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ABSTRACT: In a recent simulation study [J. Chem. Phys. 2010,
133, 145101], it has been shown that the time correlation
functions probed by nuclear magnetic resonance (NMR)
relaxation spectroscopy of proteins are well described by a
fractional Brownian dynamics model, which accounts for the
wide spectrum of relaxation rates characterizing their internal
dynamics. Here, we perform numerical experiments to explore
the possibility of using this model directly in the analysis of
experimental NMR relaxation data. Starting from amolecular dynamics simulation of the 266 residue protein 6PGL in explicit water, we
construct virtual 15N R1, R2, and NOE relaxation rates at two different magnetic fields, including artificial noise, and test how far the
parameters obtained from a fit of themodel to the virtual experimental data coincidewith those obtained from an analysis of theMD time
correlation functions that have been used to construct these data. We show that in most cases, close agreement is found. Acceptance or
rejection of parameter values obtained from relaxation rates are discussed on a physical basis, therefore avoiding overfitting.

1. INTRODUCTION

Internal dynamics of proteins is recognized to play an
important role in their biological function, and its investigation
has been the goal of an impressive number of studies. In this
context, nuclear magnetic resonance (NMR) relaxation spec-
troscopy has proven to be a very powerful tool for the
investigation of both overall and internal motions of proteins,
and due to its versatility, NMR allows one to probe protein
dynamics over a wide range of time scales extending from the
ps�ns regime to μs�ms or even longer.1,2 One of the most
important features of modern multiple-pulse, multidimensional
NMR techniques is that spectral information can be obtained in
a site-specific manner, so that molecular motions can be probed
at the atomic level. A wide variety of experiments has been
proposed for the investigation of protein backbone and side-
chain dynamics, among which amide backbone 15N relaxation
experiments on isotopically labeled proteins represents the
most widespread techniques.

Random modulations of nuclear spin interactions by molecular
motions provide pathways to relaxation.3,4 Thus, relaxation rates
can be used to help characterize internal motions and obtain
thermodynamics-related quantities, such as bond conformational
entropy.5,6 However, one faces the difficult task of unambiguously
relating relaxation rates to models describing the dynamics on a
sound physical basis. These difficulties are reinforced by the fact that
a relatively limited number of experiments, which probe spectral
density functions at few frequencies only, is available. This therefore
imposes the use of interpretative models containing a restricted

number of parameters. In this context, the ability of too simple
models to faithfully reflect the dynamics may be questionable.

Recently, we proposed an alternative approach to model
protein internal dynamics in this NMR perspective. We based
our analysis on a fractional Brownian dynamics model in order to
take into account the presence of multiple time scale processes
through a simplified model depending on a limited number of
parameters. The physical relevance of this approach, as well as its
capacity to correctly model correlation functions involved in spin
relaxation, has been recently demonstrated using molecular
dynamics (MD) simulations.7 In particular, we have shown that
angular internal correlation functions were correctly modeled by
functions of the Mittag�Leffler (ML) type,8 which are solutions
of the fractional Ornstein�Uhlenbeck (fOU) stochastic diffusion
model. Indeed, a relatively simple model of subdiffusion, where a
continuous distribution of time scales is involved, was shown to
correctly reproduce computed correlation functions based on
first principles, as implemented in MD simulations.7 Therefore,
this model seems to represent a valuable tool for interpreting
NMR relaxation data in terms of microscopic dynamics.

A natural development of our previous research is to investigate
the possibility to derive a methodology aiming at interpreting spin
relaxation data. During the past decades, several approaches have
been proposed in order to interpret spin relaxationmeasurements,
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in which the underlying physical picture represents a plausible
assumption that is to be confirmed by the data.9 In contrast, the
starting point of our strategy is the analysis of MD simulations,
which is the most detailed microscopical description of protein
internalmotions available to date. Thus, we address the problemof
extracting the fOU model parameters from NMR relaxation rates.
This clearly represents a demanding task because of the relative
scarcity of independent spectroscopic observables. Moreover,
model parameters obtained with this approach should not only
comply with criteria of statistical quality, but obviously, they
should also be physically meaningful. The latter concern is
of particular relevance in the context of NMR relaxation studies
of protein dynamics, where relaxation rates are only indirectly
related to molecular motions through angular correlation
functions of the spatial parts of the spin Hamiltonians.3 The
rationale of this link is given by the Redfield theory of relaxa-
tion,3,10 which does not itself provide, but rather requires, a
model of correlation functions. Thus, accurate modeling of
molecular motions, in particular, internal protein motions, is
both critical and difficult.

In this article, we present the analysis of computed amide NH
correlation functions from a 91 ns MD simulation of the protein
6-phosphogluconolactonase (6PGL).11 We used these correla-
tion functions to generate synthetic relaxation data and investi-
gated conditions under which model parameters could be
determined from the rates obtained from this “virtual experi-
ment”, and a realistic, unambiguous picture of the underlying
microscopic dynamics could be gained. The main goal of this
work was to devise a strategy to analyze relaxation rates based on
fractional Brownian dynamics (fBD), thus performing a proof of
principle of this approach as a method to analyze NMR relaxa-
tion data.

2. THEORETICAL BACKGROUND

NMR relaxation. The relationship between microscopic
motions and spin relaxation rates is provided by Redfield’s
theory.10 Amide 15N relaxation results from the fluctuations
of the 15N�1H dipole�dipole interactions with the directly
attached proton and of the 15N chemical shift anisotropy
(CSA) tensor σ. For a molecule in solution, NMR relaxation
rates are determined by the time correlation functions of the form
C(t) = ÆP2(μ(t) 3μ(0))æ, where μ(t) is a unit vector pointing
along the 15N 1H bond and P2(.) is the second-order Legendre
polynomial. The CSA tensor σ is assumed to be axially symmetric
with its axis parallel to the NH bond. Longitudinal and transverse
15N relaxation rates (R1, R2), and

15N{1H} heteronuclear Over-
hauser enhancement (ηNHi) are expressed as combinations of the
spectral density functions J(ω), the Fourier transforms of the
C(t), which are evaluated at the Larmor frequencies 0, ωH, ωN,
and ωH(N = ωH ( ωN

ηNH ¼ 1 þ γH
γN

d2

R1
ð6JðωHþNÞ � JðωH�NÞÞ

R1 ¼ d2ð3JðωNÞ þ JðωH�NÞ þ 6JðωHþNÞÞ þ 2c2JðωNÞ
R2 ¼ d2 2Jð0Þ þ 3

2
JðωNÞ þ 1

2
JðωH�NÞ þ 3JðωHÞ þ 3JðωHþNÞ

� �

þ c2
4
3
Jð0Þ þ JðωNÞ

� �
ð1Þ

where d = μ0pγHγN/4(10)
1/2πÆrNH3 æ, c = γNB0ΔσN/(15)1/2, and

rNH is the NH distance . The parameters γH and γN are the
gyromagnetic ratios of 15N and 1H atoms, respectively, μ0 is the

vacuum magnetic susceptibility, p is the reduced Planck constant,
and ΔσN is the 15N chemical shift anisotropy. The presence of
additional mobility on the μs�ms time scale appears as a
contribution Rex to the observed transverse relaxation rate,
R2
app = R2 + Rex.

12�14 The spectral density function J(ω) is given
by the Fourier transform of the relevant correlation function

JðωÞ ¼
Z ∞

0
CðtÞ cos ωt dt ð2Þ

Provided that statistical decorrelation of internal and overall
motions is admissible, and if, in addition, the molecule undergoes
isotropic overall diffusive motion, it is possible to factorize C(t)
into global and internal time correlation functions CG(t) and
CI(t)

15

CðtÞ ¼ CGðtÞCIðtÞ ð3Þ
Situations where this factorization may not be assumed can be
effectively accounted for by a mode-coupling approach.16 In the
following, such a decorrelation will be assumed, and the focus will
be on the determination of the internal correlation function in the
presence of isotropic overall tumbling with a correlation function
CG(t) = e�t/τ0.
Fractional Ornstein�Uhlenbeck Processes and Mittag�

Leffler Type Correlation Functions. Analysis of experimental
data requires the use of a model correlation function that should
faithfully reflect the underlying dynamics. It is possible to assume
certain characteristics of the latter, which is the usual approach,
and to postulate more or less simple motional models, such as
diffusion on a cone, jump motions of the chemical bond,9 or
more elaborate models as in the case of the mode-coupled
approach.16 Alternatively, it may be desirable to take advantage
of the atomic description of protein dynamics provided by MD
simulations. Thus, one may seek to interpret various dynamical
quantities obtained from this microscopic picture by modeling
the relevant correlation functions in the simplest possible
manner. This provides a way of calculating J(ω) and relaxation
rates. On the basis of several observations, we recently
proposed7,17 to model internal rotational correlation functions
CI(t) by the following expression

CI ¼ S2 þ ðcel � S2ÞEαð�½t=τ�αÞ ð4Þ
where the parameter cel, which is such that S2 < cel e 1, will be
discussed below. The ML function

EαðzÞ ¼ ∑
∞

k¼ 0

zk

Γð1 þ αkÞ ð5Þ

is an entire function in the domain of complex numbers,8 and the
parameter α is, in general, complex. The function Eα(�[t/τ]α)
in eq 4 can be viewed as a generalization of a stretched
exponential function, with α and τ being the shape and scale
parameters, respectively.
For α = 1, the stretched ML function reduces to an exponen-

tial, whereas for 0 < α < 1, it exhibits a power law decay at large
times, Eα(�[t/τ]α) � (t/τ)�α, and an infinitely steep decay at
t = 0. For 0 < α e 1, the ML function can be expressed as the
continuous superposition of exponential relaxation functions
exp(�λt), with the relaxation rate distribution function pα,τ(λ)

Eαð�½t=τ�αÞ ¼
Z ∞

0
dλ pα, τðλÞ expð�λtÞ ð6Þ
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The spectrum of relaxation rates is positive and has the form18,19

pα, τðλÞ ¼ τ

π

ðτλÞα � 1 sinðπαÞ
ðτλÞ2α þ 2ðτλÞα cosðπαÞ þ 1

ð7Þ

In eq 7, pα,τ(λ) satisfies the normalization condition
R
0
∞dλpα,τ(λ) = 1,

and for α = 1, it reduces to a Dirac distribution centered at the
value τ�1. Moreover, the inverse of the scaling parameter τ gives
the median of the distribution pα,τ(λ), so that λ1/2 = τ�1.17 The
stretched ML function is the solution of a fractional differential
equation.18,20

The spectral density function associated with eqs 3 and 6 is
given by7

JðωÞ ¼ S2τ0
1 þ ðωτ0Þ2

þ ðcel � S2Þ1
γ

ðγτÞα cos β þ cos½βð1� αÞ�
ðγτÞα þ ðγτÞ�α þ 2 cos βα

ð8Þ
where cos β = (τ0γ)

�1, sin β = ω/γ, and γ = (τ0
�2 + ω2)1/2.

As previously noted in ref 7, the initial decay of the correlation
function, occurring at time lags typically shorter than ∼1 ps, is
due to the presence of very fast processes that give rise to rapidly
damped oscillations of the correlation function. These phenom-
ena, which cannot be described by a diffusion process, can
nevertheless be empirically taken into account by introducing
the parameter cel < 1 in eq 4.7 This parameter is just the value
taken by the correlation function at the minimum time lag where
the theory is assumed valid, what happens at shorter times
remaining beyond the scope of the model. Therefore, the use
of ML functions represents a way to account for the presence of
multiple time scale internal dynamical processes while keeping at
the same time the number of model parameters as small as
possible.7

3. MATERIAL AND METHODS

MD simulations. MD simulations of the protein 6-phos-
phogluconolactonase (6PGL; PDB accession number 2J0E)
were performed using the parallel MD code NAMD21 with
the all-atoms force field AMBER99SB22 and with periodic
boundary conditions. Electrostatic interactions were com-
puted by using the particle mesh Ewald method (PME)23 with
a 12 Å cutoff. Production runs were performed after pre-
liminary structure minimization and equilibration at constant
temperature (290 K) and pressure (1 bar) using a Langevin
thermostat24 coupled with a Nos�e�Hoover barostat.25 MD
simulations of 6PGL used a total of 9090 SPC/E water
molecules and an additional 7 Na+ ions to ensure an elec-
trically neutral system of 31264 atoms. The lengths of protein
chemical bonds involving hydrogen atoms were kept constant
through the SHAKE algorithm26 during the simulation, thus
permitting increase of the integration time step to 2 fs.
Snapshots of the trajectory were saved every 2 ps of the 91 ns
production run.
NMR Rate Calculation fromMD Simulations.Order param-

eters were computed by direct implementation of the following
equation

S2 ¼ 4π
5 ∑

2

m¼ � 2
ÆY2mðθ, ϕÞæÆY �

2mðθ, ϕÞæ ð9Þ

where Y2m(θ,ϕ) are the second-order spherical harmonics that
are relevant to the interaction. The ensemble average in eq 9

was computed by both time-averaging over the whole MD
trajectory and by performing block averages on 5 ns time
windows. The latter were used to calculate deviations from
the value computed with the entire trajectory and thereby
provided some error estimate associated with the S2 value of
each residue.
Synthetic amide 15N spin relaxation rates were obtained from

eq 1 by using two alternative evaluations of the spectral density
function J(ω).
One strategy was to compute relaxation rates from the spectral

density function given by eq 8. Model parameters used in this
calculation were obtained by fitting the MD correlation func-
tions to the fOU model. In this case, a selection of exponentially
sampled points of CI(t) were fitted to eq 4 through a two-step
procedure. First, the cost function X2 = [CI(t) � CI

ML(t)]2 was
minimized over a limited region of the {α,τ,cel} parameter space
by a grid search while keeping S2 fixed to the value computed
from MD by eq 9. Then, the obtained {α,τ,cel} values were used
as inputs in the so-called bound-constrained “limited memory
Broyden�Fletcher�Goldfarb�Shanno” (L-BFGS-B) optimiza-
tion algorithm,27 through which a constrained X2 parameter
minimization was performed.
Alternatively, relaxation rates were computed from the Fourier

transform of the correlation functions derived from the MD
simulations. In this case, J(ω) were calculated from the MD
trajectory by segmentation of the integral in eq 228

JðωÞ ¼
Z tm

0
CIðtÞC0ðtÞ cos ωt dt þ

Z ∞

tm

CIð∞ÞC0ðtÞ cos ωt dt

ð10Þ
whereω takes the valuesω = 0,ωN ,ωH, andωH(N, as indicated
in eq 1. In eq 10, tm corresponds to the maximum time at which
the correlation function could be calculated with good enough
statistics, that is, the first∼10% of the total trajectory length.29 In
principle, the plateau value CI(∞) of the internal correlation
function was taken to be equal to the mean value of CI(t) in the
time interval [tm� 500 ps;tm]. However, CI(∞) was replaced in
eq 10 by the value of S2 computed from eq 9 whenever the
condition |CI(∞) � S2| e 0.005 was fulfilled.28,30

Whenever CI(t) did not reach a plateau value within tm,
or CI(∞) remained significantly different from the value of S2

(|CI(∞) � S2| g 0.1), insufficient sampling of internal motions
during the 91 ns trajectory30 was assumed, and CI(t) was
discarded from further analysis.
Relaxation Rate Analysis. Estimating model parameters of

eq 4 from NMR relaxation rates necessitates the acquisition of
measurements at different magnetic fields to provide a number
of data larger than the number of adjustable parameters.
Relaxation rates were calculated for magnetic fields B0 = 21.1
and 14.1 Tesla (1H resonance frequencies of ν0 = 900 and 600
MHz, respectively). The values ΔσN = 170 ppm and τ0 = 19.9
ns for the CSA component and the protein overall diffusion
correlation time were used.31 The NH distance rNH = 1.02 Å
was assumed constant.12

Measurement uncertainties were simulated by adding reali-
zations of noise, drawn from a Gaussian distribution N (μ,σ),
to the computed relaxation rates obtained from either of the
procedures described above. The standard deviations σR1j, σR2j,
and σNOEj were equal to 3% of the rate value, which is typical of
experimental measurement. ML parameters were estimated for
each realization of the Gaussian noise N (μ,σ) by minimizing
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the target function

χ2 ¼ ∑
j¼ 1, 2

ðR2j � R0
2jÞ2

σ2
R2j

þ ðR1j � R0
1jÞ2

σ2
R1j

þ ðNOEj �NOE0j Þ2
σNOEj

2
ð11Þ

where R1j
0 , R1j

0 , and NOEj
0, on the one hand, and R1j, R1j, NOEj

on the other hand, denote the computed and theoretical
relaxation rates at magnetic field B0j. Minimization was
performed using either a Levenberg�Marquardt algorithm32

associated with a parameter grid search or the differential
evolution method,33 both implemented in the Scilab
software.34

4. RESULTS AND DISCUSSION

MD simulations. Order parameters were computed from the
MD trajectory, based on eq 9. In order to check for sufficient
conformational sampling, and to get an estimate of S2 accuracy,
averages were performed on 5 ns fragments of the total trajectory.
The value retained for S2 was the mean of these partial averages,
and their standard deviation was used as an error estimate.
Results are presented in Figure 6.
In addition, correlation functions were calculated from the

MD trajectories. Schematically, these fall into two categories.
One of them includes correlation functions CI(t) that clearly
reach a plateau value CI(∞) within approximately 20% of the
maximum admissible time lag (∼9 ns). These correspond to
residues undergoing mainly fast dynamics (with respect to
0.1 � tm, the maximum admissible time lag for accurate
computation of the correlation functions29). This is the case,
for instance, for SER 120 shown in Figure 1, where CI(t) decays
monotonously to its plateau value. The plateau reached by the
correlation function exhibits very little oscillations, which attests
to good statistical averaging of the correlation function. This is in
agreement with the very small S2 error bars as determined
directly from the trajectory using eq 9.
For a second group of residues, the decay of CI(t) to a plateau

is followed by large fluctuations affecting the tail of the internal
correlation function. This strongly suggests the presence of
slower dynamical processes affecting the corresponding residues,
which may not undergo sufficient averaging during the time over
which the correlation function can be calculated with good
accuracy (∼10% of the MD trajectory; see above29). Two such
examples (GLY 144 and ALA 238) are shown in Figure 1.
Further justification of these statements, as well as a better

insight into the dynamical processes involved, is provided by the
observation of the scalar product r(t) 3 r(0) of the instantaneous
bond vector with its initial value (see insets in Figure 1). Examples
of correlation functions of the first group, where relaxation rates
are predominantly in the fast regime (small τ= λ1/2), are shown in
Figure 1. In the case of SER 120, the quantity cosθ(t) = r(t) 3 r(0)
exhibits only small fluctuations about some average value. For
other residues (e.g., ALA 116), the presence of large-amplitude
angular fluctuations is associated with larger fluctuations of the
plateau valueCI(∞) computed from theMD trajectory, as well as
larger error bars of the S2 obtained from eq 9. The decay of the
correlation function is slower than that for SER 120, which may
explain less good averaging of CI(t) and S

2.

Alternatively, for GLY 144 and ALA 238, r(t) 3 r(0) clearly
exhibits jumps at the time scale of the MD simulation, which
explain the large variance of S2 parameters measured on fractions
of the MD (dashed lines in the figure) and the apparent absence
of convergence of CI(t) toward a plateau value. These rare events
would require significantly longer simulations to be satisfactorily
averaged, although they superimpose to smaller, and presumably
correctly sampled, fluctuations. Longer MD simulations would
therefore be necessary to achieve efficient averaging of all
stochastic processes leading to decorrelation.
Thus, careful examination of the MD trajectories yielded

reliable correlation functions for 173 of the 246 6PGL residues,
while for 73 residues, no satisfactory averaging was obtained
according to the criteria presented above, and these were there-
fore discarded from further analysis. The selected residues were
then analyzed in the perspective of fractional Brownian dynamics.
Indeed, it has been shown in previouswork that correlation functions
computed from MD simulations could be satisfactorily analyzed
by assuming a subdiffusion model based on the fOU process.7 A
preliminary step of the present study was therefore to perform the
analysis of the simulated NH bond correlation functions in terms of
the ML-based model of eq 4. The agreement between the MD and
the fOU model correlation functions is very good, as attested to by
the several example correlation functions shown in Figure 2.
These functions exhibit an initial “instantaneous” decay,

accounted for in the model by the parameter cel in eq 4. The
latter can be given the following justification. The internal
correlation function CI(t) defines a purely diffusive process,
which asumption breaks down at very short times, that is, shorter
than a picosecond. It is indeed well-known (see, for instance,
ref 35) that the subpicosecond evolution of the correlation functions
is characterized by an oscillatory behavior that results from local
correlated vibrations of torsion angles (backboneψ, ϕ and side chain
χ1), as well as bond length and bond angle vibrations.12,36 These
phenomena thus generate the underdamped initial subpicosecond
behavior, and it is useful to introduce the ad hoc parameter cel that
empirically determines the net decay of the correlation function at
early times, which a diffusion process fails to describe.

Figure 1. Correlation functions computed from the 91 ns MD trajec-
tory of 6PGL. In the leftmost part of the figure, examples of CI(t) with
good averaging are depicted; on the right, examples of incomplete
averaging are shown. In these cases, the time series of r(t) 3 r(0) exhibits
rare events that appear as jumps (insets).

http://pubs.acs.org/action/showImage?doi=10.1021/jp205380f&iName=master.img-001.jpg&w=240&h=179
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The capacity of our approach to satisfactorily reproduce
internal correlation functions is therefore confirmed by our
results, which extends our previous findings7 to the case of the
protein 6PGL.

Recovering ML Parameters from Relaxation Rates. As the
main goal of this work is to investigate the possibility to extract
the fOU model parameters from relaxation measurements, we
computed sets of synthetic R1, R2, and NOE rates of the protein

Figure 2. Examples of correlation functions from MD simulation (black). Model correlation functions based on ML functions are depicted in red.

Figure 3. Comparison of simulated (black squares) and back-calculated (gray diamonds)R1,R2, andNOE rates for 6PGL. Calculations were performed
for residues with good convergence of the MD correlation functions. Simulated rates were obtained through eq 8 by using parameter sets obtained by
fitting MD correlation functions to the fOU model.

http://pubs.acs.org/action/showImage?doi=10.1021/jp205380f&iName=master.img-002.jpg&w=460&h=314
http://pubs.acs.org/action/showImage?doi=10.1021/jp205380f&iName=master.img-003.jpg&w=300&h=217
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Figure 4. Histograms ofML parameters obtained from synthetic NMR rates for residues indicated in Table 1.Monte Carlo simulations were performed
using 1000 realizations of the pseudoexperimental noise. Lines are depicted to guide the eye. For each residue, S2 and cel are indicated in the top graph by
solid and dashed lines, respectively.

http://pubs.acs.org/action/showImage?doi=10.1021/jp205380f&iName=master.img-004.jpg&w=322&h=616
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6PGL at two different magnetic fields (B0 = 14.1 and 21.1 Tesla).
These were obtained from the spectral density function in eq 8,
where parameters (S2,cel,α,τ) were extracted through least-
square fitting of the MD correlation functions, as detailed above.
In order to assess the quality of the fits and the possibility to
retrieve the original model parameters from these rates, a Monte
Carlo simulation with pseudoexperimental noise was performed.

A comparison of the simulated and back-calculated rates thereby
obtained is depicted in Figure 3. The agreement is clearly
satisfactory as rates can hardly be distinguished, and good
statistics is attested to by reasonably low χ2 values (on the order
of 2, the number of degrees of freedom).
However, there appears to be no straightforward correspon-

dence between the back-calculated relaxation rates and ML

Table 1. Median Values of Monte-Carlo-Fitted ML Parameters Obtained from Relaxation Rates for Residues of Figure 4,
Compared to Model Parameters Extracted from the MD Correlation Functions (in parentheses)a

residue S2 (rate fitting/MD) cel (rate fitting/MD) α (rate fitting/MD) τ (ps); (rate fitting/MD)

SER 115 0.5 [0.5;0.02] (0.50) 0.90 [0.93;0.11] (0.90) 0.45 [0.44;0.06] (0.45) 61 [63;33] (63)

ALA 116 0.56 [0.56;0.017] (0.56) 0.86 [0.91;0.19] (0.86) 0.50 [0.49;0.08] (0.50) 68 [71;44] (68)

GLU 117 0.44 [0.44;0.01] (0.43) 0.85 [0.85;0.04] (0.85) 0.65 [0.64;0.04] (0.64) 106 [106;22] (106)

ALA 118 0.65 [0.65;0.02] (0.65) 0.89 [0.90;0.08] (0.88) 0.63 [0.63;0.08] (0.63) 105 [104;40] (107)

GLU 147 0.51 [0.49;0.08] (0.51) 0.84 [0.86;0.10] (0.84) 0.44 [0.43;0.10] (0.44) 789 [797;325] (793)

LYS 195 0.50 (0.50) 0.89 (0.89) 0.47 (0.47) 129 (217)

ALA 232 0.59 [0.53;0.16] (0.59) 0.80 [0.85;0.15] (0.80) 0.47 [0.44;0.17] (0.47) 907 [21 ns;142 ns] (908)

ASP 233 0.69 [0.69;0.02] (0.69) 0.89 [0.92;0.12] (0.89) 0.55 [0.54;0.11] (0.55) 306 [286;117] (302)

THR 234 0.56 [0.56;0.01] (0.56) 0.86 [0.86;0.02] (0.86) 0.65 [0.65;0.03] (0.65) 230 [230;17] (230)

HIS 236 0.40 [0.39;0.02] (0.39) 0.82 [0.83;0.02] (0.82) 0.54 [0.54;0.04] (0.54) 750 [748;38](750)
aMeans and standard deviations of the parameters are indicated within brackets.

Figure 5. Histograms ofML parameters obtained from synthetic NMR rates for residues indicated in Table 2.Monte Carlo simulations were performed
using 1000 realizations of the pseudoexperimental noise. The symbols used are the same as those in Figure 4.

http://pubs.acs.org/action/showImage?doi=10.1021/jp205380f&iName=master.img-005.jpg&w=502&h=359
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parameters in general, and the assignment of correct values of
(S2,cel,α,τ) appears to be somewhat more complex.
ML Parameters Distributed about a Single Optimum. In

favorable cases, fitted values are distributed about a single
optimum for each parameter, which can therefore be safely
extracted from the spin relaxation rates. This corresponds in
practice to residues with relatively low order parameters S2,
usually associated with smaller values of the median λ1/2 = τ

�1 of
the relaxation rate distribution pα,τ(λ) in eq 7. Such a situation,
which is characteristic of residues located mainly in flexible
regions of the proteins such as loops, is illustrated in Figure 4
for a number of cases. It is seen that the histograms of fitted
values show unimodal distributions, which therefore allow
characterization of not only S2 and cel but α too. In this case,
histograms of fitted parameters are rather symmetrical, as
attested to by the presence of similar mean and median values.
The width of the distribution was typically quite large (see
Figure 4), imposing limits on the accuracy of α. However, the
important point is that values of α that are significantly lower
than unity can be extracted from the relaxation rates, therefore
demonstrating that the multiple time scale character of the
dynamical process can be retrieved. The corresponding param-
eter estimates for the residues presented in Figure 4 are
summarized in Table 1, where it is clear that MD correlation
function-fitted and relaxation rate-fitted parameters, estimated
by their medians, are clearly in very good agreement. This
therefore suggests that analysis of NMR relaxation along the
lines of this work allows one to characterize multiple time scale
processes through a single model that depends on a constant
number of adjustable parameters.
Multiple Minima of the Target Function and ML Parameter

Indeterminacy.At the other extreme, when cel� S2 is small, which
occurswhen S2 is close to unity (typically S2g 0.85), andwhen the
median λ1/2 = τ

�1 of the relaxation rate distribution adopts rather
higher values, (α,τ) pairs may not be determined acurately,
although the values S2 usually are. Instead, one obtains sets of
(α,τ) parameters that are distributed across wide regions of the
parameter space, which can likely be ascribed to the presence of
multipleminima of theχ2 function.Moreover, the closer S2 is to cel,
the more pronounced the effect. Examples of residues that fall into
this category are shown in Figure 5. It is seen that histograms of the
fitted α and τ are not clustered about a mean value, so that these
parameters seem to be, to some extent, undetermined.
Note that the arithmetic mean is not the most relevant

estimator in such skewed or even multimodal distributions, and
it is preferable to use the median as a statistical estimator.
Parameter estimates obtained for the residues presented in
Figure 5 are summarized in Table 2. Thus, for all of the residues

in the figure, order parameters and cel values are correctly
reproduced. Moreover, the medians of α are also in good
agreement with the true values, whereas differences are more
pronounced for τ. For residues dealt with in Figure 5, fitting yields
a significant number of α values above unity (despite good χ2

values), which obviously has no physical meaning. In practice, we
observed that the smaller the values of τ and of the differences
cel � S2, the more likely this situation.
However, it is interesting to note that in some cases, when

estimators are calculated on a subset of data where unphysical α
values are discarded (i.e., only 0 < α e 1 are retained), one
recovers more satisfactory results. An illustration of this is
provided by residue SER 120 (see Table 2), for which cel and
S2 values are very close (cel � S2 = 0.04) and τ is small. In
contrast, this is less critical for residue VAL 198, which has
a similar theoretical τ = 2.8 ps, but cel � S2 = 0.31. For this
latter residue, the median value of τ is close to the expected value
(4 ps).
In sharp contrast, overfitting does not seem to affect the

estimation of the order parameter. Indeed, the medians of the
order parameters S2 are, in general, in very good agreement with
the exact model values in most cases, even when fitted (cel,α,τ)
parameters turn out not to be physically relevant, although
statistically satisfactory. In Figure 6, the median of the order
parameters S2 extracted from the relaxation rates calculated
through eq 8 are depicted. These are essentially identical to the
ones obtained from the MD correlation functions (correlation
coefficient r = 0.99).
Various Limiting Cases of J(ω) that Explain ML Parameter

Indeterminacy. The occurrence of multiple minima of the χ2

Table 2. Same As Table 1 for Residues of Figure 5

residue S2 (rate fitting/MD) cel (rate fitting/MD) α (rate fitting/MD) τ (ps); (rate fitting/MD)

GLU 93 0.80 [0.68;0.23] (0.80) 0.90 [0.95;0.14] (0.89) 0.45 [0.47;0.35] (0.38) 968 [ 1 ms;6 ms] (1389)

THR 119 0.75 [0.73;0.08] (0.75) 0.87 [1.00;0.24] (0.87) 0.45 [0.44;0.24] (0.41) 255 [1.6 μs; 47 μs] (210)

SER 120 (filtered) 0.89 (0.89) 0.98 (0.98) 0.41 (0.22) 2 (0.03)

SER 120 0.89 [0.83;0.20] (0.89) 0.92 [0.97;0.22] (0.98) 1.29 [1.69;2.45] (0.22) 498 ps [0.6 s ; 0.8 s] (0.03)

VAL 143 0.79 [0.65;0.26] (0.80) 0.89 [0.91;0.08] (0.89) 0.58 [0.53;0.30] (0.57) 1367 [ 217 μs ; 1183 μs] (1424)

GLU 192 0.78 [0.78;0.03] (0.78) 0.90 [0.94;0.13] (0.90) 0.65 [0.62;0.17] (0.64) 400 [366;163] (399)

VAL 198 0.70 [0.70;0.02] (0.70) 0.87 [1.18;0.53] (0.88) 0.53 [0.55;0.16] (0.51) 29 [66;81] (24)

ILE 230 0.82 [0.73;0.19] (0.83) 0.90 [0.99;0.18] (0.90) 0.34 [0.45;0.36] (0.40) 470 [1 ms;8 ms] (312)

Figure 6. Comparison of the median of the order parameters S2

extracted from synthetic NMR rates (gray squares) and computed from
MD simulations (black circles). Error bars were calculated from the MD
trajectory (see text for details).

http://pubs.acs.org/action/showImage?doi=10.1021/jp205380f&iName=master.img-006.jpg&w=190&h=134


12378 dx.doi.org/10.1021/jp205380f |J. Phys. Chem. B 2011, 115, 12370–12379

The Journal of Physical Chemistry B ARTICLE

function, hence of possibly physically unsound parameters, can
be better understood by considering various limiting expressions
of the spectral density function of eq 8. For instance, when τf 0
and for α 6¼ 0, the spectral density function (eq 8) becomes

JðωÞ≈ S2τ0
1 þ ðωτ0Þ2

ð12Þ

whereas in the limit α f 0, one has

JðωÞ≈ S2τ0
1 þ ðωτ0Þ2

þ cel � S2

2
τ0

1 þ ðωτ0Þ2
ð13Þ

(this latter case includes the limits τ f 0 and τ f ∞, provided
that α/τ = cnst and α 3 τ = cnst, respectively). In qualitative
terms, this situation corresponds to a ML function that exhibits
an abrupt decay at short times followed by a practically constant
value. Note that eq 13 also corresponds to the limiting case τf
∞ and α 6¼ 0.
Obviously, these limiting expressions of J(ω) depend only on

the order parameter S2 and cel, while α and τ remain undeter-
mined. Therefore, in practice, fitting relaxation data to the fOU
model whenever τ is very small leaves α unresolved, and
conversely, for αf 0, τ may be assigned values that are equally
compatible with relaxation rates. As a direct consequence, which
was already mentioned, is that values of α > 1 may be obtained
through fitting in some cases. Of course, such values are not
compatible with the proposed fOU model as the representation
of theML function by eqs 6 and 7 breaks down and the associated
fractional differential equation fails to describe fractional Brow-
nian diffusion.37

The numerical features of rate fitting can thus be related to
eqs 12 and 13, which therefore provide one with a rationale for
interpreting possibly unphysical model parameters. Indeed, this
indicates that in the case of very short motional time scales of the
NH bond, only an order parameter can be safely extracted from
the data.
Interestingly, no model selection is required in our approach,

but simple inspection of the data permits determination of the
reliability of the model parameters. Overall, this method allows,

in favorable cases, detection and characterization of the presence
of multiple time scales of protein internal motions, using a model
with a constant number of parameters.
We add a final comment about the possibility of extracting ML

parameters from the relaxation rates obtained directly from the
MD simulation. Equation 10 was also used to calculate spectral
density functions for residues that fulfilled convergence criteria of
both the MD simulation and the correlation function. However,
MD correlation functions generally suffer from imperfections
due to various limitations that are inherent to the simulation
process, such as the finite length of the MD trajectory and the
associated incomplete statistical averaging. As expected, these
propagate to the spectral density functions and severly affect
spectral densities at high frequencies. In Figure 7a, J(ω) of
residue 117 is depicted. It is clear that spectral densities around
ωH are severely perturbed, although values of J(0) and J(ωN) do
not seem to be affected. This situation can be easily reproduced
by adding noise to the exact J(ω) given by eq 8 and is illustrated
in Figure 7b, where a Gaussian white noise with σ respectively
equal to 0.1 and 1% of the CI(t) value was added to the exact
correlation function. It is clear that the resulting perturbations of
J(ω) around ωH and ωH ( ωN are deleterious, resulting in
relative errors of the NOE values as high as ∼25%, hence
seriously altering the outcome of the rate fitting process.
Of course, this only demonstrates that this effect is really a
consequence of the nonideality of MD simulations, which
prevents one from using computed spectral density functions
to calculate NMR relaxation rates in a straightforward manner,
despite the fact that the fOU model adequately fits MD correla-
tion functions.

5. CONCLUSION

In this paper, we have demonstrated the feasability of a NMR
relaxation rate data analysis based on a fOU model of protein
internal dynamics. The physical basis of this model is rooted in a
microscopic description of protein dynamics as derived fromMD
simulations, which showed that the stochastic properties of
protein dynamics are faithfully accounted for by a fUO process.7

We have laid the basis for further application of our approach to

Figure 7. (Left) Spectral density function computed from MD simulation using eq 10 for residue GLU 117. (Right) Theoretical spectral density
function where Gaussian noise was added to the exact correlation functionCI(t) given by eq 4. The noise standard deviation σwas equal to 1 (solid line)
and 0.1% (dashed line) of the function value. High-frequency components of the spectral densities are strongly perturbed at J(ωH) and J(ωH(ωN).
ωH/2π = 600 and 900 MHz (squares).
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the analysis of experimental data, which will be the subject of
subsequent work.
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