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Inelastic neutron scattering from classical systems 
Stationary phase approximation of the scattering law 

By G. R. K N E L L E R t  
IBM France, Quai de la Rap6e 68-76, F-75012 Paris, France and 
DBCM SBPM, CEA, CE Saclay, F-91191 Gif-sur-Yvette, France 

(Received 7 April 1994; accepted 27 April 1994) 

The scattering law for inelastic neutron scattering from classical systems is 
derived by treating the wavefunctions of the scattering system in the stationary 
phase approximation and taking the classical limit of the Wigner phase space 
distribution function. In this way recoil effects are properly accounted for and 
the scattering law fulfils the relation of detailed balance. It is shown why classical 
van Hove correlation functions do not properly describe neutron scattering from 
classical systems. 

1. Introduction 

In a famous paper [13 van Hove showed that the differential cross-section for 
thermal neutron scattering from condensed matter systems can be expressed in terms 
of quantum time correlation functions of the spatially Fourier transformed particle 
density. It seems natural to replace the quantum correlation functions by their 
classical counterparts if scattering from classical systems is considered [2]. This 
approach has, however, two well known deficiencies: 

(1) the resulting scattering law, also called dynamic structure factor, does not fulfil 
the relation of detailed balance, and 

(2) recoil effects due to the momentum transfer from the neutron on the scattering 
atom are neglected. The influence of recoil effects on inelastic neutron 
scattering spectra has been demonstrated recently by Tomkinson [3]. 

To account approximately for recoil and detailed balance several prescriptions 
have been suggested, see e.g. [-4-6]. Usually they are referred to as semiclassical 
corrections [6-8],  treating h as a small quantity and recoil as a first order quantum 
effect [.8]. Looking at simple systems, like the ideal gas and the harmonic oscillator, 
it becomes obvious that the validity of the various prescriptions depends on the 
system and the momentum transfer under consideration. Since recoil is treated as a 
quantum effect of first order in h, none of them can be used safely in the regime of 
high momentum transfers hq where recoil effects are dominant. Moreover, the 
treatment of recoil as a quantum effect shows a conceptual problem of the 
semiclassical corrections, since recoil can be described fully in a classical picture [9]. 

Recently, Evans and Ogeda [10] suggested an approach in which the scattering 
law is expressed in terms of the density response to a suitably chosen 'kick'  field. 
For classical systems the density response is then obtained in the framework of 
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64 G.R.  Kneller 

classical mechanics. By construction the resulting scattering law fulfils the detailed 
balance relation. The authors show that the f-sum rule is fulfilled, i.e., that the first 
frequency moment of the dynamic structure factor is correct. 

The aim of this paper is to give a rigorous description of neutron scattering from 
classical systems. This is achieved by writing the so-called intermediate scattering 
function as a Feynman path integral over closed paths along the real and imaginary 
time axes. The classical limit is then performed by invoking the stationary phase 
approximation for the Feynman propagators in real time and a carefully chosen 'high 
temperature' or 'short time' approximation for the propagator in imaginary time. 
This short time approximation is equivalent to replacing the Wigner distribution 
function for quantum phase space averages by the classical Boltzmann weight. The 
resulting dynamic structure factor is found to be always real, as it should be, and 
fulfils the relation of detailed balance within the validity of the classical approxima- 
tion. In addition, its first four frequency moments are found to be correct. 

From a practical point of view it is important that the scattering law can be 
calculated by molecular dynamics simulation, using perturbation schemes [10, 11]. 
This is useful in all cases in which the scattering system cannot be treated in the 
Gaussian approximation [12, 13J. In the Gaussian approximation the scattering law 
is determined completely by the velocity autocorrelation function of the particles. In 
the classical limit it can be constructed from the corresponding classical correlation 
function [12]. There are, however, situations where the Gaussian approximation is 
not valid. An example is scattering from molecular gases and liquids at high 
momentum transfers, a situation that is typically encountered when studying these 
systems with energetic neutrons produced by spallation sources or other sources for 
hot neutrons. This concerns in particular molecular liquids and gases containing 
hydrogen atoms with low effective rotational masses [14], as CH4 and CH2C12 [15, 
16]. Even though a classical description for such systems is in most cases adequate-- 
giving, in principle, the possibility of realistic molecular dynamics simulations for 
direct comparison to neutron scattering experiments--it is impossible to obtain 
reliable differential neutron scattering cross-sections due to strong recoil effects. 

The paper is organized as follows: In section 2 the basic quantities and relations 
involved in the theory of neutron scattering are introduced and briefly explained. 
Section 3 contains the central part in which the stationary phase approximation of 
the scattering law is derived. The summary and the concluding discussion are given 
in section 4. The appendixes contain proofs of some essential properties of the derived 
scattering law and a section on coherent scattering. 

2. Basic definitions and relations 
2. t. Correlation functions 

In the following we consider a system consisting of N identical atoms, labelled 
by Greek characters. The double differential cross-section for the scattering of thermal 
neutrons reads 

d2a - N k {b~ohS~oh(q,2 CO) + b~,~S,.~(q, co)}. (1) 
ds dco k o 

Scoh(q, CO) and Si,c(q, co) are the coherent and incoherent dynamic structure factors, 
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Neutron scattering from classical systems 65 

with q and o being the momentum and energy transfer in units of h: 

q - ko - k.  (2) 

co - e o - e .  ( 3 )  

Here k o and e o are the momentum and the energy of the incident neutrons. The 
quantities boo h and bi,c denote the coherent and the incoherent scattering lengths, 
respectively [-17]. The energies are related to the corresponding momenta by the 
dispersion relation 

hk~o) (4) 
E(~ 2m ' 

where m is the neutron mass. Both dynamic structure factors can be expressed in 
terms of time correlation functions which are called intermediate scattering functions 
(the labels 'coh '  and 'inc' are dropped if a relation applies to both coherent and 
incoherent scattering): 

S(q, o)  = 2x at exp [ -  ie)t] F(q, t). (5) 
- - 0 ( 3  

By introducing the spatially Fourier transformed particle density operators 

1 ~ e x p  [iq.k~(t)], (6) f3(q, t )  - ~ 

~(q, t) - exp [iq. R~(t)], (7) 

with i~, and Rs being the position operators of atom ~ and an arbitrarily tagged 
scattering atom s, the intermediate scattering functions can be written as 

Fcoh( q, t) = (t3f(q, 0)r t )) ,  (8) 

F~,c(q, t) = (p*,(q, O)~s(q, t)). (9) 

The brackets denote a quantum thermal average and the symbol t indicates the 
adjoint operator. The time dependence of the particle density operators is given by 
the Heisenberg picture. 

Finally, the van Hove correlation functions are defined as 

a(r,  r) - (2x) ~ dSq exp [ - i q ' r ] f ( q ,  t). (10) 

If the right hand sides of equations (8) and (9) are read as classical time correlation 
functions they can be interpreted as conditional probabilities: Gcoh(r, t) gives the 
probability of finding a particle at time r at the position r, given that another or the 
same particle was at time t = 0 at the position r = 0. Gi,c(r, t) gives the probability 
of finding a particle at time t at the position r, given the same particle was at time 
t = 0 at the position r = 0. 

2.2. Symmetries 
From the general definition of quantum time correlation functions the following 

symmetry relations are readily derived: 
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66 G.R.  Kneller 

F*(q, t) = F(q, - t ) ,  (11) 

F(q, t) = F ( - q ,  - t  + iflh). (12) 

Equation (11) shows that real part of F(q, t) is an even function in time and the 
imaginary part is an odd function in time, ensuring that the dynamic structure factor 
is real. From equation (12) one obtains the relation of detailed balance: 

S(q, co) = exp [flhco]S(-q, -co). (13) 

Combination of equations (10-12) yields 

~*(r ,  t) = G(r, t + i~h), (14) 
showing that the van Hove correlation functions are complex functions in the 
quantum case. 

If the quantum correlation functions defining the intermediate scattering functions 
are replaced by classical correlation functions, one obtains consistently the same 
symmetry relations as by setting h to zero in equations (12 14) wherever it appears. 
The detailed balance relation is no longer fulfilled and the van Hove correlation 
functions are real, allowing the simple interpretation in terms of conditional 
probabilities mentioned above. As van Hove showed in a later paper [18], the 
imaginary part of G(r, t) describes the local change of the particle density due to the 
impact of the neutrons. Therefore recoil effects are absent in the limit h ~ 0. 

3. Scattering from classical systems 

In the following we will discuss scattering from classical systems in terms of the 
incoherent intermediate scattering function. The discussion of coherent scattering or, 
more precisely, of distinct scattering which describes static and dynamic cross- 
correlations between atomic positions, is postponed to the appendix. The reason is 
twofold. First, from a practical point of view, distinct scattering normally can be 
neglected for high momentum transfers [9] where semiclassical corrections fail. If 
scattering from molecular liquids is considered, this applies to intermolecular 
scattering caused by cross-correlations between atoms on different molecules. Second, 
distinct scattering has an intrinsic quantum property 1-9] which is, however, apparent 
only in the regime of deep inelastic scattering. If cross-correlations in that regime are 
visible, as e.g. due to chemical bonds in molecules, they should be treated by a 
quantum mechanical model [19, 20] since a classical description is not appropriate. 

3.1. Wick's representation ofF(q, t) 

Following Wick [9] we write F(q, t) =- F~,c( q, t) explicitly as 

1 {o p /q exp E 
~ J  

05) 
using equations (7) and (9) and the general definition of quantum time correlation 
functions. The Hamilton operator of the system is denoted /4, fl = (k~T)- i  and 
Z = tr{exp(-/~/4)} is the quantum partition function of the system ('tr '  stands for 
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Neutron scatterin9 from classical systems 67 

'trace'). The Hamilton operator is assumed to have the standard form 

= + v(kl,..., 
-7 

(16) 

M is the mass of an atom. Equation (15) can now be written in a different form by 
observing that the operators exp (-iq'Rs) and exp (iq.Rs) generate a translation 
p~--.p= + hq3=s in the operator exp [(i/h)I2It] between them (3~ is a compact 
notation of the Kronecker symbol a,e times the unit operator): 

F(q, t) = Z- l tr {exp [ -  flH, ] exp I~ fflqt] exp I -  ~ I2It]}. (17) 

The 'shifted' Hamiltonian/~q reads 

& = ~ (P~ + hqa=s)2 + V(R1,..., RN). (18) 
= 2M 

Equation (17) shows that the scattering system is influenced by the scattering process 
since the Hamiltonians appearing in the forward and backward propagators 
exp [-(i/h)I4t] and exp [(i/h)I-Iqt] are different. 

3.2. F(q, t) in terms of propagators 
Equation (17) can be exploited further in the position space representation by 

inserting complete sets ]R) - [R1) |   9  9 | [RN) of orthonormal eigenkets of the 
position operators (sans serif boldface characters denote 3N-dimensional vectors). 
Using the notation of Feynman [-21] we define 

[' 1 K ( l i b ,  Ra ,  tb --  ta) --  ( B b l  exp -~/~(tb - ta) LRa) ,  (19)  

K(Rb, B,,, -iflh) - (libl exp [ - f l / 4 ] l R . ) .  (20) 

K(Rb, R . , t b -  t.) and K(Bb, B a, -ifih) are the propagators of the Schr6dinger 
equation in the position space representation for real and imaginary times. In the 
following they will be referred to simply as propagators. In terms of propagators the 
intermediate scattering function can now be written as 

F(q,t)=z-lfffd3NRod3NR'od3NRtK(Ro, R'o,--iflh)Kq(R'o,R,,--t)K(Bt, lio, t) 
(21) 

where Kq(Fl'o, tl t, - t) is the backward propagator belonging to the Hamiltonian/tq. 
The partition function reads 

= fdaNRoK(lio, lio, - ifih). (22) Z 

The real time propagators fulfil the Schr6dinger equation with respect to (lib, tb) and 
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68 G.R.  Kneller 

the adjoint Schr6dinger equation with respect to (Ra, t.) [21]: 

ih  -K(ab, ao, tb--to)= + V(ab) K(ab, (23) 
~tb 

0 K(Rb ,  R . ,  t b - ta) = + V ( R . )  K ( R b ,  R . ,  t b - ta). (24) 

The set of Schr6dinger equations belonging to the 'shifted' propagator Kq(R b, Ra, 
t b - t.) is obtained by replacing the momentum operator - ih(~/~Rs) of the scattering 
atom s by - ih(O/ORs)+ hq. To maintain a compact notation we introduce the 
3N-dimensional column vector Os, defined such that its elements are zero, except for 
the elements corresponding to particle s, which equal qx, qy, and q~, respectively: 

O~ - (0 . . . . .  0, qx, qy, q~, 0 . . . . .  0) T. (25) 

The symbol 'T '  denotes a transposition. Using this definition the Schr6dinger 
equations for K~(R b, R. ,  t b - G) read 

- = + iO~ + V(Rb) Kq(Rb, Ra, tb -- G) 
2M \~Rb 

(26) 

- i h  ~ K,(Ro, R . ,  t b - -  ta )  = ( - - 2 M  \ ~ a  - -  iO. + V(Pl.) K,(Rb, R . ,  t b - t.). 

(27) 

From these two equations and (23) and (24) follows a simple relation between the 
propagators Kq(Rb, R . ,  tb -- t.) and K(Rb, R . ,  t b - t.): 

K q ( R b ,  R a ,  t b - -  ta)  --~ K ( R b ,  R a ,  t b - -  ta )  exp [ - i O s ' ( R  b - -  ga) ]. (28) 
The intermediate scattering function as given in equation (21) can be interpreted 
intuitively using the path integral form of the propagators [21 ], especially with respect 
to the classical limit. The real time propagators are then written as 

K(R~,Ro,  t b -  t~)-- f ~ [R( ' c ) ] exp (~  A[R(z)]]  (29) 

where ~ [R(r)] is the volume element in path space. A [R(r)] is the action of a path 
/i'(r) that starts at R(ta) = R.  and ends at R(tb) = Rb: 

A [R(r)] = R(r)). (3O) 
a 

L is the Lagrangian of the system and the dot stands for a time derivative. Assuming 
the standard form (16) for the Hamiltonian, the Lagrangian reads 

L(R, R) =  89 2 - V(R). (31) 

The form of the volume element ~ [ / ? ( 0 ]  appearing in equation (29) is not of 
importance here; it is sufficient to note that the propagator is written as a 'sum over 
all possible paths' going from R(t.)  = I:1~ to R(tb) = R b where each path is assigned 
a weight exp {(i/h)A[Fl(r)]}. Correspondingly, the path integral form of the shifted 
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Neutron scatterin9 from classical systems 69 

^ 

t .H 
R o _-- 

- i p ~ . ~  

R' o 

Rt 

Figure 1. Diagrammatic representation of F(q, t) as a sum over closed paths R0 ~ R, 
R; ~ R 0. For each section the time difference between end point and initial point 
together with the corresponding Hamiltonian are given. 

propagator is given by 

absorbing the argument of the exponential on the RHS of equation (28) into the 
action Aq [R(z)]: 

I[b Aq[R(z)] = A[R(Q] - hQs.(Rb - R, )  = dz Lq(R(z), ~'(z)), (33) 
a 

where 
Lq(R, t~) =  89 2 - V(R) - hO~.l~. (34) 

The term -hO~.l~l can be considered as a coupling term describing the 'kick' hq 
transmitted to the scattering atom. 

The path integral form of the propagators in imaginary time reads [-21] 

K(Rb, Ra, - iflh) = f ~ [R(z)] exp ( -  fl/-t [R(r)]) (35) 

where /4[R(r)] is the average energy along a path connecting R(0 )=  R, and 
R(,6h) = Rb: 

, j [ /4 [R(r)] = flh dzH(R(z), ~'(Q). (36) 

Here the Hamiltonian is written in terms of coordinates and velocities: 

H(R, R) =  89 2 + V(R). (37) 

According to equation (21) the intermediate scattering function can now be 
interpreted as the sum over all possible closed paths 

R('c) R'(z) R"(T) 
R o ~ R ,  ~ R ~  ~ Ro 

(see figure 1) where the different sections have the weights exp {(i/h)A[R(z)]}, 
exp { (i/h) Aq [R'(z)] }, and exp ( - fl/4 [R"(z)]), respectively. 

3.3. Classical limit of F(q, t) 

To find the classical limit of F(q, t), we rewrite the propagator K(R o, R'o, iflh) 
appearing in equation (21) in terms of the Wigner phase space distribution 
function. Wigner showed [22] that one can define a quantum phase space distribution 
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70 G.R. Kneller 

function as a generalization of the classical Boltzmann weight in order to calculate 
thermal averages as phase space averages. Using our notation, the Wigner distribu- 
tion function reads 

f(P,  R) - (2rch)3. ~ d3~yexp - ~ P . y  K(R + y/2, R - y/2, -i~h). (38) 

The partition function is given by 

z = fd3se d3NRf(P, R). (39) 

Inversion of Equation (38) yields 

K(R + y/2, R - y/2, - iflh) = d3Np exp ~ P- y f (P,  R). (40) 

Setting 
,#o =  89 + R•), (41) 

the intermediate scattering function can be cast into the form 

F(q,t)=z-~fff fd3NPod3NRod3SR'od3NR, exp[~Po' (Ro-Ro); f (Po,  Ro) 

x Kq(R'o, R,, -OK(R, ,  Ro, t). (42) 

All quantum properties of F(q, t) are now concentrated in the Wigner distribution 
function and the real time propagators. 

3.3.1. Stationary phase approximation 
In the classical limit the actions appearing in the real time propagators according 

to equation (29) will be much larger than h, 

]A] >> h. (43) 

This leads to strong oscillations of the weights exp {(i/h)A[R(r)]} with even slight 
variations of the paths such that only the classical path survives for which the action 
is stationary. The real time propagators approach the form [21], [23] 

K~'(Rb 'R" ' tb t~)~  A(Rb'R"' ] - t b - t . )  , ( 4 4 )  

where A(Rb, Ra, tb - ta) is the classical action 

A(Rb, R,, t b - t,) - A[Ret(r)]. (45) 

The classical trajectory Nc~(r) is a solution of the Euler-Lagrange equations [24] 

d ~?L ~?L = 0. (46) 
dr OR ~R 

It is important to note that the Lagrangian Lq as given by equation (34) leads 
to the same equations of motion as the Lagrangian L. Therefore the actions A [R(z)] 
and Aq[R(~)] are minimized by the same paths and relation (28) is maintained in 
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Neutron scattering from classical systems 71 

the classical limit: 

Kql(Rb, R,~, t b - ta) = exp [ - i O s . ( R b  - R , )]KCl(R b, R., t b - t ,) .  (47) 

It now follows from the representation of F(q, t) given in equation (42) that the 
integrand is proportional to a total phase factor exp [( i /h)~]  in the classical limit. 
The phase function q~ is given by 

q~(Po, Ro, Rt, R'o; hq, t) = A(R,, Ro, t) + Aq(R'o, R,, - t )  + Po'(Ro - R'o) (48) 
with 

Aq(R'  o, R t, - t )  = - A q ( R t ,  R'o, t) = - A ( R , ,  R'o, t) + h O  s" (R,  - R'o) (49) 
We emphasize that hq remains finite in the classical limit. Since the actions 
A(R t, R o, t) and A(Rt ,  R'o, t) are large compared with h, the phase factor exp [(i/h)q~] 
is a rapidly oscillating function in the arguments R o, R,, and R;. Therefore, starting 
with the integration over R o, which corresponds to the trace operation in the thermal 
average (equation (15)), contributions to the integral are obtained only if the 
integrand is smooth with respect to variations in R o. Consequently, the condition 

3 
- -  cb(P o, R o, R,,  R'o; hq, t)  = 0 (50 )  
c~Ro 

must be fulfilled. Definition (48) of q~ shows that this relation defines Rt: 

0 
A(Rt ,  Ro, t) = - P o .  (51) 

~?R0 

With R t now being a function of R o, the phase function q~ varies with R o indirectly 
through R,. Therefore, to ensure the smoothness of the integrand with respect to the 
integration over Ro, the additional condition 

0 
c~R, oh(P~ R~ R,, R'o; hq, t) = 0 (52) 

must be satisfied. This equation fixes R~ and reads explicitly 

0 
A(R, ,  R'o, t) = A(R, ,  R o, t) + hO s, (53) 

dRt ~R t 

using equations (48) and (49). Conditions (51) and (53) have a simple meaning. It 
follows from the Hamilton-Jacobi theory of classical mechanics that the derivatives 
of an action integral A(Rb, R , ,  tb - t ,)  with respect to R b and R,  give Pb and - P , ,  
with Pb and O, being the canonical momenta at times tb and t,, respectively. Therefore 
equation (51) states that R t has to be chosen such that the initial momentum is just 
Po. In other words, R t is the endpoint of a classical trajectory starting with the initial 
coordinate Ro and the initial momentum Po: 

R, = R(Ro, Po. t ) .  (54 )  

Denoting the trajectory running from R t to R~ backwards in time (or, equivalently, 
from R ;  to R t forwards in time) by R'(z), equation (53) can be phrased as 

P', = P, + hQs, (55) 
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72 G .R .  Kneller 

Figure 2. 

R 

R= 

R' o 

Pt +1~O= 

a 

Classical path R o ~ R, ---, R~. The slopes indicate the momenta. 

which expresses the conservation of momentum. Consequently, R~ is the endpoint 
of the trajectory R'(~) at v = 0 that starts at v = t with the coordinate R, and the 
momentum P', as given by equation (55) 

R'o = R ( R , ,  P ; ,  - t ) .  (56) 

Combination of equations (54-56) shows that the classical path starts at R o with a 
momentum Po, evolves during a time t according to the classical equations of motion, 
then the scattering atom obtains a 'kick' hq and the system evolves back in time 
arriving at R~ ~ Ro (see figure 2). We recall that boldface sans serif characters denote 
3N-dimensional vectors, specifying positions, momenta etc. for the whole system. 

3.3.2. Classical limit of the Wigner distribution function 

According to Wigner [22] f (P,  R) can be written as an expansion in even powers 
of h, 

f (P,  R) oc exp [ - f i l l ( P ,  R)](1 + hZgz(P, R) + h4g4(P, R) + . . .  ), (57) 

with the Boltzmann factor as the leading term and the Hamilton function H(P, R) = 
(PZ/2M) + V(R). The functions gzn(P, R) contain the quantum corrections which 
can be neglected if 

/~hr o << 1 (58) 

where the frequency co o is given by the curvature of the potential function, i.e., by 
~o~o = M-1V"(x) in the case of a one-dimensional harmonic oscillator. For  many- 
body systems described by a pairwise additive potential energy this translates 
into 

2 r << a, (59) 

with 27, = h(2~fl/M) ~/: being the thermal wavelength and ~ the typical interparticle 
distance. 

Keeping in mind that the limit 'h --* 0' is meant in the sense of expressions (58) 
and (59), it follows from expression (57) that the classical limit of the Wigner 
distribution function is just the Boltzmann weight, 

fd (p ,  R) oc exp [ -  ~H(P, R)].  (60) 
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Neutron scattering from classical systems 73 

This follows also from path integral representation (35) of the propagator in 
imaginary time and definition (38) of f (P ,  R) if one approximates 

o pa dz V(R(z)) ,~ fihV[(Rb + R,)/2] .  (61) 

This means that the curvature of the potential can be neglected for motion on the 
time scale tilt in imaginary time ('short time approximation'). 

3.3.3. The resulting formula for the intermediate scattering function 
Making use now of the stationary phase approximation, i.e., retaining only the 

total weight exp [(i/h)cI)] of the classical path R o ~ Rt --* R; ,  and taking the classical 
limit of the Wigner distribution function, it follows from equation (42) that 

FC'(q, t) = Z~, l f f d3NPo d3NRo exp [-  B( ~--~ + V[Ro(Po, Ro; hq, t)l)] 

x exp[~q~(Po, Ro;hq, t)l (62) 

is the classical limit of F(q, t). Ro and the phase tb are determined entirely by the 
initial momenta and coordinates (Po, Ro), the time t, and the momentum transfer hq. 
Z~ is the classical partition function. The tilde on the left-hand of equation (62) 
indicates the classical limit of F(q, t) in the sense of expressions (43), (58) and (59). 

To express F~*(q, t) as a classical thermal average and to clarify its relation to 
the intermediate scattering function F~*(q, t), defined as the classical time correlation 
function, we introduce the quantities 

and 
A V(Po, Ro; hq, t) - V0qo(Po,  Ro; hq, t)] - V(Ro) (63) 

Aq~(Po, Ro; hq, t) - cb(Po, Ro; hq, t) - hQ~.(R, - Ro) (64) 

= A(R,, Ro, t) - A(R,, R'o, t) + (Po + hO~)'(Ro - R'o). (65) 

We recall that R t and R ;  are defined by expressions (54) and (56), respectively. Using 
the explicit expression for R t, FC~(q, t) can be rewritten as 

f f C ~ ( q , t ) = z ~ l f f d 3 N P o d 3 N R o e x p [ - f i H ( P o ,  Ro)]exp[ - f lAV(Po ,  Ro;hq, t)] 

x exp[~Aq)(Po, Ro;hq, t ) lexp( iOs.[R(Po,  Ro, t ) - R o ]  ). (66) 

This is the central result of this paper. The intermediate scattering function is entirely 
expressed in classical variables. Planck's constant enters in A V and Aq~ through the 
momentum transfer hq. The classical intermediate scattering function FeZ(q, t) can be 
retrieved by taking the formal limit h ~ 0 of ~CZ(q, t), as will be shown now. Since 
R~ approaches Ro if h and consequently the momentum transfer hq go to zero, it 
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74 G.R.  Kneller 

follows immediately that 

lira AV(Po, Ro; hq, t) = 0, (67) 
h ~ 0  

lira Aq~(P o, Ro; hq, t) = 0. (68) 
h ~ 0  

In the limit h ~ 0 the phase factor exp [(i/h)Aq~] approaches an expression of the 
type exp [0/0] and therefore the right-hand side of the identity 

lira Aq~(P~ Ro; hq, t) = lim --0 Aq~(po ' Ro; hq, t) (69) 
h~o h h~o c~h 

must be examined. The phase function A~, as given in equation (64), depends directly 
on h and indirectly through R~ on h (see expressions (55) and (56)). Using that 
(O/~R'o)A(R,, R'o, t) = -P 'o  one obtains 

lira ~ Aq~(Po, Ro; hq, t) = lim (P'o - Po)" ~h + Q~'(R~ - R'o) - hQs c3h ) = O, 
h~o ~h h~o 

(70) 

since for hq ~ 0 the forwards and the backwards trajectories become identical and 
therefore R~ -~ Ro and P~ -~ Pp. Consequently, limh~ o exp [(i/h)Acb] = 1, and the 
intermediate scattering function as given by expression (66) approaches the usual 
classical form 

l i m F ~ ( q , t ) = Z ~ f f d 3 N P o d 3 N R o e x p [ - ~ H ( P o ,  Ro)] 
h ~ O  

• exp [iQs'(R(Po, Ro, t) - Ro) ] 
= FeZ(q, t). (71) 

It is now clear that taking the formal limit limh~ o in F(q, t) means to neglect AV 
and Aq~ resulting from the 'kick' hq which the scattering atom receives from the 
neutron. A V and Aq5 represent the influence of the neutron on the sample. 

As shown in the appendixes, the dynamic structure factor gCZ(q, ~o) corresponding 
to ~t(q,  t) is always real and fulfils the relation of detailed balance, given that the 
scattering system can be described well by classical mechanics. Under the same 
condition the first four frequency moments of the dynamic structure factor are correct. 

Another important property of ffC~(q, t) is that the corresponding van Hove 
correlation function G~(r, t) is complex, as for scattering from quantum systems. In 
the light of the above considerations a simple interpretation in terms of a conditional 
probability as described in section 2.1 is possible only if the influence of the neutron 
on the sample can be neglected, i.e. for sufficiently small momentum transfers. 

3.4. Short time behaviour of  FC~(q, t) 

The following useful relation for the phase q~ follows from equation (A. 20) in the 
appendixes. 

q~(t) = (Eq(0) - E)t  + O(t z, V V(Ro)). (72) 

VV(Ro) denotes the gradient of the potential at R o. E is the energy of the forward 
path and Eq(0) is the energy of the backward path, the 'reversal time' t being zero. 
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Neutron scatterin 9 from classical systems 75 

We emphasize that, in general, 

(P(t) + hOs) z hOs" (hO~ + 2P(t)) 
E q ( t )  - + V ( F I ( t ) )  - E + (73) 

2M 2M 

depends on the reversal time t, which should not be confused with the parameter z 
describing the time evolution. Eq is ,  of course, constant along the backward trajectory 
as E is constant on the forward trajectory. Since Eq(O) --  E = [hOs'(hOs + 2Po)/2M] 
does not depend on the potential, equation (72) states that the short time behaviour 
of q~ is determined by inertial effects. For  sufficiently small times one can truncate 
Taylor expansion (72) for q~(t) after the term oc t. According to equation (A 22) one 
can write in the same approximation 

[ flhQ~'VV(Ro) ] exp [-flV(R(t))] ,,~ exp [- f lV(Ro) ] 1 + 2M t . (74) 

Inserting expressions (72) and (74) into (62) for ~C~(q, t) and assuming that the 
potential is even in R0 yields 

lira pCt(q, t) = F~a.gos(q, t). (75) 
toO 

F~d.9,s(q, t) is the exact expression for the intermediate scattering function of an ideal 
Maxwell Boltzmann gas: 

q2t( t - i f lh)]  
Fia.o,~(q, t) = exp 2M/~ 3" (76) 

Relation (75) is just the impulse approximation of the intermediate scattering function 
[17] for high temperatures where the quantum thermal average can be replaced by 
a classical one. As shown in section 2.4 of appendix A, the first two frequency 
moments of the dynamic structure factor are the same as in the general quantum 
case. The first moment is known as recoil-moment and vanishes, as do all other odd 
moments, in the usual classical calculation where h is put to zero and the dynamic 
structure factor is symmetric. Explicit expressions for the first four moments are listed 
in the table. Differences between quantum and classical systems appear only if 

The coefficients C,, 2k as defined in equation (A 46). 7 is the recoil coefficient h/2M, ( . . . )  
denotes a classical thermal average, and V (") and nth derivative of the potential 
V with respect to the z coordinate of the position of the scattering atom with q being 
parallel to the z axis, ~C4,2 and 6C4,4 are negligible, as discussed in the text. 

2k 

n 2 4 6 8 

1 7 - -  - -  

1 
_ _  ~ 2  _ _  _ _  

2 Mfl 
( V (2)) 3 

3 7 - -  7 - -  7 3 - -  
M mfl 

4 < V(2)) 3 ( V ( 2 ) )  72 6 
~ + ~c~2, (Mfl) ~ + 47~ M - + ~C~,4 --M~ ? 

D
ow

nl
oa

de
d 

by
 [G

er
al

d 
K

ne
lle

r] 
at

 0
3:

39
 3

0 
N

ov
em

be
r 2

01
1 



76 G .R .  Kneller 

interparticle forces are involved. For  an ideal Maxwell-Boltzmann gas, where no 
interparticle forces are present, the stationary phase approximation for the scattering 
law is exact. 

It is interesting to note that id.gaAq, Fia.gas(q, t) can be obtained from the 
corresponding classical time correlation function by replacing t 2 with t ( t  - iflh). This 
prescription has been suggested by Egelstaff as a general rule to correct classical 
scattering laws for recoil and detailed balance [5]. For  the ideal gas this rule is 
equivalent to the prescription of Aamodt et al. [6]. 

3.5. A n  example  

To illustrate the stationary phase approximation of the scattering law for a simple 
model system where the scattering atom moves under the influence of a position- 
dependent force we consider the case of a harmonic oscillator with a potential 
V(r) = 1 2 z ~Mcoo[r l ,  where COo is the frequency of the oscillator. The problem can 
be solved by treating the motions along the x, y, and z axes separately. Considering 
the motion along the x axis and observing conditions (54-56), the solution of the 
equations of motion yields 

x(r) = x o cos Ogor + P o sin co0r, (77) 
Mco o 

Pt + hqx x'(z) = x, cos coo(Z - t) + - -  sin COo(Z - t), (78) 
MCO o 

with xt = x ( t )  and Pt = MYc(t). The position x~ (see figure 2 and equation (56)) is 
given by 

hqx 
x~ = x'(0) = x o - - -  sin ~Oot. (79) 

Mcoo 

Straightforward calculation yields the total phase (see equation (48)) 

q~(Po, Xo; hqx, t) = Po - -  
hqx 

MCOo 
sin ~Oot + xohqx(cos  Ogot - 1) 

+ (2 - cos COot ) hZq~2~ sin COot. 
2M~o o 

The potential at fro reads 

(80) 

( )2 
hqx sinogot . (81) V(Y~o(Po, Xo; hqx, t))  =  89 2 x o 2MCOo 

Insertion of equation (80) and (81) into the general expression (62) yields FCl(q x, t) 
after two integrations over Gaussian integrals. We give immediately the result for 
the three-dimensional case: 

E-- J l  l /~CZ(q, t) = exp i hq2 sin COot exp - - -  (1 -- cos COot ) . (82) 
2MCOo M f l ~  
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Neutron scattering from classical systems 77 

Comparison of ffCt(q, t) with the full quantum expression, given by [17] 

F(q,t) = e x p [ i  hq2 sin coot] exp [ -  h q ~ 2  coth flhco~~ ( 1 -  coscoot)] (83) 
2Mcoo 2Mcoo 2 ' 

shows that Pt(q, t) is the high temperature limit of F(q, t), which allows us to 
approximate coth(flhcoo/2) ~ 2/flhco o. The formal limit h ~ 0 gives the classical time 
correlation function FC~(q, t). 

F(q, t) t3hO)o << ', /~d(q, t), (84) 

h ~ O  F(q, t) , Fr t). (85) 

The following relation can be derived from the expression of the dynamic structure 
factor S(q, co) [17, 19]: 

S(q, co) , ~Cl(q, co) = exp Set(q, co). (86) 

Reading the right-hand side as a prescription to correct the classical scattering law 
for recoil and detailed balance shows that one obtains the Schofield correction [4]. 

4. Summary and conclusion 

The derivation of the scattering law for inelastic neutron scattering from classical 
systems as presented in previous sections shows that it is possible to describe this 
type of scattering for arbitrary momentum and energy transfers staying completely 
in the picture of classical dynamics with respect to the scattering system. As shown 
in the appendixes, an exception is deep inelastic distinct scattering, since the 
uncertainty relation between momentum and position of the scattering particle 
becomes important for this scattering process and a classical picture is not appropriate. 
The intermediate scattering function ffcl(q, t) can be written as a time dependent 
thermal average in which recoil effects and the detailed balance relation are 
maintained. The usual classical form FOr(q, t) is obtained by performing the limit 
h ~ 0 in a formal sense. The limit h -~ 0 means effectively neglecting the influence 
of the neutron on the scattering system which results from the 'kick' hq transmitted 
to the scattering atom. In general, this influence cannot be taken into account by a 
simple correction rule but instead by a system-dependent correction of the phase 
space function to be averaged to obtain ffC~(q, t). It is important to note that the 
expression for the intermediate scattering function contains only functions and 
functionals depending on classical phase space trajectories. Therefore the scattering 
law can be calculated by classical molecular dynamics simulation. The general form 
of ffd(q, t) suggests a perturbation scheme as discussed in [11]. Here it should be 
pointed out that the assumption of a small perturbation, which is implicit in any 
approach using linear response theory, was not made for the derivation of the 
scattering law. For practical purposes, however, the energy transmitted from the 
neutron to the simulated system should be much smaller than the total energy of 
the system. 

It has been shown that the stationary phase approximation of the scattering law 
for self-scattering is strictly correct in the short time limit, which implies that the 
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78 G .R .  Kneller 

scattering law for an ideal Maxwell-Boltzmann gas is the same as found from a 
quantum mechanical treatment. The reason for the latter is simply that the reaction 
of an ideal gas to the impact of the neutron is determined completely by the mass 
of the scattering atom and its momentum before and after scattering, since no forces 
between the particles are present. Comparing the scattering laws of the ideal gas and 
the harmonic oscillator with their counterparts in the usual classical limit h -~  0 
shows that one obtains, for these examples, well-known semiclassical corrections. 

I wish to thank Professor Giovanni Ciccotti for many hours  of stimulating 
discussions and for the encouragement to finish this work. Useful hints by Professor 
Peter Schofield and Professor Manfred D. Zeidler are also gratefully acknowledged. 

Appendix A 
Properties of ~Cl(q, t) 

A.1. Taylor expansions of the dynamical variables 

To check the essential properties of pd(q, t), such as the detailed balance relation 
and the first sum rules, one makes use of the fact that the total phase function q~ 
introduced in section 3.3.1 (equation (48)) can be expressed as a functional of the 
forward and backward trajectory, which is itself entirely determined by the initial 
coordinates and momenta, the momentum transfer hq, and the time t. To show this 
we write it in the form 

r  o, Ro; hq, t) = A(R  t, R o, t) - Po'(R,  - Ro) + A(R'o, lit, - t )  

- ( P o  + h O , ) ' ( R ' o  - R,), (A 1) 

rearranging the term Po'(Ro - R~) on the right-hand side of equation (48) as 

P o ' ( R o  - R ' o )  = - P o ' ( R ,  - R o )  - P o ' ( R ' o  - R t ) .  (A2) 
Rt and R~ are given by equations (54) and (56). Introducing the functions F(P, R)  
and Fq(P, R), defined as 

P o ' P  F(P, R )  - L(P, R )  - - - ,  (A 3) 
M 

Fq(P, R )  - L(P, R )  - 
(Po + ho~).P 

M 
(A 4) 

with L(P, R)  = p 2 / 2 M  - V(R) being the Lagrangian in terms of the phase space 
variables P and R, q~ can be written as 

/o q~(t) = dr F(P(T), R(T)) + dr Fq(P'(r), R'(z)). (A 5) 

We use the shorthand notation ~b(t) - q~(Ro, Ro; hq, t) since only the time dependence 
is of interest for the moment. (O(r), R(T)) is the forward phase space trajectory starting 
at r = 0 with the initial conditions P(0) = Po and R(0) = R o. Correspondingly, (P'(r), 
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Neutron scattering from classical systems 79 

R'(T)) is the backward trajectory starting at ~ = t with the initial conditions 
P'(t) = P(t) + hOs and R'(t) = R(t). The abbreviations P(t) - ~ and R(t) =- R~ will 
be used below. F and Fq may now be expanded in a Taylor series around z = 0 and 
z = t, respectively. To emphasize the time dependence we write them as functions of 
T, suppressing again the variables Po, R0, and q: 

f (z)  = -- F(V)(0), (A 6) 
v=O V! 

Fq(T) = ~ (~ -- t)~ F~V)(t). (A 7) 
v=O V! 

F (~) is the vth time derivative of F. The total time derivative of an arbitrary function 
f(P(T), R(z), T) can be expressed in R and P only, 

d f  0 f  0 f  - + P . 3 f  + i ~ l . ~ ? f = - - + { n , f } ,  (A8) 
dt (?t c~P c~R ~?t 

eliminating/~ and/~' by virtue of the Hamiltonian equations of motion. The symbol 
{H, f }  is the Poisson bracket: 

OH Of 0H ~?f {H, f }  - . . . . . . .  (A 9) 
OP ~R OR OP 

In terms of Poisson brackets F and Fq read 

F(T) = ~ z" {H, F}~)(Po, Ro) (A 10) 
v=O Y! 

Fq(0 = ~. (T -- t ) ~  {H, Fq}(~)(~ + ha~, R,). (A 11) 
~=o v! 

{H, F} ~) is the v-fold Poisson bracket, 

{H,F} (*) - {H, {H . . . .  {H, F} . . .}}. (A 12) 

The notation {H, F}(~)(...) means that the v-fold Poisson bracket has to be evaluated 
at the arguments given in the parentheses, e.g., at P(0) = Po and R(0) = R o. Using 
equation (A5) the phase function q~ takes the form 

t v + l  
q~(t) = {H, F}(~)(P o,/7o) + v=o (v + i)! 
Pt and R t are themselves Taylor series 

o , =  v! v=O 

v=O 

The time dependence of V(Ro(t)) in 

V(~o(t)) 

(-t)~+X(v+ 1)~{H'F~ (A13) 
v=O 

in t: 

{H, P}(~'(Po, no), (A 14) 

t ~ v! {H, R}(~)(P o, Ro). (A 15) 

equation (62), explicitly written as 

= V((R'o(t) + Ro)/2), (A 16) 
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80 G.R. Kneller 

is determined by 

R'o(t) = ~ (-t)" {H, R}r + ha,, Rt). 
v=O 

(A 17) 

Using now the Poisson-bracket formalism one obtains explicitly 

R'o(t) = R o hO~ VVV(Ro)hO ~ t3 - - - - t  + + O(t4), 
M 6M 2 

(A 18) 

P'o(t) --- (Po + hO~) VVV(R~ t 2 + O(t3), (A 19) 
2M 

~(t) hOs'(hOs + 2Po) hO~'VV(Ro) t2 = t + O(t3), (A 20) 
2M 2M 

h202 hO~'VVV(R~ t 3 + O(t4), (A21) As( t )  = " - ~  t + 
2M 6M z 

V(R(t)) = V(Ro) hOs'VV(R~ t + O(t2). (A22) 
2M 

The notation 'VV(Ro)' indicates the gradient of the potential at R o and 'VVV(Ro)' 
the matrix formed by the.second derivatives ~2V at R o. The above Taylor expansions 
have been obtained with the computer algebra program MAPLE V [25]. 

A.2. Symmetries of  ffCl(q, t) 

A.2.1. Inversion symmetry 

In the following the assumption 

V ( - R )  = V(R) 

is made. We change now 

(A23) 

q --, - q (A 24) 

in ~d(q, t) as defined in equation (62) and perform at the same time a change in the 
integration variables on the right-hand side of equation (62) 

Po -* - Po, Ro ---} - Ro. (A 25) 

Using the symmetry properties of Poisson brackets and the Taylor series for ~b, ~ ,  
Rt, and R~ in terms of Poisson brackets, one finds that 

q~(-Po, -Ro;  -hq ,  t) = q~(Po, Ro; hq, t), (A26) 

,#o(-Po, -Ro ;  - h q ,  t) = -Ho(Po,  Ro; hq, t), (A 27) 

r( lqo(- Po, - Re; - hq, t)) = V(Ro(Po, No; hq, t)). (A 28) 

Noting that the kinetic energy weight exp [-fl(p2o/2M)] in equation (62) as well as 
the integrations over Po and R o remain invariant under the variable change, one 
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Neutron scattering from classical systems 81 

finds that 

ff~l(_ q, t) = F~'(q, t). (A 29) 

This must, of course, result since the potential is assumed to be symmetric in R. 
Relation (A 29) should therefore be considered as a formal check. 

A.2.2. S(q, co) is a real function 
As a second operation we change 

q ~ -q ,  t --* - t  (A30) 

and the integration variables as 

Po ~ -Po,  Ro ~ Ro. (A31) 

The symmetries of q~, Aq o, and V(/~o) are now 

q)(-Po, Ro; -hq ,  - t )  = -q~(Po, Ro; hq, t), (a 32) 

/~o(-Po, Ro; -hq ,  - t )  =/~o(Po, Ro; hq, t), (A 33) 

V(/~o(- Po, Ro; - hq, - t)) = V(Ro(Po, Ro; hq, t)). (A 34) 

Again, the kinetic energy weight exp [ - f l (P~/2M)]  in equation (62) as well as the 
integrations over Po and R o remain effectively unchanged and one finds that 

~c,(_q, _ t) = ffct*(q, t). (a 35) 

Together with equation (A 29) it follows that 

ff~Z*(q, t) =/~C'(q, - t) (a  36) 

ensuring that the dynamic structure factor is always real (see equation (11)). 

A.2.3. Detailed balance 
Since the classical limit of the scattering law considered in this paper is not a 

mathematical limit, the detailed balance relation F(q, t) = F(--q, - t  + if  h) cannot 
be expected to hold formally for pC~(q, t). One can, however, show that it holds in 
the classical limit defined by the relations (43), (58) and (59). We start from equation 
(17) and replace q by - q  and t by - t  + i~h. Cyclic permutation of operators under 
the trace yields 

F ( - q , - t + i f h ) = Z - l t r { e x p [ - f l F I  q ] e x p l - ; H _ q t l e x p I ~ k l t l } .  (A37) 

Performing now the stationary phase approximation and at the same time the 
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82 G.R. Kneller 

variable substitution Po ~ -Po  gives 

P ~ ' ( - q , - t + i f l h ) = Z Z ~ i f f d 3 N P o d 3 ~ R o  

x expI-fl((P~ 

x exp [ ;  q~(-Po, R o ; - h q , - t ) ]  

= z s 1 f f d 3 N p o d 3 U R o  

x exp [ - - /?(  (P~ 

+ V(Ro(-Po,  R o ; - h q , - - t ) ) ) l  

ex [ 1 
Writing ~c~(_ q, _ t + iflh) = Fc~(- q, - It - iph]) and using that _F~(- q, - t) = 
/7-ct*(q, t), one obtains from equation (62) 

~ct(-q,-t+i~h)=Z~lffd3~Pod3NRo 

i x exp[-hqa(Po,  Ro;hq, t - i B h )  1. (A39) 

Since, according to the classical limit of the Wigner phase space distribution function, 
the curvature of the potential with respect to motion in imaginary time can be 
neglected (see equation (61)), one can put 

V(Ro(Po, /70; hq, t - iflh)) ,,~ V(Ro(Po, go; hq, t)). (A 40) 

With equation (A 5) one has correspondingly 

~ t - i#h I t  0 ~b(t - ifih) = dr F(P(r), R(r)) + dr Fq(P'(r), R'(r)) 
d 0 - iflh 

~ t - iflh 
= r + dr{F(P(~), R(r)) - Fq(P'(r), R'(r))} 

*)t 
ClJ(t) -- iflh(F(P(t), R(t)) - Fq(P(t) + hO~, R(t))). (A 4l) 

Inspection of the term F(.. .)  - Fq(...) shows that one can write 

qb(t-  iflh)..~ qb(t)- iflh(( P~ + hO~)2 P~ ].  
k 

\ 2M 2MJ 

If this is now inserted into equation (A39) together with (A40), 

(A 42) 

one obtains 
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Neutron scattering from classical systems 83 

consistently the same expression as by performing the limit F ( - q , - t  + iflh) 
~ d ( _ q ,  _ t + iflh) (see equation (A 38)). Approximation (A42) could be obtained 
alternatively by replacing t ~ t - iflh only in the first term of the Taylor series for 
q~ (see equation (A20)), but not in the following terms which depend on the 
derivatives of the potential energy that are assumed to be zero with respect to motion 
in imaginary time. 

A.2.4. Sum rules 

The evaluation of the first moments of the dynamic structure factor provides 
another important test of the validity of the stationary phase approximation of F(q, t). 
The general definition of the nth moment reads 

(co") - de) co"S(q, co). (A 43) 
-oo 

More convenient for practical purposes is the relation 

0" t) ,= (co") = ( -  i)" &,  F(q, , (A 44) 
o 

which shows that the moments are essentially the coefficients of the Taylor series of 
F(q, t) with respect to t. Its short time behaviour is obviously described by the first 
few moments. 

As a trivial consequence of equations (A20) and (A22), which show that 
lim,~o  9 = 0 and limt~o V(/~o) = V(Ro), the zeroth moment is found to he correct: 

(1) = pC~(q, 0) = 1. (A 45) 

For n ~> 1 the nth moment for the quantum case is known to have the general form 
of a polynomial of order n in q2 [8], 

(con):= ~ Cn, zkq2k, (A46) 
k = l  

whereas it is a polynomial of order n/2 in the usual classical approximation, with all 
odd moments being zero. Inserting general formula (62) for ffC~(q, t) into the 
right-hand side of equation (A 44) allows us to calculate the moments of S~(q, co) by 
making use of Taylor expansions (A 13) and (A 17). With (IA 2)) = f l ( ( V ( 1 ) )  2 )  and 
H ( - P ,  - R )  = H(P, R) one finds explicitly the coefficients C,, 2k shown in the table 
for the first four moments. Comparison with the corresponding coefficients resulting 
from a full quantum calculation [8] shows that (i) the powers of 7 -" h/(2M) survive, 
and (ii) quantum thermal averages are replaced by classical thermal averages. 

The terms 6C4, 2 and ~C4,4 appearing in the last row of the table vanish in the 
classical limit where the thermal wavelength 2 r is much smaller than the typical 
interparticle distance a, 

(~C4, 2 oc ])(~T) .~ 0, (A47) 

6C4, 4 oc 72 ~ 0. (A48) 
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84 G.R. Kneller 

It should be mentioned that 6C4, 2 and gC4,4 are exactly zero for a harmonic 
potential. 

As a trivial consequence of ? not going to zero, as would have been the case in 
the formal limit h ~ 0, the recoil moment is found to be correct ( ' f  sum rule'): 

hq 2 
(co> - (A 49) 

2 M  

This is meaningful since the occurrence of h in the recoil moment is merely a 
consequence of using h as a unit for the momentum transfer. The second moment, 
not depending on the forces acting on the scattering atom either, is also identical to 
that obtained from a full quantum calculation. It can be checked easily that noneof  
the well known semiclassical correction methods give this general result for arbitrary 
systems I-4-6]. The interparticle forces enter at the third moment. As outlined in 
section 3.3.2, quantum thermal averages can be replaced by their classical counter- 
parts in the classical limit. Since, by definition, scattering from classical systems is 
considered, the third moment is correct. The same applies to the fourth moment since 
~C4, 2 and 6C4, 4 can be neglected, as outlined above. 

Taking the above considerations into account shows that, at least up to the fourth 
order, the classical moments--in the sense of the classical limit as discussed in this 
paper--are obtained by replacing quantum thermal averages by classical thermal 
averages, keeping, however, the powers of recoil moment, which would vanish in the 
usual classical limit. 

Comparing the moments Qo")', obtained from f f c~ (_q , - t  + iflh) by using 
general definition (A 44) and approximations (A 40) and (A 42), with the correspond- 
ing moments (~o"), obtained from ffCt(q,t), one finds that 

( ~ " > ' = < ~ " > , n = 1 , 2 , 3 ,  (A 50) 

Qo4), = <~4) + 26C4, 2q 2. (A51) 

The coefficient 6C4.2 can be neglected according to the above discussion (see equation 
(A 47)). This confirms that approximations (A 40) and (A 42), which were made to 
derive the detailed balance relation, are consistent with the stationary phase 
approximation of the intermediate scattering function. 

Appendix B 

Coherent scattering 

Formally, the stationary phase approximation of the scattering law for coherent 
scattering can be handled in exactly the same way as for incoherent scattering. 
However, in the deep inelastic regime, or equivalently for short times, it does not 
give meaningful results for the distinct part, i.e., from the contribution arising from 
cross-correlations. To see this, let us for the moment include distinct scattering in 
the quantum intermediate scattering function F(q, t), i.e., 

1 F(q, t) = ~ ~ F~(q, t) (B 1) 
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Neutron scattering from classical systems 85 

where F~r(q, t) is given by 

F~.~(q, t) = Z- l tr {exp [ -  flI4] exp [ -  iq" R~] exp [ ~ Htl exp [ iq" R~] exp [ - ~  Ht]}. 

(S 2) 

Following Wick as in section 3.1, F,7(q, t) can be rewritten as 

(B 3) 

Here /4q~ is the Hamiltonian where the momentum of atom 7 has been shifted by 
hq. Taking now the classical limit according to expressions (43), (58) and (59) 
yields 

f~(q,t)=Z~-i 1 daNpod3NRoex p --fl 2M + V(Ro(Po, Ro;hq~,t)) 

[/ l x exp[i(Q~-Q~).R'o(Po, Ro;hq, t)]ex p h~(Po, Ro;hq~,t) , (B4) 

which is the equivalent to expression (62). Q~ and Q~ are defined according to 
equation (25) with s replaced by c~ and 7, respectively. The notation hq7 for the 
momentum transfer expresses that atom ? is the scattering atom. 

In the case of deep inelastic scattering the impulse approximation can be invoked, 
i.e., one can write 

exp [~/4q, t]  exp [ - ~ / 4 t ]  "~ exp [~ (/~q7 - -  /4)t] = exp [iq'(hq+2P~)t 1 . 2 M  (B5) 

Using the Wigner phase space distribution function, as defined in equation (38), this 
can be cast into the form 

Fct?(q't)~expli(~7[91q2tlz-lff 
t . (B 6) 

M 

Note that the strongly time dependent recoil factor in front of the integral vanishes 
for distinct scattering. The corresponding expression resulting from the stationary 
phase approximation reads 

F~(q, t) ,,~ exp i(26~7 - 1) tJZc~ d3N Po d3N Rof~l(Po, Ro) 

Q,'Po ] • exp [i(Q~ - O~).Ro] exp i ~ t J .  (B7) 

For the self-terms with ? = c~ this expression is correct. It is just the high temperature 
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86 G.R.  Kneller 

limit of F~,(q, t), and gives the scattering law of an ideal Maxwell-Boltzmann gas 
(see equation (75)). For the distinct terms expression (B 7) does not give the correct 
scattering law. The reason is that deep inelastic distinct scattering looks at the same 
time at the momenta and the positions of the scattering particles, as is clear from 
relations (B 6), and therefore the uncertainty relation between position and momen- 
tum plays a vital role in this type of scattering. This effect, of course, cannot 
be accounted for if the particles are described in terms of classical phase space 
trajectories [9]. 

One has, however, to keep in mind that distinct scattering contributes only little 
in the deep inelastic regime and the above considerations are therefore not of practical 
interest. Performing the same steps as in appendix section A 2 one can show easily 
that the scattering law for distinct scattering in the stationary phase approximation 
is always real, as for self-scattering, and obeys also the relation of detailed balance 
if the interference term exp [i(Or - O,).FI'o(P o, 6'o; hqr, t)] in equation (B 4) can be 
replaced by exp [i(O~ - O~)'Ro], i.e., if the spatial information is not influenced by 
the impact of the scattered neutron. This is true not only in the trivial case of very 
small momentum transfers, but also for large momentum transfers if the time t is 
sufficiently long and the perturbation caused by the scattering process has dissipated. 
Then the return positions/1~ are representative equilibrium configurations covering 
exactly this part of the configuration space which contributes significantly to the 
thermal average and may therefore be replaced with ,t/o which covers the whole 
configuration space. 
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