
J. Chem. Phys. 150, 064911 (2019); https://doi.org/10.1063/1.5054887 150, 064911

© 2019 Author(s).

Memory effects in a random walk
description of protein structure ensembles
Cite as: J. Chem. Phys. 150, 064911 (2019); https://doi.org/10.1063/1.5054887
Submitted: 04 September 2018 . Accepted: 08 January 2019 . Published Online: 13 February 2019

Gerald R. Kneller , and Konrad Hinsen 

ARTICLES YOU MAY BE INTERESTED IN

Electronic structure and VUV photoabsorption measurements of thiophene
The Journal of Chemical Physics 150, 064303 (2019); https://doi.org/10.1063/1.5089505

How does temperature modulate the structural properties of aggregated melamine in
aqueous solution—An answer from classical molecular dynamics simulation
The Journal of Chemical Physics 150, 064501 (2019); https://doi.org/10.1063/1.5066388

Advances in the experimental exploration of water’s phase diagram
The Journal of Chemical Physics 150, 060901 (2019); https://doi.org/10.1063/1.5085163

https://doi.org/10.1063/1.5054887
https://doi.org/10.1063/1.5054887
https://aip.scitation.org/author/Kneller%2C+Gerald+R
http://orcid.org/0000-0002-3374-3797
https://aip.scitation.org/author/Hinsen%2C+Konrad
http://orcid.org/0000-0003-0330-9428
https://doi.org/10.1063/1.5054887
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5054887
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5054887&domain=aip.scitation.org&date_stamp=2019-02-13
https://aip.scitation.org/doi/10.1063/1.5089505
https://doi.org/10.1063/1.5089505
https://aip.scitation.org/doi/10.1063/1.5066388
https://aip.scitation.org/doi/10.1063/1.5066388
https://doi.org/10.1063/1.5066388
https://aip.scitation.org/doi/10.1063/1.5085163
https://doi.org/10.1063/1.5085163


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Memory effects in a random walk description
of protein structure ensembles

Cite as: J. Chem. Phys. 150, 064911 (2019); doi: 10.1063/1.5054887
Submitted: 4 September 2018 • Accepted: 8 January 2019 •
Published Online: 13 February 2019

Gerald R. Kneller1,2,3 and Konrad Hinsen1,3

AFFILIATIONS
1Centre de Biophysique Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans, France
2Université d’Orléans, Chateau de la Source-Av. du Parc Floral, 45067 Orléans, France
3Synchrotron Soleil, L’Orme des Merisiers, 91192 Gif-sur-Yvette, France

ABSTRACT
In this paper, we show that ensembles of well-structured and unstructured proteins can be distinguished by borrowing con-
cepts from non-equilibrium statistical mechanics. For this purpose, we represent proteins by two different polymer models and
interpret the resulting polymer configurations as random walks of a diffusing particle in space. The first model is the trace of the
Cα-atoms along the protein main chain, and the second is their projections onto the protein axis. The resulting trajectories are
subsequently analyzed using the theory of the generalized Langevin equation. Velocities are replaced by displacements relating
consecutive points on the discrete protein axes and equilibrium ensemble averages by averages over appropriate protein struc-
ture ensembles. The resulting displacement autocorrelation functions resemble those of the velocity autocorrelation functions
of simple liquids and display a minimum, which can be related to the lengths of secondary structure elements. This minimum
is clearly more pronounced for well-structured proteins than for unstructured ones, and the corresponding memory function
displays a slower decay, indicating a stronger “folding memory.”

Published under license by AIP Publishing. https://doi.org/10.1063/1.5054887

I. INTRODUCTION

The protein structure-function relationship is one of the
basic concepts in structural biology, and it has, for several
decades, driven the determination of protein structures by
X-ray and neutron crystallography as well as by nuclear mag-
netic resonance (NMR) techniques. It was soon recognised
that the protein function requires dynamic structures,1–4 and
one can observe a change in the paradigm over the last
years, admitting that the protein function does not necessarily
require well-defined structures. One speaks here of intrin-
sically disordered proteins (IDPs), where the term “disorder”
describes the absence of well-defined secondary structure
elements (SSEs) and may concern the whole protein or parts of
it.5–8 In contrast to well-structured proteins, for which more
than 140 000 structures can be found at present in the Pro-
tein Data Bank (PDB),9 much less is known about the possible
conformations of IDPs. The main sources of information for
IDP conformations are computer-generated models which are
compatible with experimental data from structural NMR and

small angle diffraction techniques. Corresponding databases
are being built up10,11 and becoming exploitable from a sta-
tistical point of view. One can therefore search for criteria
that allow a distinction between structured and unstructured
proteins on a purely statistical basis. Since protein structure
databases contain structures and structure ensembles of dif-
ferent proteins, such statistical models should be based on the
conformation of the protein main chain only. The simplest
example is the polymer chain model by Kuhn,12 which con-
sists of equidistantly spaced point-like monomers and which
can be transposed to proteins by associating each Cα-atom
along the protein main chain with a monomer of the Kuhn
chain. We note here that due to the rigid geometry of pep-
tide bonds, the distances between consecutive Cα-atoms in
proteins have an almost constant value of 0.4 nm. The poly-
mer configurations in Kuhn’s model are random chains, where
all monomers are placed randomly at the fixed distance to
their respective predecessor along the polymer chain. These
freely jointed chains lead to a Gaussian model for the proba-
bility distribution of finding a monomer at a distance r from
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a given monomer, and they can be interpreted as trajec-
tories of Brownian particles whose subsequent positions in
time correspond to the monomer positions along the polymer
chain. The Markovian character of Brownian motion reflects
the fact that the position of each monomer depends only
on the position of its predecessor. The Gaussian chains thus
have “zero folding memory.” Kuhn’s model was the moti-
vation for the present work, where the concept of folding
memory will be used in order to distinguish between ensem-
bles of well-structured and (partially) unstructured proteins
(IDPs).

II. PROTEINS AS DISCRETE PATHS
The standard discrete path representation of proteins is

the Cα model, in which each residue is represented by its
Cα-atom. In the following, we will also use a different path
representation in which secondary structure elements (SSEs)
are essentially filtered out. SSEs are characterised by a reg-
ular winding of the protein main chain with a typical period
between 2 and 4 monomers (residues) and thus lead a pri-
ori to “trivial” folding memory effects on that scale. Using the
ScrewFrame algorithm,13 we obtain a description in which the
helicoidal paths of SSEs are replaced by their axis. The global
fold of a protein is described here as a succession of screw
motions aligning successive discrete Frenet frames along the
Cα-trace. The centres for the constructed screw motions
then define a “polymer chain” along the protein axis. In con-
trast to the Cα-trace, where the distances between adjacent
Cα-atoms are nearly constant, ∆ ≈ 0.38 nm, the distances
between adjacent screw motion centres vary and are consid-
erably shorter. The constructed polymer chain may be associ-
ated with a Rouse chain, where the monomers are connected
by springs.14 The left part of Fig. 1 illustrates the construction
of the screw motion centres (blue points) from a Cα-trace (red
points) which has the form of an ideal helix such that the cor-
responding screw motion centres lie on a straight axis (except
for the first and the last one). The two Frenet frames define
the screw motion from “monomer” 2 to 3. For N Cα-atoms,

FIG. 1. Left: Exact helicoidal trace of Cα -atoms (red points) and corresponding
screw motion centres (blue points). The figure also shows two consecutive Frenet
frames, which are attached to Cα -atoms 2 and 3, respectively. Right: Cα -trace and
corresponding screw motion centres for myoglobin (PDB structure code 1AB6).
The local radius of the gray tube is defined by the radius of the corresponding
screw motion.

there are N − 1 screw motion centres. The right part of the
figure shows the corresponding analysis for myoglobin (PDB
structure code 1AB6). It is important to note that ScrewFrame
works for any Cα-trace, i.e., also for β-strands, which are
“flat helices,” and for unstructured parts of a protein. Sec-
ondary structure elements are characterised by recurrent
screw motion parameters and in particular by a straight axis
joining the screw motion centres. The ScrewFrame algorithm
effectively leads to a tube model for proteins (indicated in
transparent gray), where the local tube axis is defined by
the succession of screw motion centres and the local radius
by the radius of the respective screw motion. The tube can
be considered as an excluded volume of the protein main
chain. In polymer physics, tube models are used to explain the
slow dynamics of reptation,15,16 where the tube represents
the space accessible to a single polymer inside the polymer
matrix forming its environment, but the reptation model is
obviously not a valid picture for the dynamics of protein main
chains.

III. DIFFUSIVITY OF PROTEIN PATHS
A. Mean square displacements

Starting from the analogy between polymer models and
discrete stochastic paths, we first consider the ensemble-
averaged mean square displacement (MSD),

W(n) =
〈

1
Nx − n

Nx−1−n∑
k=0

(x(k + n) − x(k))2
〉
, (1)

where Nx is the number of steps in the discrete path, x(k)
(k = 0, . . ., Nx − 1), and n = 0, . . ., P � Nx for statistical rea-
sons. For our calculations, we used P = 100. The brackets in
(1) denote an average over the protein structures in the given
ensemble, where each protein structure counts equally. This
weighting scheme is very different from thermal averaging of
configurations in statistical mechanics, where each configura-
tion is weighted with a Boltzmann factor, and corresponds to
unconstrained maximum entropy weighting.17 Equation (1) is
constructed in complete analogy with time-dependent MSDs,
as they are, for example, calculated from single particle track-
ing in biological systems or from molecular dynamics simu-
lations. MSDs of discretely sampled trajectories are traced as
a function of the time lag n ≡ n∆t, where ∆t is the sampling
step, whereas the MSDs presented in this paper are traced as
a function of the dimensionsless “residue lag.” In this context,
it may appear more appropriate to speak of “mean square dis-
tances” instead of “mean square displacements” because we
are not considering moving particles. In order to keep the
analogy with trajectory analyses, we keep, however, the first
term in the following.

Figure 2 shows the MSD as a function of residue lag for
well-structured and unstructured proteins. In the first case,
we used protein structures from the ASTRAL database18,19 and
in the second from the pE-DB database.10 The diffusion coef-
ficients indicated in the plot have been obtained by fitting a
linear expression of the form
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FIG. 2. Mean square displacement as a function of residue lag for well-structured
and unstructured proteins. In both cases, the MSDs are shown for the Cα -traces
and for the protein axes.

W(n) = 2Dn + a (2)

to the MSD data for n ≥ 20. This offset appears clearly
in the data for well-structured proteins and corresponds
roughly to the maximum length of protein secondary structure
elements. Practically no differences can be found between
the MSDs for the Cα-trace and the protein axis, but the
diffusion coefficient for unstructured proteins is about ten
times larger than that for well-structured proteins. We find
D ≈ 0.18 nm2/res. in the first case and D ≈ 0.017 nm2/res. in
the second. Using the polymer-trajectory analog, the asymp-
totic linear form of W(n) for both well-structured and unstruc-
tured proteins corresponds to “normal diffusion.” From this
point of view, they behave as Gaussian chains or, equiv-
alently, as trajectories of Brownian particles. As it will be
shown in the following, the local behavior is, however, very
different.

B. Displacement autocorrelation functions
In order to investigate the local properties of our two

polymer models for well-structured and unstructured pro-
teins, we make use of a well-known relation between the
time-dependent MSD for a diffusing classical particle and its
velocity autocorrelation function (VACF), cvv(τ) = 〈v(0)·v(τ)〉.
Assuming the stationarity of the VACF, one derives20

W(t) = 2
∫ t

0
dτ (t − τ)cvv(τ), (3)

where 〈. . .〉 denotes a classical ensemble average over the
phase space of the diffusing particle. The VACF itself fulfills
an equation of motion of the form21

ċvv(t) +
∫ t

0
dτ κv(t − τ)cvv(τ) = 0, (4)

where the memory kernel κ(t)v can be formally expressed by
the microscopic forces acting on the diffusing particle and
between the solvent particles. In the following, only the gen-
eral form of the equation of motion (4) is of importance. At the
velocity level, the motion of a Brownian particle is described
by the Langevin equation, v̇(t) + γv(t) = fs(t), where fs(t) is
the white noise and γ > 0 is the friction constant. The mem-
ory kernel has the form κv(t) = γδ(t), where δ(t) is the Dirac
delta function. Brownian motion is thus “memory-less,” and
the VACF has the form cvv(t) = 〈|v|2〉 exp(−γt). We will now
investigate which kind of VACF and corresponding memory
function will emerge from the polymer paths representing
well-structured and unstructured proteins. Here the VACF
becomes, in fact, a discrete displacement autocorrelation
function (DACF),

cdd(n) =
〈

1
Nd − n

Nd−1−n∑
k=0

d(k + n) · d(k)
〉
, (5)

where d(k) = x(k + 1) − x(k) (k = 0, . . ., Nd − 1) and Nd = Nx
− 1. Using that the convolution is commutative, the memory
function equation (4) is replaced by the discrete version

∆cdd(n) +
P∑

k=0

w(k)cdd(n − k)κd(k) = 0, (6)

for n = 0, . . ., P � Nd. Here w(k) are integration weights
according to the second order (trapezoidal) rule for numerical
integration, w(0) = w(P) = 1/2 and w(k) = 1 for k = 2, P − 1, and
∆ denotes a numerical derivative of the second order. Equa-
tion (6) represents a triangular linear system of equations for
κd(k) (k = 0, . . ., P), which can be recursively solved. The second
order approximation for numerical integration and differenti-
ation assures that, to a good approximation, κd(n) ∝ λδ0n if
cdd(n) = cdd(0) exp(−λn) and Nd & 100.

Figure 3 shows the DACFs for well-structured (upper
panel) and unstructured proteins (lower panel). In contrast

FIG. 3. Upper panel: DACFs for well-structured proteins comparing the Cα -traces
and protein axes. Lower panel: The same for unstructured proteins.
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to the MSDs, there is a clear difference between the DACFs
corresponding, respectively, to the Cα-trace and the protein
axis. The DACFs in the latter case are clearly smoother and
do not present the fast oscillations at the beginning which
are visible in the DACFs for the Cα-traces which are partic-
ularly pronounced for well-structured proteins. They can be
attributed to secondary structure elements, where the direc-
tion of the displacements changes periodically with residue
lags of approximately 2 (β-strands) to 4 (α-helices). The DACF
for the protein axis of well-structured proteins has a striking
similarity with the VACF of simple liquids. A surprising result
of Rahman’s historic simulation of liquid argon22 was that the
VACF for such a system does not decay exponentially, as for
the Langevin model, but displays damped oscillations which
are ascribed to rattling motions of the diffusing molecules in
the case of nearest neighbours. Here the lag time correspond-
ing to the first minimum corresponds to the typical time for
a reversal of its velocity. In analogy, the DACF for the pro-
tein axis of well-structured proteins displays a pronounced
minimum for residue lags of about n = 18, which means that
the displacement vector d tends to invert its direction after
18 consecutive steps. Knowing that typical secondary struc-
ture elements have about this length, such a behaviour could
be explained by the typical “helix-loop-helix” successions in
well-structured proteins like myoglobin. Here the term “helix”
must be understood in the sense of the ScrewFrame algo-
rithm, i.e., as a regular secondary structure element which
includes α-helices and β-strands. To investigate this point in
more detail, we have computed the DACFs for the protein
axis of well-structured proteins separately for sub-ensembles
of protein structures containing, respectively, essentially α-
helices and β-strands and recording in both cases histograms
for the lengths of these secondary structure elements.
Figure 4 shows clearly that the first minima of the axis DACFs
are correlated with the maximum lengths of the secondary

FIG. 4. Upper panel: DACFs for the protein axis of well-structured proteins contain-
ing essentially α-helices and histogram for the lengths of the latter. Lower panel:
The same for β-strands.

FIG. 5. Memory kernel of the protein axis DACF for well-structured proteins and
unstructured proteins.

structure elements, which confirms the hypothesis that the
first minimum of the DACF reflects effectively the recurrent
“helix-loop-helix” motif in globular well-structured proteins.
This motif and its presence in unstructured proteins should
also be reflected in the corresponding memory kernels of the
DACF. Figure 5 shows the memory kernels for protein axis
DACFs of well-structured proteins and unstructured proteins.
Although the difference is small, it is systematic: The memory
function corresponding to the DACF of well-structured pro-
teins is systematically larger than its counterpart for unstruc-
tured proteins, indicating stronger “folding memory.” The
slight oscillations in the latter case should not be overin-
terpreted since they might be artefacts due to insufficient
statistics.

IV. CONCLUSIONS
Our study shows that suitably defined polymer mod-

els for proteins enable a meaningful statistical analysis of
their folding properties on the basis of “polymer paths.”
Here each path is a succession of points that represent
the residues, and two types of paths are considered: (1)
the Cα-representation, where each residue is represented
by its Cα-atom, and (2) the ScrewFrame representation,
where each residue is represented by a projection of the
Cα position onto an appropriately constructed protein main
axis. The resulting paths are analyzed within a theoretical
framework that is inspired by the theory of the generalized
Langevin equation. We show, in particular, that the mem-
ory functions associated with the displacement autocorre-
lation function along the protein chain display effects of
“folding memory” for well-structured proteins, as compared
to IDPs. Although the statistical basis for unstructured pro-
teins is still fairly small, the theoretical framework allows
for discriminating between ensembles of well-structured and
unstructured proteins. The next step will be to develop
suitable simple memory function models which explain the
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data at least semi-quantitatively and which have a physical
interpretation.

SUPPLEMENTARY MATERIAL

The complete source code of our analysis software and
the input datasets are available as supplementary material to
this article.
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