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We present a model for the local diffusion-relaxation dynamics of the Cα-atoms in proteins describ-
ing both the diffusive short-time dynamics and the asymptotic long-time relaxation of the position
autocorrelation functions. The relaxation rate spectra of the latter are represented by shifted gamma
distributions, where the standard gamma distribution describes anomalous slow relaxation in macro-
molecular systems of infinite size and the shift accounts for a smallest local relaxation rate in macro-
molecules of finite size. The resulting autocorrelation functions are analytic for any time t ≥ 0. Using
results from a molecular dynamics simulation of lysozyme, we demonstrate that the model fits the
position autocorrelation functions of the Cα-atoms exceptionally well and reveals moreover a strong
correlation between the residue’s solvent-accessible surface and the fitted model parameters. © 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4718380]

Over the recent years, the multi-scale aspect of the in-
ternal dynamics of proteins and macromolecular systems in
general has attracted considerable interest on both the ex-
perimental and theoretical sides.1–9 A characteristic feature
of time correlation functions (TCFs) related to internal diffu-
sive motions is their strongly non-exponential decay. A clas-
sical empirical model is the stretched exponential function,
c(t) = c(0) exp (− [t/τ ]β) (0 < β ≤ 1), which has been used
to model, for example, the kinetics of protein folding.10 The
description of internal protein dynamics through a fractional
Ornstein-Uhlenbeck (fOU) process11–13 leads to the stretched
Mittag-Leffler (ML) function, c(t) = c(0)Eβ(− [t/τ ]β) (0 < β

≤ 1), which has proven to be a good model for the TCF
of position and distance fluctuations in proteins.3, 4, 14, 15 The
ML function is an entire function in the complex plane,16, 17

Eβ(z) = ∑∞
n=0 zn/�(1 + βn), and includes the exponential

function as a special case, E1(z) = exp (z). Since the mod-
els cited above capture the essential features of the measured
correlation functions by a few parameters, they have undoubt-
edly their merits as simple models for an ad hoc interpretation
of experimental data. They have, however, also the unpleas-
ant feature of becoming unphysical for short times. Due to
the “stretched” argument ∝tβ the time derivatives c(n)(0+) do
not exist if 0 < β < 1, although they should exist whenever
the time evolution of the dynamical system under consider-
ation is described by equations of motion.18–20 Consider, for
example, the diffusive motion of an atom in a dense molecular
system in thermal equilibrium. Here, the dynamical variable
is the deviation of the atom with respect to its mean position,
u = x − 〈x〉, and the relevant TCF is its position autocor-
relation function (PACF), c(t) = 〈u · exp(Lt)u〉. The symbol
〈. . . 〉 denotes an equilibrium ensemble average and L is the

a)Electronic mail: gerald.kneller@cnrs-orleans.fr.

time evolution operator for the whole system. It follows from
the construction of the PACFs that c(n)(0+) = 〈u · Lnu〉 are
well-defined ensemble averages which should exist. For non-
Hamiltonian diffusive dynamics, where L is a many-particle
Smoluchowski operator,21, 22

Ds = 1

2

d〈[u(t) − u(0)]2〉
dt

∣∣∣∣
t=0

= −c(1)(0+), (1)

defines in particular the short-time diffusion coefficient.
In this paper, we develop a realistic minimal model for

the backbone dynamics of proteins which leads to regular
PACFs for the Cα-atoms describing both the diffusive short-
time dynamics and the relaxation for long times. We assume
that u(t) is described by a stationary stochastic process and
write its autocorrelation function in the form

c(t) = 〈u2〉ψ(t/τ ), (2)

where ψ(.) is the normalized PACF for a dimensionless time
argument, with ψ(0) = 1, and τ > 0 sets the time scale. For
convenience we set τ = 1 in the following. To express the
multi-scale character of protein dynamics we write the PACFs
as a superposition of exponential functions,

ψ(t) =
∫ ∞

0
dλ p(λ) exp(−λt), (3)

where the relaxation rate spectrum p(λ) satisfies the normal-
ization condition

∫ ∞
0 dλ p(λ) = 1, as well as p(λ) ≥ 0. The

moments of the relaxation rate spectrum are given by

λk =
∫ ∞

0
dλ λkp(λ) = (−1)kψ (k)(0), (4)

and their existence depends on the behavior of p(λ) for λ

→ ∞. For λk to exist the relaxation rate spectrum must decay
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at least as fast as p(λ) ∼ λ−(k + 1 + ε), with ε > 0. In this con-
text it is worthwhile noting that the relaxation rate spectrum
corresponding to the stretched Mittag-Leffler function, ψ(t)
= Eβ(− tβ), which describes the PACF of the fOU process1, 14

behaves for large λ as pfOU(λ) ∼ λ−(β+1). For this reason none
of moments λk with k > 0 exist and ψ(t) is non-analytic at
t = 0.

To construct a model for p(λ), we make the following
assumptions:
(a) For a protein of finite size, the PACF of each Cα-atom is

characterized by a smallest relaxation rate, ηmin. In ther-
mal equilibrium, a protein performs fluctuations about its
equilibrium structure, and to a first approximation pro-
tein dynamics can be described by diffusion in an effec-
tive multidimensional harmonic potential energy.23, 24 If
ωmin is the smallest normal frequency for this harmonic
potential, then ηmin = γ −1ω2

min is the minimal relaxation
rate for the PACF of a given Cα-atom, where γ > 0 is a
positive friction constant which is essentially determined
by the atomic density of the nearest neighbors. With in-
creasing system size ωmin and thus ηmin tend to zero.

(b) In the limit of infinite protein size, the PACF of each
Cα-atom exhibits anomalous relaxation,

ψ(t)
t→∞∼ t−β 0 < β < 1, (5)

which is characteristic for relaxation processes in large
scale polymeric networks.2 Due to the slow decay of
the PACFs, the corresponding average relaxation times,
τ exp = ∫ ∞

0 dt ψ(t), diverge.
(c) The PACFs should be analytical in t = 0, i.e., they should

representable by a Taylor series in this point. Since ψ(t)
is the moment generating function for p(λ), all moments
λk must exist.

In order to fulfill the above requirements, the relaxation
rate spectrum must have the general form

p(λ; α, β) = θ (λ − α)p(λ − α; β), (6)

where θ (.) is the Heaviside unit step function, α is a di-
mensionless minimal relaxation rate (α = ηminτ ), and p(λ; β)
must be constructed such that ψ(t) has the asymptotic form
(5) if α = 0. For this purpose, one can rely on the fact that the
Laplace transform of ψ(t) is the Stieltjes transform of p(λ),

ψ̂(s) =
∫ ∞

0
dμ

p(μ)

s + μ
, (7)

p(λ) = 1

π
lim
ε→0


{ψ̂(−λ − iε)}, (8)

where ψ̂(s) = ∫ ∞
0 dt exp(−st)ψ(t) (R{s} > 0), and on a

Tauberian theorem,25, 26 according to which

ψ̂(s)
s→0∼ �(1 − β)

s1−β
(9)

follows from relation (5) and vice versa. Combining relations
(8) and (9), one can conclude that p(λ; β) must have the gen-
eral form

p(λ; β) = f (λ)
sin(πβ)

π

�(1 − β)

λ1−β
(0 < β < 1), (10)

where f(λ) is a yet undetermined function fulfilling
limλ → 0f(λ) = C. The constant C must be chosen such
that

∫ ∞
0 p(λ; β) = 1. We note that limβ → 1sin (πβ)�(1 − β)

= π . Relation (10) is a necessary and sufficient condition for a
slowly decaying PACF with the asymptotic form (5). To con-
struct p(λ) such that the existence of all moments λk and thus
the analyticity of ψ(t) in t = 0 is guaranteed we set

f (λ) = C exp(−βλ). (11)

The properly normalized relaxation rate spectrum then reads

p(λ; β) = λβ−1ββ exp(−βλ)

�(β)
, (12)

and ψ(t) is given by

ψ(t ; α, β) = exp(−αt)

(1 + t/β)β
. (13)

The corresponding cumulants, which are defined through

c
(k)
α,β = (−1)k

dk

dtk
ln(ψ(t ; α, β))

∣∣∣∣
t=0+

(14)

have the particularly simple form

c
(1)
α,β =1 + α, (15)

c
(k)
α,β = (k − 1)!

βk−1
, (k = 2, 3, . . .). (16)

From the form of ψ(t; α, β) and its cumulants, one derives the
consistent limits

lim
β→∞

ψ(t ; α, β) = exp(−[1 + α]t), (17)

lim
β→∞

p(λ; α, β) = δ(λ − [1 + α]), (18)

and we note in this context that ψ(t; 0, 1/(1 − q)) is the “Tsal-
lis q-exponential” which is considered in non-extensive sta-
tistical mechanics.27–29

To test our model, we performed a molecular dynam-
ics simulation of a lysozyme molecule in water for a subse-
quent analysis of the Cα PACFs with our model. The sim-
ulated system was set up by starting with the initial structure
193L of the Protein Data Bank (PDB).30 A total of 6775 water
molecules were added, resulting in a system of 22 295 atoms.
The simulations were performed using the NAMD program31

with the all-atom force field AMBER99SB (Ref. 32) and with
periodic boundary conditions. Electrostatic interactions were
computed using the particle mesh Ewald method.33 The inte-
gration time step was set to 1 fs and coordinates were saved
every 50 fs for further analysis. After a preliminary minimiza-
tion of the PDB structure, the system was first equilibrated at
constant temperature (298 K) and constant pressure (1 bar)
using a Langevin thermostat34 coupled with a Nose-Hoover
barostat.35 The equilibrated system was used for a production
run of 10 ns from which the PACFs of the Cα-atoms were
calculated. The normalized PACFs were fitted according to

c(t)

c(0)
≈ ψ(t/τ ; α, β). (19)
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FIG. 1. Four selected residues in the lysozyme molecule.

All fits show an excellent agreement with the simulation
data and we show here the results for four selected residues
which have been chosen according to their exposure to sol-
vent (see Fig. 1). Residues Ala 9 and Val 29 are buried in
α-helices, whereas Thr 47 and Gly 104 are located in loop re-
gions. Figure 2 shows the superposition of the simulated nor-
malized PACFs (dots) with the fits of ψ(t/τ ; α, β) (solid lines)
in form of a log-log plot. The fit parameters are given in the
plot. A coherent view of the results is obtained by correlating
the mean relaxation rate,

λ = (1 + α)τ−1, (20)

of all Cα-atoms and its spread,

σλ = (λ2 − λ
2
)1/2 = β−1/2τ−1, (21)

FIG. 2. Log-log plot of the simulated position autocorrelation functions for
the Cα-atoms of the residues shown in Figure 1 (dots) and fits of model (13)
(solid lines). For the simulated PACFs the smallest positive time argument is
t = 0.05 ps.

FIG. 3. Upper panel: Solvent accessible surface for the Cα-atoms in
lysozyme. Middle panel: Mean relaxation rate λ (blue line) and correspond-
ing standard deviation σλ (green line). Lower panel: Mean square position
fluctuation 〈u2〉 (blue line) and short time diffusion coefficient Ds (green
line). The additional graphics on top of the figure locates the secondary struc-
ture elements. Black rectangles indicate α-helices, grey rectangles short heli-
coidal motifs, and arrows beta sheets.

with the solvent-accessible surface of the respective residue.
Here, the total solvent-accessible surface of all atoms is con-
sidered. The fitted quantities λ and σλ for our model are, re-
spectively, given in the upper and middle panels of Fig. 3,
combining λ (blue line) and σλ (green line) in the middle
panel. On top of the figure we indicate the location of sec-
ondary structure elements and the vertical lines locate the four
selected residues displayed in Fig. 1. The results show that
the PACFs of Cα-atoms in solvent-exposed loop regions re-
lax one or two orders of magnitude more slowly than those
buried in helices, and the spread of the relaxation rates fol-
lows exactly the same trend, which is not trivial since the
mean relaxation and its spread are not described by the same
parameters. The backbone relaxation dynamics in secondary
structure elements is thus faster than the one in the more
floppy, solvent-exposed loop regions, and has a much stronger
non-exponential character. In this context, it is interesting to
look at the static position fluctuations of the Cα-atoms and at
the corresponding short-time diffusion coefficients, which de-
pend on both the amplitudes of the atomic motions and on the

Downloaded 15 May 2012 to 86.193.143.163. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



191101-4 Kneller, Hinsen, and Calligari J. Chem. Phys. 136, 191101 (2012)

relaxation dynamics. It follows from relations (1), (2) and (4)
that the short-time diffusion coefficient of our model is given
by

Ds = 〈u2〉λ. (22)

Both 〈u2〉 and Ds are displayed in the lower panel of Fig. 3.
As expected, the mean square position fluctuations are larger
in the flexible loop regions than in secondary structure el-
ements with higher rigidity. Astonishingly, the dynamical
mobility, which is reflected in the short-time diffusion coeffi-
cient, shows the opposite trend, although Ds ∝ 〈u2〉. The rea-
son is the dominating behavior of the mean relaxation rate
λ, which attains its peaks for Cα-atoms buried in secondary
structure elements and very low values for Cα-atoms in loop
regions. We explain this finding by a very fast relaxation dy-
namics through vibrational dephasing the first case and by a
much slower segmental diffusion in the second case.

In this Communication, we have demonstrated the use-
fulness of minimal models for the diffusion-relaxation dy-
namics of proteins, which are based on a few observations
and only basic assumptions concerning the physical nature
of diffusion processes in macromolecular systems. The use of
asymptotic analysis is a valuable tool in this context and prop-
erly describes the multi-scale aspect of protein dynamics. We
have shown that the parameters of our model are strongly cor-
related with the solvent-accessible surface of the Cα-atoms,
allowing for a physical interpretation of the diffusion-
relaxation backbone dynamics in proteins and relating to ear-
lier studies of protein solvent coupling (see, for example,
Ref. 36). In contrast to fractional Brownian dynamics models,
our model also yields a physically meaningful characteriza-
tion of the short-time backbone dynamics, which is reflected
in the short-time diffusion coefficients of the Cα-atoms.

P. Calligari acknowledges financial support by the
Agence Nationale de Recherche (Contract No. ANR-2010-
COSI-001-01).
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