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A spectroscopic interpretation of incoherent neutron scattering
experiments is presented which is based on Franck–Condon-type
probabilities for scattering-induced transitions between quantum
states of the target. The resulting expressions for the scattering
functions enable an energy landscape-oriented analysis of neu-
tron scattering spectra as well as a physical interpretation of Van
Hove’s space–time correlation functions in the quantum regime
that accounts for the scattering kinematics. They suggest more-
over a combined analysis of quasi- and inelastic scattering that
becomes inseparable for complex systems with slow power-law
relaxation.

neutron scattering theory | quasielastic neutron scattering | energy
landscapes | complex systems | Van Hove theory

Incoherent thermal neutron scattering is an established tech-
nique for studying the average single-atom dynamics in molec-

ular systems. As far as the stochastic, diffusive dynamics is
concerned, one usually speaks of quasielastic neutron scattering
(QENS) (1–3). The accessible time scales for QENS experiments
are roughly between 0.001 and 100 ns and the accessible length
scales between 1 and 100 Å. QENS is in particular increasingly
used to study the internal dynamics of complex molecular sys-
tems, such as proteins, which is characterized by self-similarity.
Such a behavior can be qualitatively explained by viewing the
dynamics of the target system as a thermally activated hopping
process between the many energetically almost equivalent min-
ima (“conformational substates”) of a fractal free energy land-
scape (FEL). This idea has been introduced by Frauenfelder (4)
in the context of protein dynamics, but the concept applies to any
complex physical system with a broad spectrum of (free) energy
levels. It is, however, not a trivial task to integrate the FEL
picture into a quantitative analysis of neutron scattering exper-
iments. In a series of recent papers, Frauenfelder, Fenimore,
and Young proposed a corresponding approach (“energy land-
scape model”), which is inspired by Mößbauer spectroscopy
(5–7). The widely used analysis of QENS in terms of “spatial
motion models” (3, 8, 9), which is based on Van Hove’s the-
ory of neutron scattering (10), is claimed to give the wrong
picture of QENS. This has led to controversial discussions (11,
12), and here only a few remarks are added that are meant to
motivate the approach to modeling QENS and incoherent neu-
tron scattering in general that will be presented in this paper. In
the energy landscape model by Frauenfelder and coworkers, the
effects of momentum and energy transfer are essentially treated
in the framework of classical mechanics, using physically plau-
sible arguments for proteins but not a systematic approach on
the basis of quantum mechanical scattering theory. The criticized
classical QENS models are identified with the underlying neu-
tron scattering theory developed by Van Hove (10), overlooking,
however, that nothing is wrong with his space–time interpre-
tation of neutron scattering experiments, as long as one does
not consider the classical limit “~→ 0” of the scattering func-
tions. In this limit, which is indeed used in most QENS models,
not only are quantum properties of the scattering system dis-
regarded but so is the scattering kinematics—that is, the local
perturbation of the sample by the incident neutrons (13, 14).
The corresponding classical scattering functions do not fulfill the
detailed balance symmetry relation of quantum time correlation

functions, which is reflected in QENS spectra from molecular
systems if the energy transfer becomes a noticeable fraction of
the thermal energy, kBT . In Frauenfelder’s QENS model, the
perturbation of the sample by the scattered neutrons is repre-
sented in the form of a transient local pressure the incident
neutron exerts on the environment of the scattering atom, but
the scattering kinematics is not completely accounted for, since
momentum and energy change of the scattered neutrons are
not connected and energy changes just are Doppler-type passive
recordings of the scattering system’s “hops” on the FEL.

The idea of this paper is to develop a spectroscopic analy-
sis of incoherent neutron scattering experiments on the basis of
quantum mechanical scattering theory, which fully integrates the
scattering kinematics and facilitates the interpretation of neu-
tron scattering spectra from complex systems within the energy
landscape picture. The paper attempts moreover to give a new
physical interpretation of Van Hove’s space–time correlation
functions in the quantum case and to establish a physically
intuitive relation to their classical counterparts.

Wick’s Interpretation of Plane Wave Neutron Scattering
In 1954, when Van Hove (10) presented his famous paper on
neutron scattering theory, Gian-Carlo Wick (15) presented a
completely different but equivalent form, which is the starting
point for the description of neutron scattering experiments pre-
sented in this paper. Similar to Van Hove, Wick starts from
standard scattering theory, where neutron scattering experi-
ments are described within the Born approximation, using the
Fermi pseudopotential to model the short-ranged interactions
between the neutron and the atomic nuclei in the sample under
consideration (2). The incident neutrons are described by plane
waves, with a well-defined initial momentum, p0 = ~k0, and leave
the sample again with a well-defined momentum p = ~k. In this
case, the differential scattering cross-section per atom is given by
the relation
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d2σ

dΩdω
=
|k|
|k0|
S(q,ω), [1]

where S(q,ω) is the dynamic structure factor that carries the
information about the microscopic structure and dynamics of the
system under consideration. The variables q = (p0− p)/~ and
ω= (E0−E)/~ denote, respectively, the momentum and energy
transfer from the neutron to the sample in units of ~. Consid-
ering samples like polymers and biopolymers, which contain a
large amount of predominantly incoherently scattering hydrogen
atoms, it follows that S(q,ω)≈ |bH ,inc |2Ss(q,ω), where bH ,inc

is the incoherent scattering length of hydrogen and Ss(q,ω)
describes the particle-averaged dynamics of the hydrogen atoms
in the sample:

Ss(q,ω) =
1

2π

∫ +∞

−∞
dt e−iωtFs(q, t), [2]

Fs(q, t) =
1

N

∑
α∈H

〈
e−iq·̂rα(0)e iq·̂rα(t)

〉
. [3]

Fs(q, t) is referred to as intermediate scattering function and
r̂α is the position operator of hydrogen atom α in the sample.
The symbol 〈. . .〉 denotes here a quantum ensemble average, and
the intermediate scattering function is a quantum time correla-
tion function. The index “s” indicates that self-correlations in
dynamics of the hydrogen atoms are probed.

Wick uses now the fact that position operators are generators
for translations in momentum space and transforms expression
(3) into

Fs(q, t) =
1

N

∑
α∈H

〈
e itĤα(q)/~e−itĤ/~

〉
, [4]

where Ĥ is the Hamilton operator of the sample and Ĥα(q) is
obtained by shifting the momentum of atom α by ~q:

Ĥ =

N∑
µ=1

p̂2
µ

2Mµ
+V (r̂1, . . . , r̂N ), [5]

Ĥα(q) =
N∑
µ=1

(p̂µ + δαµ~q)2

2Mµ
+V (r̂1, . . . , r̂N ). [6]

Here Mµ is the mass of hydrogen atom µ and p̂µ is its momentum
operator. The Hamilton operator Ĥα(q) carries thus the “kick,”
which atom α receives from the scattered neutron.

A Franck–Condon Picture of Neutron Scattering
Discrete Energy Spectra. We consider first the situation that the
eigenvalue spectrum of the Hamiltonian describing the dynamics
of the scattering system is discrete, such that Ĥ |φn

〉
=En |φn

〉
.

The eigenstates |φn

〉
of Ĥ are supposed to form an orthonormal

basis in a corresponding Hilbert space. For simplicity, we make
the second assumption that all hydrogen atoms are physically
equivalent, such that

Fs(q, t) =
〈
e itĤ ′(q)/~e−itĤ/~

〉
where Ĥ ′≡ Ĥ1 [7]

and atom 1 is the arbitrarily chosen scattering atom. The eigen-
states of the perturbed Hamiltonian, Ĥ ′(q), here denoted as
|φ′n(q)

〉
, constitute another orthonormal basis, and it follows

from the completeness of the two bases that the intermediate
scattering function can be formally expressed as

Fs(q, t) =
1

Z

∑
m,n

e−βEm e i(E ′n−Em )/~ |am→n(q)|2, [8]

where am→n(q) =
〈
φ′n(q)|φm

〉
are the projections of the

unperturbed eigenstates onto the perturbed ones. Here, Z =

∑
m e−βEm is the partition function of the scattering system,

where β= 1/(kBT ) with kB being the Boltzmann constant and
T the temperature in Kelvin.

The transition amplitudes am→n(q) take a particularly simple
form if one works in momentum space representation, where
momentum operators are replaced by normal vectors, p̂α→ pα,
and position operators by differential operators, r̂α→ i~∂/∂pα.
One sees immediately that the eigenfunctions corresponding
to the shifted Hamiltonian have the same functional form as
those of the original one. Defining φ̃m(P)≡

〈
P|φm

〉
to be the

eigenfunctions of the unperturbed Hamiltonian in momentum
space, we have

Ĥ φ̃n(P) =En φ̃n(P), [9]

Ĥ ′(q)φ̃n(P + ~Q) =En φ̃n(P + ~Q). [10]

We note that

φ̃m(P) =
1

(2π~)3N/2

∫
d3NR e−iR·P/~φm(R),

φm(R) =
1

(2π~)3N/2

∫
d3NP e iR·P/~φ̃m(P),

where φm(R) =
〈
R|φm

〉
is the wave function in position space.

Here and in the following, the vectors R and P comprise the
3N components of all N atomic positions and momenta, respec-
tively, and the components of Q are defined such that the
operation P + ~Q shifts only the momentum of the scattering
atom—that is, Q1 = qx , Q2 = qy , Q3 = qz , and Qj = 0 for 3<

j ≤ 3N . It follows then from Eq. 10 that φ̃′n(P; q) = φ̃n(P + ~Q)
and that E ′n =En , such that the coefficient am→n(q) can be
expressed as overlap integrals involving the shifted and unshifted
energy eigenfunctions of the unperturbed Hamiltonian in
momentum space,

am→n(q) =

∫
d3Np φ̃∗n(P + ~Q)φ̃m(P). [11]

The squared transition amplitudes,

wm→n(q)≡ |am→n(q)|2 , [12]

fulfill the relations∑
m

wm→n(q) =
∑
n

wm→n(q) = 1, [13]

wm→n(0) = δmn , [14]

and can be interpreted as probabilities for the neutron scattering-
induced transitions |φm

〉
→|φn

〉
for a given momentum trans-

fer ~q. Using the notation Eq. 12, the intermediate scattering
function and the corresponding dynamic structure factor take
the form

Fs(q, t) =
1

Z

∑
m,n

e−βEm e it(En−Em )/~wm→n(q), [15]

Ss(q,ω) =
1

Z

∑
m,n

e−βEmwm→n(q)δ (ω− [En −Em ]/~). [16]

The symmetry property

wm→n(q) =wn→m(−q) [17]

leads to the detailed balance relations
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Fs(q, t) =Fs(−q,−t + iβ~), [18]

Ss(q,ω) = eβ~ωSs(−q,−ω), [19]

which express that energy loss of the scattered neutrons is more
likely than energy gain (2).

The Dirac distributions in the double sum (Eq. 16) express
that the total energy for the scattering system and the neutron
is conserved, and Fig. 1 shows a sketch of the corresponding
line spectrum. Each Dirac distribution is here slightly broadened
to make it visible, and the broadening may be interpreted as
the result of finite instrumental resolution. Splitting the double
sum in Eq. 16 into terms with m 6=n and m =n , one obtains
a decomposition into, respectively, the inelastic and the elastic
component of the spectrum. The latter is usually written as

S (el)
s (q,ω) =EISF (q)δ(ω), [20]

where

EISF (q) =
1

Z

∑
m

e−βEmwm→m(q) [21]

is the Elastic Incoherent Structure Factor (EISF). It is the
thermally weighted probability for the scattering system to stay
in its initial energy level after the scattering of a neutron with
momentum transfer ~q.

The construction of the transition probabilities reminds the
Franck–Condon theory of vibronic transitions in molecules (16,
17). In the latter case, one considers, however, overlap integrals
of energy eigenfunctions in position space that correspond,
respectively, to the molecular vibrational spectra before and
after the absorption or emission of a photon. The absorption/
emission of the photon changes the potential energy of the
molecule, and this change entails a shift of its minimum in space
(i.e., a shift of the atomic equilibrium configuration). In the
case of neutron scattering, it is instead the kinetic energy of the
atomic nuclei in the sample that is shifted due to the momentum
transfer ~q of the neutron (see Fig. 2).

Continuous Energy Spectra. If the Hamiltonian of the scattering
system has a continuous energy spectrum, the corresponding
eigenvalue problem has the form

Ĥ |φ(X )
〉

=E(X )|φ(X )
〉
, [22]

where the energy eigenstates, |φ(X )
〉
, are described by a set of

real-valued variables, X ≡{x1, . . . , xf }, and E(X ) is the energy

Fig. 1. Sketch of a Franck–Condon-type line spectrum for neutron scat-
tering. The slight asymmetry is due to the detailed balance relation
(Eq. 19).

Fig. 2. Neutron scattering in the Franck–Condon representation. The
model system is here the harmonic oscillator, and one considers the 0 → 3
excitation. T and T′ are the kinetic energies, respectively, before and after
the collision with the neutron and T′(p) = T(p + ~q).

in these variables. We further assume that the eigenstates are
normalized, such that

〈
φ(X ′)|φ(X )

〉
=

{
1 ifX =X ′,
0 otherwise. [23]

The quantum states are counted via an appropriate density of
states, ρ(X ), such that m→ dm = ρ(X )d fX and so forth, and
it is convenient to work with probability densities instead of
probabilities. The transition probability density is in particular
defined as

W (X ′|X ; q) = ρ(X ′)|a(X ′|X ; q)|2, [24]

with

a(X ′|X ; q) =

∫
d3Np φ̃∗(P + ~Q;X ′)φ̃(P;X ) [25]

and φ̃(P;X )≡
〈
P|φ(X )

〉
, and it fulfills the condition

W (X ′|X , 0) = δ(X −X ′). [26]

Similarly, we define the equilibrium probability density

Weq(X ) = ρ(X )
e−βE(X )

Z
, [27]

where Z =
∫
d fX ρ(X ) exp(−βE(X )). With these prerequi-

sites, the intermediate scattering function takes the form

Fs(q, t) =

∫ ∫
d fXd fX ′Weq(X )

×e i(E(X ′)−E(X ))t/~W (X ′|X ; q), [28]

and the resulting dynamic structure factor reads

Ss(q,ω) =

∫ ∫
d fXd fX ′Weq(X )W (X ′|X ; q)

×δ(ω− [E(X ′)−E(X )]/~), [29]

in analogy with Eq. 16.

9452 | www.pnas.org/cgi/doi/10.1073/pnas.1718720115 Kneller
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Illustrations for Two Model Systems
Quantum Oscillator. The harmonic oscillator is a simple quantum
system with a discrete energy spectrum for which an analytical
solution for the Franck–Condon-type transition probabilities and
the resulting scattering functions can be found. The potential
energy function is here a quadratic function of the displacement
coordinate, x ,

V (x ) =
1

2
MΩ2x2,

and the corresponding eigenvalue spectrum of the Hamiltonian
is equidistant, En = (n + 1/2)~Ω. Introducing the dimensionless
momentum transfer

y(q) =

√
2~
MΩ

q , [30]

the transition probabilities can be computed analytically from the
well-known oscillator eigenfunctions, which have the same form
in position and momentum space, and the result is found to be
(see SI Appendix)

wm→n(q) = e−
y2

4 (−1)m+nL(n−m)
m

(
y2

4

)
L(m−n)
n

(
y2

4

)
, [31]

where L
(α)
m (.) denote the generalized Laguerre polynomials (18).

A few examples are given in Fig. 3. Due to the symmetry
of the potential, they depend only on the absolute value of
the momentum transfer and not on its sign. The intermediate
scattering function can be written in the equivalent forms (see
SI Appendix)

Fs(q , t) =
1

Z

∑
m,n

e−β~Ω(m+1/2)e i(n−m)Ωtwm→n(y(q)), [32]

= e i
y(q)2

4 (sin(Ωt)+i(1−cos(Ωt)) coth( βΩ~
2 )), [33]

where the partition function is given by Z = e
1
2
β~Ω/(eβ~Ω− 1),

and Eq. 33 is equivalent with the formula stated in the classical
textbook by Lovesey (2). The corresponding expressions for the
dynamic structure factor are

Fig. 3. Probabilities wm→n(y) for the transition m → n of the harmonic
oscillator. The variable y is the dimensionless momentum transfer defined
by Eq. 30.

Ss(q ,ω) =
1

Z

∑
m,n

e−β~Ω(m+1/2)δ(ω− [n −m]Ω)wm→n(q),

[34]

= e−
y(q)2

4
coth( β~Ω

2 )+ β~ω
2

+∞∑
n=−∞

In(a(q))δ(ω−nΩ),

[35]

with In(.) being the Bessel functions and a(q) = y(q)2/
(4sinh(β~Ω/2)).

Ideal Gas. The ideal gas is the simplest model for a system with
a continuous distribution of quantum states. Between collisions,
individual molecules move freely, without the influence of forces.
The quantum state of a freely moving particle is character-
ized by the three components of its sharply defined momen-
tum, p0—that is, X = {p0,x , p0,y , p0,z}. The corresponding wave
functions in position space are 3D-plane waves,

〈
r|φ(p0)

〉
∝

exp(ip0 · r/~), and lead to a momentum representation of the
form

〈
p|φ(p0)

〉
= δ(p− p0). Since these wave functions are not

square-normalizable, the state of the scattering atom is described
by a square-normalized Gaussian wave packet, which is sharply
peaked around p = p0,

φ̃(p; p0) =
1

(2πε2)3/4
e
− (p−p0)2

4ε2 , [36]

where φ̃(p; p0)≡
〈
p|φ(p0)

〉
. Setting ρ(p1) = 1/(2

√
πε)3 for the

density of final states labeled by p1, the resulting transition
probability has the form (see SI Appendix)

W (p1|p0; q) =
e
− (p0−p1+~q)2

4ε2

(2
√
πε)3

ε→0
= δ(p0 + ~q− p1) [37]

and expresses strict momentum conservation in the limit ε→ 0.
Inserting the right-hand side together with the Maxwell equi-
librium distribution, Weq(p0) = (2πM /β)−3/2 exp(−βp2

0/2M ),
into the general Eq. 28 for the intermediate scattering function,
one is left with a simple volume integral over p0, which can be
easily computed and yields the well-known form for the interme-
diate scattering function of an ideal gas consisting of molecules
with mass M (2),

Fs(q, t) = e
− q2t(t−iβ~)

2βM , [38]

where q ≡ |q| is the modulus of the momentum transfer. The
corresponding dynamic structure factor also has a Gaussian
form:

Ss(q,ω) =

(
2πq2

βM

)−1/2

e
−
β(~q2−2Mω)2

8Mq2 . [39]

Reinterpreting the Van Hove Function
Van Hove introduced the spatial Fourier transform of the
intermediate (self)-scattering function,

Gs(r, t) =
1

(2π)3

∫
d3q e−iq·rFs(q, t),

=

∫
d3r ′

〈
δ(r− r′+ r̂1(0))δ(r′− r̂1(t))

〉
, [40]

to relate the (r, t)-space of spatial motions to the (q,ω)-space of
neutron scattering spectra:

Ss(q,ω) =
1

2π

∫ +∞

−∞
dt

∫
d3r e i(q·r−ωt)Gs(r, t). [41]
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The Van Hove function takes the convenient form of a probabil-
ity density for displacements r within time t if one considers the
classical approximation

Gs(r, t)≈〈δ(r− [r1(t)− r1(0)])〉cl, [42]

which is the standard assumption in modeling QENS spec-
tra. The index “cl” indicates a classical phase space ensemble
average.

The spectroscopic picture of neutron scattering in this paper
gives more insight into the physical meaning of the quantum
Van Hove correlation function. If Eq. 15 for the intermediate
scattering function is inserted into the definition (Eq. 40) of the
Van Hove (self)-correlation function, one obtains

Gs(r, t) =
1

Z

∑
m,n

e−βEm e it(En−Em )/~gm→n(r), [43]

where the functions gm→n(r) are the Fourier transforms of the
transition probabilities,

gm→n(r) =
1

(2π)3

∫
d3q e−iq·rwm→n(q). [44]

For simplicity, we consider here only discrete energy spectra.
Since wm→n(q) = |am→n(q)|2, it follows from the correlation
theorem of the Fourier transform that

gm→n(r) =

∫
d3r ′Am→n(r + r′)A∗m→n(r′), [45]

with Am→n(r) =
1

(2π)3

∫
d3q e−iq·ram→n(q). [46]

Noting that the transition amplitudes can be written as
am→n(q) =

∫
d3NR e iQ·Rφ∗n(R)φm(R), the functions Am→n(r)

can be expressed as partial overlap integrals

Am→n(r) =∫
d3r2 . . . d

3rN φ
∗
n(r, r2, . . . , rN )φm(r, r2, . . . , rN ) [47]

of the energy eigenfunctions φn(R) in position space. For m =n ,
we have in particular

Am→m(r) =

∫
d3r2 . . . d

3rN |φm(r, r2, . . . , rN )|2 . [48]

This is the marginal probability density to find the scattering
atom at position r for the case that the system is before and after
the scattering process in the same energy eigenstate |φm

〉
. For

m 6=n , the Fourier transformed transition amplitudes An→m(r)
cannot be considered as probability densities, since they are gen-
erally complex. They verify the symmetry relation A∗m→n(r) =
An→m(r), such that g∗m→n(r) = gn→m(r).

The time variable can be straightforwardly integrated into the
formalism by introducing the time-dependent wave functions

ψm(R, t) =φm(R)e−iEm t/~ [49]

and the corresponding time-dependent transition overlap
integrals

Tm→n(r, t) =

∫
d3r2 . . . d

3rN ψ
∗
n(r, r2, . . . , rN , t)

×ψm(r, r2, . . . , rN , t). [50]

With these definitions, the Van Hove self-function is given by

Gs(r, t) =
1

Z

∑
m,n

e−βEmGm→n(r, t), [51]

and each coefficient

Gm→n(r, t) =

∫
d3r Tm→n(r + r′, t)T ∗m→n(r′, 0) [52]

corresponds to the neutron scattering-induced energy transition
m→n .

In this context, it is instructive to come back to the classical
limit of the Van Hove correlation function, which is defined by
Eq. 42. In this case,

G
(cl)

Γ(0)→Γ(t)(r, t) = δ(r− [r1(t)− r1(0)]) [53]

corresponds to the coefficient Gm→n(r, t), where Γ(0) is a point
in phase space describing the state of the system at time t = 0
and Γ(t) is the point in phase space to which the system evolves
in time t . This final point is exactly determined by the laws
of classical Hamiltonian mechanics, and one can formally write
r(t)≡ r(Γ(t)) and r(0)≡ r(Γ(0)). Therefore, there is no integral
over the final points in phase space, which would correspond
to the sum over the energy levels n in the quantum case, and
only the thermal average over the initial points in phase space is
performed to compute G(cl)(r, t). The fact that the phase space
point Γ(t) is entirely determined by Γ(0) and t is equivalent to
saying that the trajectory of the scattering atom is not deviated
by the impact of the neutron. In the classical Van Hove theory,
quantum transition probabilities are thus replaced by classical
“transition certainties,” and the masses of the scattering atoms
are considered infinite as far as the scattering kinematics is
concerned. Such a description is, for example, appropriate for
neutron scattering from large molecules performing rigid body
motions.

QENS from Complex Systems
We consider now QENS from complex systems, where the
distribution of energy levels is quasi-continuous in the range
of accessible energy transfers. In the case of macromolecules
like proteins, we are looking in the first place at their internal
dynamics, which is characterized by a vast spectrum of time scales
and corresponding motion types. The physical model for neutron
scattering is here a scattering atom that receives a momentum
transfer ~q by the incoming neutrons and that transmits this kick
to a macromolecular matrix with quantum mechanical degrees
of freedom. Choosing the energy to specify the quantum state
of the scattering system, the dynamic structure factor takes a
particularly simple form. Setting X ≡E in Eq. 29, the integral
over X ′≡E ′ can be performed to yield

Ss(q,ω) = ~
∫

dE Weq(E)W (E + ~ω|E ; q). [54]

The incoherent dynamic structure factor thus becomes a ther-
mally averaged probability density for energy transitions E→
E + ~ω, which are induced by a momentum transfer q.

The direct calculation of Ss(q,ω) via Eq. 54 will in general
not be possible, but the formula suggests that there is no a priori

Fig. 4. (Left) Dynamic structure factor corresponding to the intermediate
scattering function (Eq. 55), with R(t) given by Eq. 57. Here τ = 1, EISF = 0.3,
and ε= 0.01. (Right) The same figure for ε= 0.001.

9454 | www.pnas.org/cgi/doi/10.1073/pnas.1718720115 Kneller

http://www.pnas.org/cgi/doi/10.1073/pnas.1718720115


BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

distinction between elastic (ω= 0) and quasielastic scattering (ω
in the vicinity of 0). This has also been suggested in ref. 6, and
in the following, it will be shown that elastic and quasielastic
scattering are practically not separable for complex systems with
slow power-law relaxation. For this purpose, we consider an
intermediate scattering function of the form (the q-dependence
is dropped)

Fs(t) =EISF + (1−EISF )R(t), [55]

where 0<EISF < 1 due to elastic scattering and R(t) is a
relaxation function fulfilling R(0) = 1 and limt→∞ R(t) = 0. The
dynamic structure factor in the vicinity of ω= 0 can then be
obtained on the basis of purely mathematical arguments and is
directly determined by the asymptotic form of the intermediate
scattering function for long times (see SI Appendix),

Ss(ω)
ω→0∼ lim

ε→0+

1

π
<
{
Fs(1/(iω+ ε))

iω+ ε

}
. [56]

The parameter ε> 0 can be thought of as instrumental resolution.
It follows from Eq. 56 that the ratio of quasielastic and elastic
scattering at ω= 0 is increasingly smaller for exponential than for
power law relaxation, as ε tends to 0. This indicates that these
components can be well separated in the first case and not well
in the second. To investigate the separability of the elastic and
quasielastic components of a neutron scattering spectrum for a
concrete example, we consider a relaxation function of the form

R(t) =Eβ(−(|t |/τ)β), 0<β≤ 1, [57]

where Eβ(.) is the Mittag–Leffler function (18). With this defini-
tion, R(t) smoothly interpolates between exponential relaxation
(β= 1) and an asymptotic power-law decay if |t |� τ for 0<β <

1, where R(t)∼ (t/τ)−β/Γ(1−β) for t� τ . Detailed balance
effects are here neglected—that is, β~� τ . Fig. 4, Left shows a
plot of the dynamic structure factors for β= 1 (blue line) and
β= 0.7 (orange line), where in both cases EISF = 0.3, τ = 1, and
ε= 0.01. For β= 1—that is, for exponential relaxation—one rec-
ognizes that the elastic peak is well separated from the broader
quasielastic (Lorentzian) profile and that this distinction disap-
pears for β= 0.7, where the decay is nonexponential. Fig. 4,
Right displays the corresponding plot with a resolution ε= 0.001
and shows that the nonseparability of elastic and quasielas-
tic scattering persists with higher resolution for β= 0.7, while
these components are even more clearly separated for β= 1.
The nonseparability for β= 0.7 follows from the self-similarity
of the dynamic structure factor for ωτ� 1, which is, in turn,
a consequence of the power law decay of R(t) for t� τ . This
illustration shows that elastic and quasielastic scattering from

complex systems with slow power law relaxation cannot be sep-
arated in real-life experiments. Therefore, the EISF should here
be part of a global model for both elastic and quasielastic scatter-
ing, either for a resolution-broadened dynamic structure factor
or for the corresponding resolution-deconvolved intermediate
scattering function.

A point of practical importance in this context is the treat-
ment of the ω-asymmetry in QENS spectra, which is due to the
detailed balance relation of quantum time correlation functions
(this effect has not been considered in the above discussion).
The results of a recent paper on a “model-free” description of
neutron scattering from diffusing quantum particles (19) sug-
gests that Schofield’s semiclassical correction (20) Ss(q ,ω)∝
exp(β~ω/2)S

(cl)
s (q ,ω) or, equivalently, Fs(q , t)∝F

(cl)
s (q , t −

iβ~/2) may be applied for modeling QENS experiments, using as
input only the asymptotic form of the classical intermediate scat-
tering function. The scattering functions must here be normal-
ized to ensure the normalization condition

∫ +∞
−∞ dω Ss(q ,ω) =

1 =Fs(q , 0), which is imposed by the probabilistic interpretation
(Eq. 54) of the dynamic structure factor.

Conclusions
In this paper, an interpretation of incoherent neutron scatter-
ing spectra has been presented in which probabilities for neutron
scattering-induced transitions between different quantum states
of the sample play a central role. The transition probabilities are
expressed as squared Franck–Condon-type overlap integrals of
corresponding eigenfunctions in momentum space, whose argu-
ments are shifted by the momentum transfer from the neutron
to the sample. A particular simple form of the dynamic struc-
ture factor is obtained if the quantum states are described by
a (quasi)continuous set of energy eigenvalues. In this case, the
dynamic structure factor is simply the thermally averaged tran-
sition probability density for energy transitions E→E + ~ω and
a momentum transfer ~q. Corresponding consequences for the
interpretation of QENS data have been discussed, in particu-
lar the smooth transition from elastic to quasielastic scattering
for complex systems where the intermediate scattering function
slowly decays with a power law. The elastic and quasielastic
component of the scattering spectrum appear here as fused.

The theory connects Frauenfelder’s idea of an energy
landscape-based interpretation of neutron scattering experi-
ments, in particular the decomposition of QENS spectra into
“Mößbauer lines,” with standard scattering theory. It provides
moreover a physical interpretation for the complex quantum
version of the Van Hove correlation functions and shows in
particular that there exists a physical meaningful and intuitively
understandable relation between the quantum and the classical
version of the Van Hove functions.
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