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The paper deals with a model-free approach to the analysis of quasielastic neutron scattering inten-
sities from anomalously di↵using quantum particles. All quantities are inferred from the asymptotic
form of their time-dependent mean square displacements which grow /t↵, with 0  ↵ < 2. Confined
di↵usion (↵ = 0) is here explicitly included. We discuss in particular the intermediate scattering
function for long times and the Fourier spectrum of the velocity autocorrelation function for small
frequencies. Quantum e↵ects enter in both cases through the general symmetry properties of quantum
time correlation functions. It is shown that the fractional di↵usion constant can be expressed by
a Green-Kubo type relation involving the real part of the velocity autocorrelation function. The
theory is exact in the di↵usive regime and at moderate momentum transfers. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4959124]

I. INTRODUCTION

Anomalous di↵usion generally refers to the observation
that the time-dependent mean square displacement (MSD) of
a freely di↵using particle evolves asymptotically as

W (t) t!1⇠ 2D↵t↵, with 0 < ↵ < 2. (1)

Here D↵ is the (fractional) di↵usion constant and the MSD
is defined as an ensemble average, W (t) = h(x(t) � x(0))2i.
For simplicity we consider the projection of the motion on
an arbitrary direction “x” in space, supposing that the system
under consideration is isotropic. The case ↵ = 1 corresponds
to “normal di↵usion,” or Brownian motion, and is described by
the well-known di↵usion models of Einstein, Langevin, and
Wiener.1,2 In the past, various extensions, such as fractional
Brownian motion3 and the Continuous Time Random Walk
(CTRW),4 have been proposed to include also anomalous
di↵usion.5–8 The underlying physical assumption in all
Brownian dynamics type models is a time scale separation
between the “slow” motions of the di↵using particle and the
“fast” motions of the molecules in the environment, which
are modeled as noise. However, neither the assumption of
such a time scale separation nor model assumptions about the
dynamics of the di↵using particles are necessary to describe
di↵usion processes in general and anomalous di↵usion in
particular. The key elements that characterize the di↵usion
type for a tagged particle are the asymptotic forms of its
velocity autocorrelation function (VACF) and the associated
memory kernel. The latter defines the relaxation of the VACF
in Zwanzig’s (exact) generalized Langevin equation9–11 and
reflects the structural dynamics of the local “cage”12 in
which the particle di↵uses. In this model-free description
of di↵usion processes, one may also consider very light
particles, such as hydrogen atoms, where even quantum
e↵ects may be important. Experimentally, the di↵usion of

hydrogen atoms can be ideally studied by quasielastic neutron
scattering (QENS), taking advantage of their large scattering
cross section for neutrons. The neutron scattering theory
developed by Rahman and Sjølander13 shows that QENS
gives access to the MSD of di↵using atoms and molecules
if one assumes moderate momentum transfers, such that the
neutron intermediate scattering function can be treated in the
Gaussian approximation. The overwhelming part of QENS
studies has, however, been analyzed in the framework of
Van Hove’s theory,14 employing classical di↵usion models
for the space and time-dependent Van Hove correlation
functions.15 In contrast to Rahman’s approach, the assumption
of the classical limit is here essential for the physical
interpretation of QENS spectra. This implies not only to
neglect intrinsic quantum e↵ects of the scattering system but
also to disregard the purely kinematic recoil e↵ect, which
can be important for scattering atoms with low e↵ective
masses.

The aim of this paper is to develop an alternative,
model-free route to the interpretation of QENS experiments
which is not based on particular models, but uses instead
the asymptotic “universal” form of the relevant mean square
displacements. The idea is to combine the classical work
of Rahman and Sjølander with the asymptotic analysis of
anomalous di↵usion processes which has been presented more
recently in Ref. 9 and which can be straightforwardly extended
to include also quantum e↵ects.

A. Mean square displacement

The mean square displacement (MSD) of a quantum
particle is defined through a quantum ensemble average,
whose explicit form reads

W (t) = tr
(
⇢̂
�
x̂(t) � x̂(0)

�2)
. (2)
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Here ⇢̂ stands for the density operator,

⇢̂ =
e��Ĥ

Z
, (3)

and x̂(t) is the position operator of the tagged particle in the
Heisenberg picture,

x̂(t) = e
i t
~ Ĥ x̂e�

i t
~ Ĥ . (4)

As usual, “tr” denotes the trace, Ĥ is the Hamiltonian of the
system, and � = (kBT)�1, with kB and T being, respectively,
the Boltzmann constant and the absolute temperature in
Kelvins. The density operator ⇢̂ fulfills the normalization
condition tr{ ⇢̂} = 1 and therefore Z = tr{e��Ĥ}. It follows
from the hermiticity of Ĥ and x̂ that W (t) � 0. Writing

x̂(t) � x̂(0) =
⌅

t

0
d⌧ v̂(⌧),

where

v̂(t) ⌘ dx̂(t)
dt
=

i
~
[Ĥ , x̂(t)]

is the velocity (operator) of the di↵using particle, the MSD
may be written as a double time integral

W (t) =
⌅

t

0

⌅
t

0
d⌧2 d⌧1 cvv(⌧2,⌧1), (5)

where cvv(⌧2,⌧1) is the two-point velocity autocorrelation
function (VACF),

cvv(⌧2,⌧1) = tr { ⇢̂ v̂(⌧2)v̂(⌧1)}. (6)

As in the classical case, the VACF is stationary, i.e., invariant
with respect to a common translation of both time arguments.
It may thus be parametrized by a single lag time, ⌧ ⌘ ⌧1 � ⌧2,

cvv(⌧2,⌧1) = cvv(0,⌧1 � ⌧2) ⌘ cvv(⌧). (7)

Using the stationarity of the VACF in expression (5)
and performing the variable change (⌧1,⌧2)! (u, v), with
u = ⌧1 � ⌧2, v = ⌧2, it is easy to see that

W (t) =
⌅

t

0
du (t � u){cvv(u) + cvv(�u)}.

In contrast to its classical counterpart, the quantum VACF
is not symmetric in time, but fulfills instead the symmetry
relation

cvv(�t) = c⇤vv(t) = cvv(t + i �~). (8)

The quantum VACF is a complex function whose real and
imaginary parts are, respectively, even and odd functions in
time,

c(R)vv (t) =
1
2
�
c(t) + c(�t)

�
, (9)

c(R)vv (t) =
1
2i

�
c(t) � c(�t)

�
, (10)

such that its Fourier transform (see Section II C) is real. With
(8) the MSD can be written in two equivalent forms,

W (t) = 2
⌅

t

0
du (t � u)c(R)vv (u), (11)

W (t) =
⌅

t

0
du (t � u){cvv(u) + cvv(u + i �~)}, (12)

from which the classical convolution integral16 is retrieved in
the limit ~! 0.

B. Kubo relation for D↵

For the following considerations, we will use relation (1)
in a slightly generalized form:

W (t) t!1⇠ 2L(t)D↵t↵ (0  ↵ < 2). (13)

The case ↵ = 0 is here explicitly included. Formally, L(t)
belongs to the class of slowly growing functions,17 which
fulfill limt!1 L(�t)/L(t) = 1 for any � > 0. In the following,
L(t) is chosen to be a positive function which tends to a
plateau value:

lim
t!1

L(t) = 1. (14)

Only its asymptotic form matters and in some cases we simply
use L(t) ⌘ 1. Following the reasoning in Ref. 9, a Green-Kubo
type relation for the fractional di↵usion coe�cient can be
derived in exactly the same way as in the classical case.
Using Karamata’s asymptotic analysis,17 the asymptotic form
(13) of the MSD in the time domain implies that its Laplace
transform, W̃ (s) =

⇤ 1
0 dt exp(�st)W (t) (<(s) > 0), behaves

for small s as

W̃ (s) s!0⇠ 2L(1/s)D↵
�(1 + ↵)

s1+↵ (15)

and vice versa. W̃ (s) can here be replaced by the Laplace
transform of expression (11),

W̃ (s) = 2c̃(R)vv (s)
s2 , (16)

and with lims!0 L(1/s) = 1, one obtains

D↵ = lim
s!0

s↵�1

�(1 + ↵) c̃(R)vv (s).

In the time domain this becomes the desired generalized Kubo
relation,

D↵ =
1

�(1 + ↵)

⌅ 1

0
dt 0@

↵�1
t

c(R)vv (t), (17)

where @↵�1
t

denotes a fractional time derivative of order ↵ � 1,

@↵�1
t

c(R)vv =
d
dt

⌅
t

0
dt

(t � ⌧)1�↵
�(2 � ↵) c(R)vv (⌧). (18)

C. Asymptotic form of the VACF

The asymptotic form of the VACF must be discussed
separately for its real and imaginary parts. Concerning the
real part, it follows from (11) that c(R)vv (t) = W 00(t)/2 and with
(13) one obtains

c(R)vv (t)
t!1⇠ D↵ L(t)↵(↵ � 1)t↵�2. (19)

We use here that tnL(n)(t) t!1⇠ 0 for slowly growing functions
which fulfill in addition limt!1 L(t) = 1. The asymptotic
regime can be estimated through t � ⌧v, where18

⌧v =

 
D↵

hv2i

! 1
2�↵

. (20)
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Here hv2i = kBT/m is the mean square velocity, with m being
the mass of the di↵using particle. Relation (20) is an identity
for normal di↵usion and an exponentially decaying VACF
of the form cvv = hv2i exp(�t/⌧v). It is important to note
that the asymptotic form (19) is only a necessary condition
for anomalous di↵usion with an exponent ↵. Karamata’s
theorem17 can also be used to prove that (19) is in addition
su�cient for 1 < ↵ < 2. The reader is here referred to Ref. 9,
where the classical VACF must be replaced by the real part of
its quantum version.

The asymptotic form of the imaginary part of the
VACF can be deduced from symmetry relations, (8). For
this purpose we express the VACF by the contour integral
cvv(t) = 1

2⇡i

�
ds est c̃vv(s), which shows that

cvv(t + i �~) ! ei�~sc̃vv(s). (21)

It follows then from symmetry properties (8) that

c̃(R)vv (s)=
 

1 + ei�~s

2

!
c̃vv(s),

c̃(I )vv (s)=
 

1 � ei�~s

2i

!
c̃vv(s),

and consequently

c̃(I )vv (s) = � tan
 
�~s
2

!
c̃(R)vv (s). (22)

Defining d/dt as a left derivative,
df (t)

dt
= lim

h!0

f (t) � f (t � h)
h

,

one obtains from (22) by inverse Laplace transform

c(I )vv (t) = � tan
 
�~

2
d
dt

!
c(R)vv (t). (23)

Inserting here relation (19) leads to

c(I )vv (t)
t!1⇠ � �~

2
L(t)D↵ ↵(↵ � 1)(↵ � 2)t↵�3, (24)

where only the first order correction in ~ is needed for the
asymptotic form. The imaginary part of the VACF decays
asymptotically faster than the real part and noting that
0  ↵ < 2, its sign is the same as for the real part.

II. QUASIELASTIC NEUTRON SCATTERING

A. Basic relations

As mentioned in the Introduction, quasielastic neutron
scattering is a unique tool for studying di↵usive motions
on the atomic scale, in particular for hydrogen atoms and
hydrogenous systems. The incoherent neutron scattering cross
section for hydrogen being largely dominant with respect to
the incoherent and coherent scattering cross sections of all
other atoms, only the self-scattering from the hydrogen atoms
is probed in this case. The di↵erential scattering cross section
for the scattering of thermal neutrons is generally written in
the form

d2�

d⌦d!
=

k
k0

S(q,!), (25)

where ! and q are, respectively, the energy and momentum
transfer from the neutron to the sample in units of ~.
The information about the scattering system is carried by
the dynamic structure factor, S(q,!), which is the Fourier
transform of a time correlation function involving the positions
of the scattering atoms. Concentrating here for simplicity
only on the self-scattering from a single “representative”
(hydrogen) atom, we have

S(q,!) = 1
2⇡

⌅ +1

�1
dt e�i!tF(q, t), (26)

F(q, t) =
D
exp (�iq · r̂(0)) exp (iq · r̂(t))

E
. (27)

Here h. . .i denotes a quantum ensemble average and r̂(t) is the
time-dependent position operator of the scattering atom. The
time correlation function F(q, t) is referred to as intermediate
scattering function.

For the following considerations we use the cumulant
expansion of F(q, t) which has been introduced by Rahman
and Sjølander:13

F(q, t) = exp
 
i
~q2t
2m

!
exp *

,
1X

n=0

(iq)n�n(t)+- . (28)

Here q ⌘ qx is the projection of the momentum transfer
vector on the direction of motion and the phase factor
exp

�
i~q2t/(2m)

�
describes the recoil e↵ect in the collision

between the neutron and a scattering atom of mass m. The
information about the scattering system is contained in the
cumulants �n(t), which are defined in terms of n-fold integrals
over n-point velocity time correlation functions. The first few
cumulants read explicitly,

�1(t)= µ1(t),

�2(t)=
1
2
�
2µ2(t) � µ1(t)2

�
,

�3(t)=
1
3
�
µ1(t)3 � 3µ2(t)µ1(t) + 3µ3(t)

�
,

etc.

where the µn(t) are given by

µn(t) =
⌅

t

0

⌅
t1

0
. . .

⌅
tn�1

0
dt1 . . . dtn hv̂(t1) . . . v̂(tn)i. (29)

The Gaussian approximation of the intermediate scattering
function corresponds to setting �2k(t) ⇡ 0 for k > 1, which
is justified for moderate momentum transfers. Assuming in
addition that the scattering system is isotropic, it follows
that all µn(t) with an odd index n vanish, and the Gaussian
approximation of the intermediate scattering function becomes

FGA(q, t) ⇡ exp
 
i
~q2t
2m

!
exp

�
�q2µ2(t)

�
. (30)

On account of the stationarity of the VACF, the double integral
µ2(t) can be written in the form of a convolution integral,

µ2(t) =
⌅

t

0
d⌧1 (t � ⌧1)cvv(⌧1). (31)

We note finally that a general relation between the intermediate
scattering function and the VACF can be derived from
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(28), (30), and (31),

cvv(t) = � lim
q!0

�
q�2@2

t
F(q, t)

 
, (32)

knowing that F(q, t) = FGA(q, t) for small q.

B. Asymptotic form of F (q, t )

One could be tempted to write µ2(t) = W (t)/2 in
expression (30), but this relation does not hold since µ2(t)
contains the full VACF and not just its real part. A relation
between µ2(t) and W (t) can though be established by noting
that the Laplace transform of µ2(t) is given by

µ̃2(s) =
c̃vv(s)

s2 =
1
s2

 
1 � i tan

 
�~s
2

!!
c̃(R)vv (s)

=

 
1 � i tan

 
�~s
2

!!
W̃ (s)

2
.

Relation (22) has here been used to express c̃vv(s) = c̃(R)vv (s)
+ Ic̃(I )vv (s) in terms of c̃(R)vv (s) only and relation (16) to connect
c̃(R)vv (s) to W̃ (s). In the time domain one obtains thus

µ2(t) =
1
2

 
1 � i tan

 
�~

2
d
dt

!!
W (t). (33)

Interesting for QENS is the behavior of the intermediate
scattering function for t ! 1, where the MSD has the form
(13). Again only the first order correction with respect to ~ is
needed in (33) to obtain the asymptotic form of µ2(t),

µ2(t) t!1⇠
 
1 � i

�~

2
d
dt

!
L(t)D↵t↵. (34)

In the Gaussian approximation, the asymptotic form of the
intermediate scattering function reads thus

FGA(q, t) t!1⇠ exp
 
i
~q2

2m
t
!

exp
�
�q2L(t)D↵t↵

�

⇥ exp
 
iq2L(t)D↵↵

�~

2
t↵�1

!
. (35)

Since the recoil factor exp
�
i~q2t/2m

�
is only due to the

scattering kinematics, true quantum e↵ects are described by
the third factor. They may thus be neglected if �(t) ⌧ 1, where
the time argument is to be replaced by a “collision time.” The
latter is the flight time of the neutron wave packet through
the sample,19,20 which is determined by the spectral resolution
of the monochromator which is used to perform the QENS
experiment. Quantum e↵ects can thus be neglected if

�(tc) = ↵D↵q2 �~

2
t↵�1
c ⌧ 1. (36)

Note that � = 0 if ↵ = 0, i.e., for confined di↵usion, and that
� does not depend on the observation time if ↵ = 1, i.e., for
normal di↵usion.

It is worthwhile noting that expression (35) stays valid in
the extreme case where ↵ = 0. One considers then spatially
confined di↵usion where the MSD tends asymptotically to
a plateau value. The position x(t) of the di↵using particle
may here be referred to a well-defined mean-position and
writing x(t) = u(t) + hxi, the di↵usion constant becomes the
mean square position fluctuation, D0 = hu2i.9 Since ↵ = 0, the

intermediate scattering function has the asymptotic form

FGA(q, t) t!1⇠ exp
 
i
~q2t
2m

!
exp

�
�q2hu2iL(t)

�
. (37)

Writing W (t) = h(u(t) � u(0))2i, it is easy to see that L(t)
describes the relaxation of the real part of the autocorrelation
function for the position fluctuations. The MSD can, in
fact, be expressed as W (t) = 2<{cuu(0) � cuu(t)}, where
cuu(t) ⌘ hu(0)u(t)i. Defining R(t) = 1 � L(t), it follows thus
that

<{cuu(t)} t!1⇠ hu2iR(t). (38)

Confined anomalous di↵usion/relaxation corresponds to a
slow power law decay of R(t),

R(t) t!1⇠ t�� (0 < � < 1), (39)

such that the mean relaxation time, which is defined by the
integral

⇤ 1
0 dt t cuu(t)/cuu(0), diverges. In this case R(t) is

described by a broad spectrum of relaxation rates,

R(t) =
⌅ 1

0
d� p(�) exp(��t), (40)

where the relaxation rate spectrum, p(�), diverges at � = 0.9,21

An example is the position fluctuation autocorrelation function
of a particle which di↵uses in a harmonic potential and whose
dynamics is described by a fractional Ornstein Uhlenbeck
process. This is a simple model for the confined multiscale
dynamics of atoms in proteins, which is probed by QENS
experiments.22,23

C. Density of states (DOS)

1. Definition and existence

The density of states (DOS) is essentially the Fourier
spectrum of the VACF and it is here defined as

g(!) = g(R)(!) + g(I )(!), (41)

where

g(R)(!) =
⌅ 1

0
dt cos!t c(R)vv (t), (42)

g(I )(!) =
⌅ 1

0
dt sin!t c(I )vv (t). (43)

The DOS has a direct relation to the dynamic structure factor,

g(!) = 1
2

lim
q!0

!2

q2 S(q,!), (44)

which follows from relation (32) and the Fourier integral (26)
defining the dynamic structure factor.

To show that g(R)(!) and g(I )(!) exist for all cases of
anomalous di↵usion, we introduce a time ⌧ > 0 which is
defined as the point on the time axis from which on the
asymptotic regimes (19) and (24) are valid for all practical
purposes. Since we are only interested in the existence of

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  92.169.11.230 On: Tue, 26 Jul
2016 01:55:52



044103-5 Gerald R. Kneller J. Chem. Phys. 145, 044103 (2016)

g(R/I )(!) we may here set L(t) ⌘ 1, such that

g(R)(!) =
⌅ ⌧

0
dt cos!t c(R)vv (t)

+D↵↵(↵ � 1)
⌅ 1

⌧
dt t↵�2 cos!t, (45)

g(I )(!) =
⌅ ⌧

0
dt sin!t c(I )vv (t) �

�~

2
D↵↵(↵ � 1)(↵ � 2)

⇥
⌅ 1

⌧
dt t↵�3 sin!t . (46)

The integrals
⇤ 1
⌧ dt . . . involving the long-time tails of both

the real and the imaginary parts of the VACF are determined
through the identities

⌅ 1

⌧
dt t↵�2 cos!t =

⌧↵�1

2
(E2�↵(�i⌧!) + E2�↵(i⌧!)),

⌅ 1

⌧
dt t↵�3 sin!t =

⌧↵�2

2i
(E3�↵(�i⌧!) � E3�↵(i⌧!)),

where E�(z) =
⇤ 1

1 dt exp(�zt)/t� is the generalized expo-
nential integral.24,25 For ↵ < 2 both above integrals tend to
zero as ⌧ tends to infinity and since one can assume that the
definite integrals

⇤ ⌧
0 dt cos!t c(R)vv (t) and

⇤ ⌧
0 dt sin!t c(I )vv (t)

exist for any reasonable VACF, the existence of both g(R)(!)
and g(I )(!) is ensured.

2. Detailed balance and small frequencies

Knowing that both g(R)(!) and g(I )(!) exist, they can be
expressed by the Laplace transformed real (symmetric) and
imaginary (antisymmetric) parts of the VACF, respectively,

g(R)(!) = <{c̃(R)vv (i |!|)}, (47)

g(I )(!) = �={c̃(I )vv (i!)}. (48)

Since c̃(I )vv (s) can be expressed by c̃(R)vv (s) by means of relation
(22), this leads to

g(I )(!) = tanh
 
�~!

2

!
g(R)(!), (49)

such that the full DOS is given by

g(!) =
 
1 + tanh

 
�~!

2

!!
g(R)(!). (50)

Since g(R)(!) is symmetric in ! it follows from the above
identity that

g(!) = e�~!g(�!), (51)

which is referred to as a detailed balance relation. Quantum
e↵ects can thus be neglected if

�~|!| ⌧ 1. (52)

An explicit form for g(!) at small ! is easily obtained
from the Laplace transformed VACF as small s. Combining
relations (15) and (16) and using that lims!0 L(1/s) = 1, one
obtains for the Laplace transform of the real part

c̃(R)vv (s)
s!0⇠ D↵�(1 + ↵)s1�↵. (53)

It follows then from (47) that

g(R)(!) !!0⇠ D↵ |!|1�↵ sin
✓ ⇡↵

2

◆
�(↵ + 1). (54)

With definition (20) of the time scale ⌧v, the meaning of !!0⇠
is to be understood as

|!| ⌧ 1
⌧v
. (55)

The full asymptotic DOS is finally obtained from (50),

g(!) !!0⇠
 
1 +

�~!

2

!
D↵ |!|1�↵ sin

✓ ⇡↵
2

◆
�(↵ + 1), (56)

assuming that �~|!| ⌧ 1. This condition can be translated
into |!| ⌧ 0.13 THz ⇥ T[K] or, for the energy transfer, into
|�E | ⌧ 0.086 meV ⇥ T[K].

III. RÉSUMÉ

In this paper exact expressions have been derived for
two quantities which are related to quasielastic neutron
scattering from anomalously di↵using quantum particles. The
first one is the intermediate scattering function at moderate
momentum transfers for long times, i.e., in the di↵usive
regime, and the second one is the Fourier spectrum of the
velocity autocorrelation function at small frequencies. Both
expressions have been inferred from the asymptotic form of
the particle’s mean square displacement and they are thus
essentially described by two parameters — the fractional
di↵usion constant, D↵, and the anomaly exponent, ↵. The
asymptotic regimes can be defined through a well-defined
characteristic time scale, ⌧v =

�
D↵/hv2i

�1/(2�↵). Except for
↵ = 1, the quantum correction of the intermediate scattering
function depends on the collision time of the neutron with
the sample and the quantum correction of the density
of states simply reflects the detailed balance relation. As
in the classical case, D↵ can be expressed through a
generalized Kubo relation. The general form of the QENS
intensities can also be used to analyze confined di↵usion
processes, which correspond to ↵ = 0. Here a generic “slowly
growing function” describes the asymptotic relaxation of
the real part of the autocorrelation function for the position
fluctuations and there is no asymptotic quantum correction.
The theory thus allows for a “model-free” interpretation of
QENS experiments, including anomalous di↵usion, confined
di↵usion, and quantum e↵ects.
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