the structure and dynamics of biolog-
ical systems,” in Dynamics of Biological Macromolecules by Neutron Scattering
(Bentham Publisher, 2011).
4A. Zen, V. Carnevale, A. Lesk, and C. Micheletti, Protein Sci. 17, 918 (2008).
5E. Balog, D. Perahia, J. C. Smith, and F. Merzel, J. Phys. Chem. B 115, 6811 (2011).
6M. Trapp, M. Trovaslet, F. Nachon, M. M. Koza, L. van Eijck, F. Hill, M. Weik,
P. Masson, M. Tehei, and J. Peters, J. Phys. Chem. B 116, 14744 (2012).
7M. Trapp, M. Tehei, M. Trovaslet, F. Nachon, N. Martinez, M. M. Koza, M. Weik,
P. Masson, and J. Peters, J. R. Soc., Interface 11, 20140372 (2014).
8J. Peters, N. Martinez, M. Trovaslet, K. Scannapieco, M. M. Koza, P. Masson, and
F. Nachon, Phys. Chem. Chem. Phys. 18, 12992 (2016).
9L. Van Hove, Phys. Rev. 95, 249 (1954).
10N. Alberding, R. H. Austin, S. S. Chan, L. Eisenstein, H. Frauenfelder, I. C.
Gunsalus, and T. M. Nordlund, J. Chem. Phys. 65, 4701 (1976).

11NIST Handbook of Mathematical Functions, edited by F. W. J. Olver,
D. W. Lozier, R. F. Boisvert, and C. W. Clark (Cambridge University Press,
2010).
12V. Calandrini, V. Hamon, K. Hinsen, P. Calligari, M. C. Bellissent-Funel, and
G. R. Kneller, Chem. Phys. 345, 289 (2008).
13P. Schofield, Phys. Rev. Lett. 4, 239 (1960).
14G. R. Kneller, Phys. Chem. Chem. Phys. 7, 2641 (2005).
15E. Balog, T. Becker, M. Oettl, R. Lechner, R. Daniel, J. Finney, and J. C. Smith,
Phys. Rev. Lett. 93, 028103 (2004).
16C. D. Andersson et al., J. Phys. Chem. B 122, 8516 (2018).
17R. Zwanzig, Proc. Natl. Acad. Sci. U. S. A. 85, 2029 (1988).
18H. Frauenfelder, S. G. Sligar, and P. G. Wolynes, Science 254, 1598
(1991).
19Wolfram Research, Inc., Mathematica, Version 11.1 Wolfram Research, Inc.,
Champaign, Illinois, USA, 2017.

J. Chem. Phys. 150, 161104 (2019); doi: 10.1063/1.5094625 150, 161104-5

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1110/ps.073390208
https://doi.org/10.1021/jp108493g
https://doi.org/10.1021/jp304704h
https://doi.org/10.1098/rsif.2014.0372
https://doi.org/10.1039/c6cp00280c
https://doi.org/10.1103/physrev.95.249
https://doi.org/10.1063/1.432921
https://doi.org/10.1016/j.chemphys.2007.07.018
https://doi.org/10.1103/physrevlett.4.239
https://doi.org/10.1039/b502040a
https://doi.org/10.1103/physrevlett.93.028103
https://doi.org/10.1021/acs.jpcb.8b05485
https://doi.org/10.1073/pnas.85.7.2029
https://doi.org/10.1126/science.1749933

