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ABSTRACT
This article reports on a frequency domain analysis of quasielastic neutron scattering spectra from free and Huperzine-A-inhibited human
acetylcholinesterase, extending a recent time domain analysis of the same experimental data [M. Saouessi et al., J. Chem. Phys. 150, 161104
(2019)]. An important technical point here is the construction of a semianalytical model for the resolution-broadened dynamic structure
factor that can be fitted to the experimental spectra. We find comparable parameters as in our previous study and demonstrate that our model
is sensitive to subpercent changes in the experimental data, which are caused by reversible binding of the inhibitor Huperzine A.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5121703., s

I. INTRODUCTION

Quasielastic neutron scattering (QENS) is a powerful tech-
nique to explore the diffusive motions of atoms in condensed
matter systems on nanometric length scales and (sub)nanosecond
time scales.1,2 Because of the dominant cross section of incoherent
scattering from hydrogen, QENS studies of hydrogen-rich systems
explore, in particular, the diffusive motions of individual hydro-
gen atoms and have been abundantly used to study the dynamics
of biomolecular systems.3,4 One challenge here is to reveal small
changes in the internal functional dynamics of proteins as a result
of external stress, such as hydrostatic pressure5 or ligand bind-
ing.6 A well-known difficulty in this context is the fusion of the
elastic line with the quasielastic spectrum for systems in which
global protein motions are suppressed, and it has been recently
shown that this fusion can be explained by the self-similar slow
relaxation dynamics of proteins.7 In a recent analysis of QENS

data from free and Huperzine A (HupA)-inhibited Human Acetyl-
cholinesterase (hAChE),8 this aspect was taken into account by
using a minimalistic three-parameter model in which the elastic
intensity is fitted together with the parameters describing the relax-
ation dynamics. To remove the influence of the instrumental reso-
lution, the data analysis was performed in the time domain, using
a numerical Fourier transform of the sample and vanadium spec-
tra, where the latter are used to estimate the instrumental reso-
lution. Our analysis revealed quite subtle but systematic changes
in the dynamics of hAChE upon inhibition through noncova-
lently bound HupA. These changes can be resumed in an average
increase of the motional amplitudes of the hydrogen atoms and
a slight slowing down of the relaxation dynamics of hAChE. We
explained this effect within Frauenfelder’s “energy landscape pic-
ture” by an increase of the barrier heights separating the multiple
minima in the “rough” potential surface for the scattering hydrogen
atoms.9,10
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The main objective of this paper is to consolidate our pre-
vious study through a direct frequency domain analysis of the
resolution-broadened experimental spectra, avoiding the numerical
Fourier transform from the frequency to the time domain and the
accompanying aliasing errors.

This paper is organized as follows: In Sec. II, we briefly present
our analytical model for protein dynamics, and Sec. III contains the
core of the paper—a description of a semianalytical method to fit
the resolution-broadened model directly to the experimental QENS
spectra. The direct analysis of QENS spectra of free and HupA-
inhibited hAChE with our method is described in Sec. IV, and the
paper is concluded by a short Résumé.

II. THEORY
A. General form of the scattering functions

The central observable in neutron scattering experiments is the
dynamic structure factor. It carries information about the structure
and dynamics of the scattering system,

S(q,ω) =
1

2π ∫
+∞

−∞
dt e−iωtF(q, t), (1)

where q and ω denote the momentum and energy transfer from
the neutron to the sample in units of h̵, respectively. In experi-
ments on hydrated protein powders, which will be analyzed in the
following, incoherent scattering from the hydrogen atoms dom-
inates and the intermediate scattering function, F(q, t), can be
approximated by

F(q, t) ≈
1
NH
∑
α∈H
⟨e−iq⋅x̂α(0)eiq⋅x̂α(t)⟩, (2)

where x̂α(t) are the position operators of the hydrogen atoms and
⟨⋯⟩ denotes a quantum ensemble average. It follows from the sym-
metry properties of quantum time correlation functions and from
the requirement that S(q, ω) must be real that F(q, t) and S(q, ω)
fulfill the detailed balance relations

F(q,−t) = F(q, t + iβh̵), (3)
S(q,−ω) = S(q,ω) exp(−βh̵ω). (4)

Here, β = 1/(kBT), where kB is the Boltzmann constant and T is the
temperature in Kelvin. Equation (4) expresses that neutron energy
gain is less likely than neutron energy loss.

In hydrated powder samples, where rigid-body motions of
whole proteins are suppressed and the motional amplitudes of
individual hydrogen atoms are finite, the intermediate scattering
function tends for large times to a finite plateau value,

lim
t→∞

F(q, t) = ∑
α∈H
∣⟨eiq⋅x̂α⟩∣

2
≡ EISF(q), (5)

which is referred to as the Elastic Incoherent Structure Factor (EISF).
Defining

δρ̂α(q, t) = eiq⋅x̂α(t) − ⟨eiq⋅x̂α⟩ (6)

to be the deviation of the spatially Fourier transformed single par-
ticle density of atom α with respect to its mean value and ϕ(q, t)
to be the corresponding atom-averaged normalized autocorrelation
function,

ϕ(q, t) =
1
NH
∑
α∈H

⟨δρ̂†
α(q, 0)δρ̂α(q, t)⟩

⟨δρ̂†
α(q, 0)δρ̂α(q, 0)⟩

, (7)

the intermediate scattering function may be written in the generic
form

F(q, t) = EISF(q) + (1 − EISF(q))ϕ(q, t). (8)
For the dynamic structure factor, this translates into

S(q,ω) = EISF(q)δ(ω) + (1 − EISF(q))ϕ̃(q,ω), (9)

where δ(ω) is the Dirac delta distribution and

ϕ̃(q,ω) =
1

2π ∫
+∞

−∞
dt e−iωtϕ(q, t) (10)

is the Fourier transformed relaxation function.

B. Semiclassical approximation
As in our previous analysis,8 we will be using the normalized

“shifted” relaxation function

ϕ(+)(q, t) =
ϕ(q, t + iβh̵/2)
ϕ(q, iβh̵/2)

, (11)

which is real and symmetric in time. In frequency space, Relation
(11) reads

ϕ̃(+)(q,ω)∝ e−βh̵ω/2ϕ̃(q,ω), (12)

noting that by construction

∫

+∞

−∞
dω ϕ̃(+)(q,ω) = ϕ(+)(q, 0) = 1. (13)

According to Eq. (8), we define the normalized symmetrized inter-
mediate scattering function,

F(+)(q, t) = EISF(q) + (1 − EISF(q))ϕ(+)(q, t), (14)

and the corresponding real and symmetric dynamic structure factor,

S(+)(q,ω) = EISF(q)δ(ω) + (1 − EISF(q))ϕ̃(+)(q,ω), (15)
which are by definition normalized,

∫

+∞

−∞
dω S(+)(q,ω) = F(+)(q, 0) = 1. (16)

The choice of working with ϕ(+) (q, t) and ϕ̃(+)(q,ω) rather
than with ϕ(q, t) and ϕ̃(q,ω) is motivated by Schofield’s semiclassi-
cal correction,11 which consists in identifying the shifted relaxation
function ϕ(+)(q, t) with its classical counterpart,

ϕ(+)(q, t) ≈ ϕ(cl)(q, t). (17)

The Schofield correction is corrected up to first order in h̵ and allows
for using classical diffusion models to interpret QENS data from
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complex systems, which have an essentially continuous energy spec-
trum. The correction requires βh̵ω ≪ 1 as well as h̵2q2/2meff ≪ 1,
where meff is the effective mass of the scattering atom.

C. Minimal model for internal protein dynamics
In order to account for self-similar relaxation dynamics in

proteins, we use the semiclassical approximation (17), where the
classical correlation function is given by a stretched Mittag-Leffler
function,8

ϕ(+)(t) = Eα,1(−tα) (0 < α ≤ 1). (18)

Here, the q-dependence is omitted and we use a dimensionless time
scale to keep the notation concise. The (generalized) Mittag-Leffler
function Eα ,β(z) is an entire function in the complex plane,12,13

Eα,β(z) =
∞

∑
k=0

zk

Γ(β + αk)
, (19)

which contains the exponential function as a special case,
E1,1(z) = exp(z). Here, Γ(z) is the Gamma function or a generalized
factorial.13 In contrast to the model relaxation function defined in
Eq. (18), its Fourier spectrum has a simple analytical form,

ϕ̃(+)(ω) = Lα(ω), (20)

where

Lα(ω) =
sin( πα2 )

ω(ω−α + ωα + 2 cos( πα2 ))
(21)

can be considered as a “generalized Lorentzian function.”
The self-similarity of the relaxation dynamics in proteins is

accounted for by the scale-invariant power law form of the stretched
Mittag-Leffler function for long times,

Eα,1(−tα)
t≫1
∼

t−α

Γ(1 − α)
, (22)

which translates into a scale-invariant power law form

Lα(ω)
ω≪1
∼ sin(

πα
2
)ωα−1, (23)

for its Fourier spectrum at small frequencies. Note that the long time
tail in Eq. (22) vanishes for α→ 1, i.e., for exponential relaxation.

A physical model leading to a relaxation function of the form
(18) is the fractional Ornstein-Uhlenbeck (fOU) process.14 The nor-
mal Ornstein-Uhlenbeck process describes the diffusion of a Brow-
nian particle in a harmonic potential15 and the fractional general-
ization16,17 includes non-Markovian memory effects resulting from
the interactions of the diffusing particle with its environment. In
our model, for the relaxation function, the position of the diffus-
ing Brownian particle is replaced by the classical counterpart of the
dynamical variable δρα(q, t), which is defined in Eq. (6), and the
harmonic potential creates an elastic force driving δρα(q, t) → 0,
or, equivalently, exp(iq ⋅ x(t)) → ⟨exp(iq ⋅ x)⟩. The resulting
nonexponential relaxation function can be expressed as a superposi-
tion of exponential functions,

FIG. 1. Sketch of a rough harmonic potential.

Eα,1(−tα) = ∫
∞

0
p(λ) exp(−λt)dλ, (24)

where p(λ) is a continuous relaxation rate spectrum of the form

p(λ) =
1
π

sin(πα)
λ(λα + λ−α + 2 cos(πα))

, (25)

fulfilling ∫
∞

0 p(λ)dλ = 1. We note that the moments
λn = ∫

∞

0 dλ λnp(λ) do not exist for n ≥ 1.
The nonexponential relaxation can also be thought of as the

result of the diffusion in a “rough” harmonic potential (see Fig. 1),
where the roughness is defined by a distribution of energy barriers
separating local minima. For this purpose, we use Zwanzig’s theory
of diffusion in rough potential,9 which relates the diffusion constant
D in a rough potential for a given energy barrierΔE to its counterpart
D0 in the smooth envelope potential, D = D0 exp(−[βΔE]2). Using
now that D0 ∝ λ0 for diffusion in a harmonic potential, the relax-
ation rate spectrum given in Eq. (25) can be related to a spectrum of
dimensionless energy barriers,

P(ϵ) =
1
π

2ϵ sin(πα)
exp(αϵ2) + exp(−αϵ2) + 2 cos(πα)

, (26)

where ϵ = βΔE.

III. INCLUDING INSTRUMENTAL RESOLUTION
A. Resolution-broadened QENS spectra

The model presented in Sec. II C describes the “ideal” dynamic
structure factor and does not account for instrumental resolution.
The experimentally observed dynamic structure factor is given by
the convolution integral

S(+)R (q,ω) = (S(+) ∗ R̃)(q,ω)

≡ ∫

+∞

−∞
dω′ S(+)(q,ω − ω′)R̃(q,ω′), (27)

where R̃(q,ω) represents the q-dependent resolution function
which is supposed to be even in ω. The latter is typically obtained
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from a vanadium run or by recording the sample spectra at very
low temperatures. Inserting the generic form (9) for the dynamic
structure factor into Expression (27), one obtains the general
expression

S(+)R (q,ω) = EISF(q)R̃(q,ω) + (1 − EISF(q))(ϕ̃(+) ∗ R̃)(q,ω)

(28)

for the experimentally observed dynamic structure factor, where the
index “R” stands for “resolution-broadened.” The challenge for the
direct analysis of QENS experiments in the ω-domain is to con-
struct an analytical expression for S(+)R (q,ω) that can be fitted to
experimental data. A corresponding method will be presented in
Sec. III B.

B. Semianalytical convolution procedure
In the following, we will consider the convolution of two

Fourier spectra, f̃ (ω) and g̃(ω),

h̃(ω) = ( f̃ ∗ g̃)(ω), (29)

where the Fourier transform pair f (t)↔ f̃ (ω) is defined through

f̃ (ω) =
1

2π ∫
+∞

−∞
dt e−iωtf (t), (30)

f (t) = ∫
+∞

−∞
dω eiωt f̃ (ω). (31)

The convolution integral h̃(ω) may be expressed through the
Laplace transform of h(t),

h̃(ω) =
1
π
R{ĥ(iω)}, (32)

where h(t) = f (t)g(t) on account of the convolution theorem of the
Fourier transform,

ĥ(s) = ∫
∞

0
dt e−stf (t)g(t) (R{s} > 0). (33)

We suppose now that the Laplace transforms f̂ (s) and ĝ(s) are
known, but not the Laplace transform of h(t) = f (t)g(t). An
approximation for the Laplace transform ĥ(s) may be obtained by
expressing g(t) through the contour integral for the inverse Laplace
transform,

g(t) =
1

2πi ∮C
ds est ĝ(s), (34)

and using a Padé-approximant,13

ĝ(s) ≈
P(s)
Q(s)

, (35)

for its Laplace transform. Here, P(s) and Q(s) are polynomials of a
given order in s–s0, where s0 is the reference point for the Padé-
approximation in the complex s-plane. The essential point here is
that the inverse Laplace transform of ĝ(s) given by Eq. (35) can be

easily computed by means of the residue theorem and leads to a very
simple expression

g(t) ≈∑
k
cke

skt , (36)

where the coefficients ck are given by

ck = lim
s→sk
{(s − sk)

P(s)
Q(s)

}. (37)

We assume here for simplicity that all roots of Q(s) have a multiplic-
ity of 1.

With these prerequisites, the Laplace-transform ĥ(s) is then
approximated through

ĥ(s) ≈ ∫
+∞

0
dt e−stf (t){∑

k
cke

skt}

=∑
k
ck ∫

∞

0
dt e−(s−sk)tf (t)

=∑
k
ck f̂ (s − sk). (38)

The approximation of ĥ(s) is thus obtained by a weighted sum of
shifted Laplace transforms f̂ (s − sk).

We illustrate the method for the autoconvolution of a normal-
ized Gaussian function,

Gσ(ω) =
e−

ω2

2σ2

√
2πσ

,

the result of which is (Gσ ∗ Gσ)(ω) = G√2σ(ω). In this case, we
have g(t) = exp(−t2σ2/2), and the corresponding Laplace transform
is given by

ĝ(s) =

√ π
2 e

s2

2σ2 erfc( s
√

2σ
)

σ
,

where erfc denotes the complementary error function.13

Figure 2 shows the exact autoconvolution for σ = 1 (solid black
line) compared to the approximation (dashed red line). The Padé
approximation of ĝ(s) has here been performed with s0 = 1 and
m = n = 8 for the orders of the polynomials P(s) and Q(s), respec-
tively. We note that the absolute error is smaller than 1.2 × 10−6 for

FIG. 2. Autoconvolution function (Gσ ∗ Gσ )(ω) for σ = 1 (black solid line) and
Padé-approximation (red dashed line).
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ω ∈ [−50, 50]. The calculations have been performed with the
Wolfram Mathematica package.19

C. Model for resolution-broadened QENS spectra
Combining Relations (20) and (28), the model for the analy-

sis of the experimental QENS spectra of free and HupA-inhibited
hAChE is given by

S(+)R (ω) = EISF × R̃(ω) + (1 − EISF) × (Lα,τ ∗ R̃)(ω), (39)

where

Lα,τ(ω) = τLα(ωτ) (40)

is the scaled version of the generalized Lorentzian defined in
Eq. (21). The q-dependent fit parameters in our model for the
resolution broadened QENS spectra are thus

1. the EISF,
2. the form parameter α, and
3. the time scale parameter τ.

As in Ref. 8, the EISF is fitted together with the two parame-
ters α and τ describing the truly quasielastic part of the spectrum,
where the convolution integral (Lα,τ ∗ R̃)(ω) is approximated by
the method described in Sec. III B. The form and the construc-
tion of the model for the resolution function, R̃(ω), which was
adjusted to corresponding vanadium spectra, are described in the
Appendix.

IV. RESULTS
Figure 3 shows a lin-log plot of the raw QENS spectrum

from free and HupA-inhibited hAChE at q = 1.0 Å−1 (blue and
red dots, respectively), together with the corresponding instrumen-
tal resolution function from a vanadium run (orange dots).18 We
note here that the experimental data have been recorded on the
IN6 spectrometer at the Institut Laue-Langevin in Grenoble.20 The
figure shows that systematic differences between the experimen-
tal QENS spectra of HupA-inhibited and free hAChE are hardly
visible.

The capability of our model to account for subtle changes
in QENS spectra is demonstrated in Fig. 4. In the upper panel,
we compare the QENS spectrum of free hAChE with the corre-
sponding fit (blue dots and magenta solid line), and in the lower
panel, the difference between the QENS spectra of inhibited and
free hAChE (hAChE + HupA − hAChE) with the corresponding
difference of the model fits (gray and magenta solid lines, respec-
tively). The HupA-induced intensity changes are in the subpercent
region, but they are systematic since the decrease of the elastic line
leads to a small increase of the intensity in the adjacent quasielastic
domain, which is imposed by the sum rule ∫

+∞
−∞

dω S(q,ω) = 1. It is
remarkable that the corresponding difference plot for the resolution-
broadened model dynamic structure factors (magenta solid line)
reproduces the experimental data quite well, which indicates that
the fits are sensitive to very small systematic changes in the QENS
spectra.

The fitted EISFs displayed in Fig. 5 show that the elastic com-
ponent for HupA-inhibited hAChE is slightly smaller than that for

FIG. 3. Experimental QENS spectra (lin-log plot) for the free hAChE (blue), HupA-
inhibited hAChE (red), and vanadium for q = 1.0 Å−1 (orange).18 Here,ω is defined
to be an energy transfer.

free hAChE, i.e., the average motional amplitudes of the hydro-
gen atoms in HupA-inhibited hAChE are slightly enhanced. This is
also expressed by the central line in the difference data presented in
Fig. 4, and we note here that the figures are similar for all q-values
(not shown here).

Figure 6 shows that both the form and time scale parameters,
α and τ, respectively, decay with increasing q. This expresses that
relaxation processes for increasingly localized motions are faster
and have less exponential characteristics. The decrease of τ with

FIG. 4. Upper panel: QENS spectrum (lin-log plot) for pure hAChE at q = 1.0 Å−1

(blue dots) and fitted model (solid magenta line). Lower panel: Difference
between the experimental QENS spectra of HupA-inhibited and free hAChE
for q = 1.0 Å−1 (solid gray line) and the corresponding difference of the fit-
ted models (magenta solid line). In both panels, ω is defined to be an energy
transfer.

J. Chem. Phys. 151, 125103 (2019); doi: 10.1063/1.5121703 151, 125103-5

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 5. EISF obtained from the fit of Expression (39) for free and HupA-inhibited
hAChE (blue and red dots, respectively). The error bars are too small to be
visible.

q is here, however, very small, in contrast to our findings in the
precedent study,8 where τ decreased more clearly than α. The prob-
lem is the strong interdependence of the fit parameters α and τ and
that we work here with instrument convolved data, which mask the
detailed structure of the true quasielastic spectrum. Independent of
q, the effect of inhibition through HupA on the internal dynam-
ics of hAChE can be resumed by a slight increase of the relaxation
time scale τ and an enhanced nonexponential characteristic, which
is expressed by a decrease of the form parameter α.

FIG. 6. The q-decay of the fitted parameters α and τ for the free and
the HupA-inhibited hAChE (blue and red, respectively). Points correspond to
fitted parameters and solid lines to linear fits. Error bars can be partially
seen.

FIG. 7. Model energy barrier spectrum P(ϵ) as a function of q for free and inhibited
hAChE (bluish and reddish surfaces, respectively).

The distribution of energy barriers given in Fig. 7 shows that
the effect of lowering α leads to a larger dispersion and a slight
shift to higher barriers, which are consistent with the increase of the
relaxation time scale, τ.

The results for all parameters of the model spectra and, in par-
ticular, their changes upon binding of HupA are consistent with
those found in our previous work.8 We note in this context that
our results for the EISF confirm observations by Peters et al. on
the same system21 and by Balog et al.,6 who have found by nor-
mal mode analysis and MD simulation that binding of the cancer
drug methotrexate softens the potential and enhances the motional
amplitudes of its target protein, dihydrofolate reductase. The lat-
ter point might appear counter-intuitive, in the sense that ligand
binding is intuitively expected to stiffen a protein. This has been,
in fact, observed for some covalently bound ligands (see Ref. 22
and references herein). The increase of the atomic motional ampli-
tudes that we observe could be attributed to the fact that HupA is
reversibly bound to hAChE. Since the entering and leaving of HupA
ligands lead to nonnegligible conformational changes of hAChE
and since the binding kinetics operates on time scales which are
much longer than those accessible to QENS, the neutrons see effec-
tively a superposition of more or less perturbed molecular struc-
tures between free and inhibited hAChE. In the experimental data,
the configurational transition between the potential wells corre-
sponding, respectively, to free and inhibited hAChE appears then
as a motion in a single effective potential well, which is broader
than the individual ones, and to apparently increased motional
amplitudes.

We also mention that the standard deviations of the fitted
parameters have been plotted as error bars, which are, however,
hardly visible in the plots. What count, however, mostly here are the
clearly visible systematic changes of the fitted parameters and their
global variation with q.

V. RÉSUMÉ
The aim of this paper was to consolidate our previous analy-

sis8 of QENS spectra from free and Huperzine A-inhibited human
acetylcholinesterase by a direct analysis of the resolution-broadened
QENS spectra in the frequency space. The analysis in Ref. 8
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FIG. 8. Lin-log plot of the experimental instrumental resolution function from a
vanadium run for q = 1.0 Å−1 (orange points) together with the fitted model (A1)
(solid black line) and the fitted normalized Gaussian function (dashed black line).
Here, ω is defined to be an energy transfer.

was performed by fitting a “minimal” three-parameter model to
the resolution-deconvolved intermediate scattering function, which
involves a numerical Fourier transform of the experimental QENS
spectra. The corresponding unavoidable aliasing errors are diffi-
cult to estimate and do not occur in the direct analysis of QENS
spectra in the frequency space. The latter approach necessitates,
however, an analytical “fittable” model for the resolution-broadened
experimental QENS spectra as well as a good model for the instru-
mental resolution function. Both challenges were met by using a
Padé approximant for the Laplace transformed instrumental time
window, which was chosen to be the product of a Gaussian win-
dow and a slowly decaying stretched Mittag-Leffler function. In
frequency space, the resulting model for the instrumental resolu-
tion function is a generalization of the well-known Voigt function.13

We note here that the representation of the instrumental resolu-
tion function by the dominating Gaussian profile alone is not suf-
ficient for detecting subtle changes in the observed QENS spec-
tra of hAChE upon inhibition through HupA (see Fig. 8 in the
Appendix).

We have demonstrated that our model is able to extract infor-
mation from extremely small but nevertheless significant changes
in the QENS spectra which are in the (sub)percent region. These
changes are remarkably well reproduced and confirm the results
of our previous work.8 A technical key point in our study was
the use of symbolic and numerical calculations with the Wolfram
Mathematica package.19 We finally remark that the direct analy-
sis method for QENS spectra presented here, as well as the anal-
ysis in the time domain used in Ref. 8, is suitable for QENS
studies of biomolecular and complex molecular systems in gen-
eral. They can be expected to be particularly useful to reveal
very small changes in the dynamics upon external stress in a
broader sense, such as hydrostatic pressure, temperature, solvent
changes, etc.
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APPENDIX: MODEL FOR THE INSTRUMENTAL
RESOLUTION

In the following, we describe the model for the instrumental
resolution of the IN6 spectrometer of the Institut Laue-Langevin in
Grenoble on which the QENS experiments were performed. The
experimental basis for the instrumental resolution are vanadium
spectra, which have been recorded at room temperature. At a first
glance, these spectra can be well represented by Gaussian functions,
but the lin-log plot in Fig. 8 shows that this is not the case and, in
particular, that the wings are missing.

To account for these wings, we describe the resolution function
R̃(ω) by the convolution of a normalized Gaussian function with a
scaled form of the generalized Lorentzian (21). Replacing α → αR
and τ → τR for clarity, we have

R̃(ω) = (LαR ,τR ∗Gσ)(ω), (A1)

where

Gσ(ω) =
e−

ω2

2σ2

√
2πσ

(A2)

is a normalized Gaussian function of width σ and

LαR ,τR(ω) = τRLαR(ωτR). (A3)

We note that Expression (A1) becomes the well-known Voigt pro-
file13 for the special case αR = 1.

The convolution (A1) was performed with the semianalyt-
ical method described in Sec. III B of the main text, using a
Padé-approximation for the Laplace-transformed Gaussian function
Ĝσ(s). Concerning the parameters, we note that τR ≈ 1.5 × 107 ps
and αR ≈ 0.2 for all q-values. The fits are not as good as those for
the QENS data, but clearly much better than those with a Gaussian
function alone.

In order to account for the strong dominance of the Gaussian
component in the vanadium spectra as well as for the strong inter-
dependence of the fit parameters {σ, αR, τR}, we performed the fit
of Expression (A1) in two steps. In a first step, we fixed σ by a
fit of Expression (A2) and used the result to fit, in a second step,
Expression (A1) to adjust the remaining parameters αR and τR. The
orders of polynomials P(s) and Q(s) in the Padé approximation of
Ĝσ(s) were set to m = n = 8, and the reference point was chosen to
be the σ-value found from the fit of the Gaussian function, s0 = σ.
Figure 8 displays the fit of the vanadium spectrum for q = 1 Å−1.
The σ parameter was found to be 0.036 meV, which is consistent
with the instrumental resolution of 70 μeV ≈ FWHM for the inci-
dent neutron wave length of 5.12 Å that was used to record the QENS
spectra.
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