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A least-constraint principle for population dynamics and reaction kinetics:
Modeling entropy-controlled chemical hypercycles
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In this paper, we investigate the treatment of constraints in rate equations describing the temporal
evolution of biological populations or chemical reactions. We present a formulation for arbitrary
holonomic and linear nonholonomic constraints which ensures the positivity of the dynamical
variables and which is an analog of Gauss’ principle of least constraint in classical mechanics. The
approach is illustrated for the replication of molecular species in the Schuster—Eigen hypercycle
model, imposing the conservation of the total number of molecules and the entropy production as
constraints. The latter is used to model the behavior of an isolated system tending toward
equilibrium and, for comparison, a stationary nonequilibrium state of an open system, which is
characterized by undamped oscillations. © 2009 American Institute of Physics.

[doi:10.1063/1.3253688]

A large class of problems in chemistry and biology can
be treated by dynamical models for a set of chemical or
biological species in which the time evolution of the latter is
described by a system of ordinary differential equations.
Well-known examples are the kinetics of chemical
reactions'” and the dynamics of biological species,3 in par-
ticular the Lotka—Volterra model for the population dynamics
of prey and predator fishes in the Mediterranean Sea.! The
interactions between the species can be either explicitly de-
scribed by the parameters and the structure of the equations
of motion, or by modeling them implicitly in terms of con-
straints describing their resulting effect. A simple example
for such a constraint is a fixed total number of individuals, as
a result of limited resources.

In classical mechanics, the treatment of constraints has a
long history and goes back to D’Alembert, Lagrange and
Gauss.™® Gauss achieved in particular a formulation of con-
strained classical mechanics in form of a least-squares prob-
lem for the particle displacements.7 The treatment of con-
straints in mechanical systems from a unifying mathematical
point of view has been recently discussed in Refs. 8 and 9,
where the equations of motion of a constrained mechanical
system are interpreted as a system of linear equations for the
components of two orthogonal vectors - the vector compris-
ing the constraint forces and the vector comprising the unre-
stricted components of particle accelerations. In the theory of
electrical networks, the solution of linear equations for mu-
tually orthogonal vector variables has been discussed in the
1950s by Bott and Duffin.'’ Following the lines of Refs. 8
and 9, we show here how constraints can be treated in the
equations of motion describing the time evolution of non-
negative dynamical variables, c(z), ...,c,(f), which repre-
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sent molecular concentrations or biological populations.
We suppose that the unconstrained equations of motion
have the general form

¢i=We) +cipe), i=1,....n, (1)

where ¢=(cy,...,c,)! is an n-dimensional column vector
comprising the dynamical variables, limcl_ﬁo+|¢l-(c)| < oo, and
0=lim, o+ Wi(c)<e (i=1,...,n). The superscript T de-
notes a transposition. Since ¢;=0 for ¢;— 0*, no continuous
trajectory ¢(¢) exists in which one or more concentrations
cross or even reach the line of zero concentration, given that
the initial values, ¢;(0),...,c,(0), are all positive. The dy-
namical system under consideration may be subject to my,
holonomic and m,, nonholonomic (differential) constraints of
the form

oi(e,r) = 0'50), i=1,...,m, (2)

2 AP =ben, i=1,....m, (3)
j=1

respectively, where my,+m, <n, the 0'50) are constants and the

o; are supposed to be differentiable with respect to all argu-
ments. Differentiating the holonomic constraints [Eq. (2)]
with respect to time leads to my, linear rate constraints which
may be combined with those defined through Eq. (3),

Aé=b. (4)

Here, A is an m Xn matrix, with m=m,+m,, and b is an
m-dimensional column vector. The elements of A and b read
explicitly (the arguments are omitted)

daldc; if i=1,...,my, j=1,...,n

- 5
PT\AL, it i=my+ L m =1, ®)

A
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—-daj/ot if i=1,...,my, ©)
b;= . 6
! b,(-fz,,h if i=my,+1,...,m.

In the following, we suppose that rank(A)=m, i.e., we con-
sider only independent constraints.

Equation (4) can be viewed as an underdetermined sys-
tem of m equations for the n components of the rate vector
¢=(¢,...,¢,)T. The latter may be decomposed into two or-
thogonal components, ¢, and ¢, the first of which is in the
null space of A, i.e., A¢;=0, and the second of which is in its
orthogonal complement. In the following, these two vector
spaces are denoted by V), and V', respectively. Their dimen-
sions are dim(V|)=n—m and dim(V | )=m. By definition, the
rows of A are a basis of V,, such that ¢, =A”v where v
=(v,...,v,)T contains the m coordinates of ¢, in that basis.
Inserting ¢=¢,+A”w into Eq. (4) shows that AATv=b. The
vector of all possible rates ¢ which is compatible with the
imposed constraints [Egs. (2) and (3)] is thus given by

é = é” + A+b, (7)
where the matrix
At = AT(AAT)_1 (8)

is the Moore—Penrose inverse of A if the latter has full rank,
11-14
m.
In order to ensure that the imposed Egs. (2) and (3)
are verified we introduce n new constraint fields, z;(c)
(i=1,...,n), and write Eq. (1) in the form

¢;i=Vc)+c[ple)+z(e)], i=1,...,n. 9)

The substitution ¢;(c) — ¢;(c)+z;(c) leaves the general form
[Eq. (1)] of the equations of motion unchanged, guaranteeing
thus the positivity of the resulting solutions for finite con-
straint fields. To compute the latter we introduce the matrix

G =diag(cy, ... ,c,) (10)
and write Eq. (9) in matrix form,
¢=W(c)+Glod(c) +z(c)], (11)

where W=(¥,,...,¥) and ¢=(¢,,...,¢,)". Inserting
here Eq. (7) leads to a system of n linear equations for the
vector variables ¢, and z, which are both unknown, ¢
+A"b=W(c)+G[ P(c)+z(c)]. Introducing

h=A"b-V-Gao, (12)
we may write this system in the compact form

Gz-¢;=h. (13)
If one requires that z be orthogonal to ¢,

z7¢,=0, (14)

Equation (13) defines a Bott-Duffin problem,'® which has a
unique solution for ¢, and z. It follows from Eq. (14) that
ze) |, i.e., zcan be expressed as a linear combination of the
rows of A, z=AT\. A system of linear equations for the
components of the column vector A=(\,...,\,,)’ can be
established by inserting z=A’X into Eq. (13) and by multi-
plying with A from the left. On account of A¢;=0 and
AA*b=Db it follows that AGA’A=Ah=b—A(¥+G ¢). The
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condition det(AGAT)+# 0 for the existence of a solution A
does not necessarily imply that G has full rank n. One or
more concentrations ¢; may be zero, as long as
rank(AGAT)=m. Solving the above system of linear equa-
tions for A leads to

z=G'h, (15)
where the matrix
GV =AT(AGAT)'A (16)

is the Bott—Duffin inverse of G with respect to the vector
space VL.S’IO

Equation (14) can be given a more intuitive interpreta-
tion, noting that the variations of the concentrations at time
t+dt are determined by the possible variations of the rates at
time ¢ and that the latter are restricted due to the imposed
constraints,

oc(t + dt) = 6¢(2)dt = 6¢,(t)dr. (17)

Equation (14) is thus equivalent to

n

(et +di) = >, 7{(t)8c;(t + dr) =0, (18)
i=1

which recalls D’Alembert’s principle of virtual displace-
. . . 5,69,15,16

ments in classical mechanics. In the same way as

D’Alembert’s principle was reformulated by Gauss as a

minimum principle (the principle of least constraint), Eq.

(18) can be formulated as a “least constraint problem for rate

equations.” For this purpose we introduce the function

fle)= ; 2—[6

—cipie) - q’i(c)]27 (19)
and we claim that the system evolves in time such that f
takes its minimum with respect to ¢y, ...,¢, under the im-
posed constraints. This condition leads to
n f n 1 . n '
2 0 oty= 2 e (@) = Wile)]dty = 2 58 = 0.
i=1 i=1 i=1

(20)

If no constraints are imposed the variations &¢; are arbitrary
and Eq. (20) implies that the constraint fields vanish, z,=0
(i=1,...,n), which leads again to the free equations of mo-
tion [Eq. (1)]. If constraints are imposed, the rate variations
must fulfill the condition 6¢=6¢; € V), on account of Eq. (7).
In this case, the necessary condition for a minimum of f
leads thus to G~ '[¢-G¢(c)—-W(c)]=zeV,. This corre-
sponds exactly to the general form [Eq. (11)] for the equa-
tions of motion, supplemented by Eq. (14) for the constraint
forces. It must, however, be observed the least constraint
formulation implies that all concentrations are nonzero.

We apply now the method presented above to study the
impact of two particular constraints on the dynamics of a
cyclic network of autocatalytic reactions which has been in-
troduced by Figen and Schuster as a model for prebiotic
evolution.'” We confine our study to a variant of the replica-
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tion scheme, which is referred to as elementary hypercycle.
The dynamics of a group of n species is then described by
the equations of motion

Ci=knCiCis1,  Cpp1 =€y (21)

Using the notation introduced above, we have here ¢;
=kyc;y and W;=0. The rate is controlled by the kinetic con-
stant k;, > 0.

In absence of any additional conditions, the dynamics
described by Eq. (21) leads to unlimited, exponential growth
of the individual species. Such a behavior is certainly not
realistic in view of limited resources of energy and mol-
ecules. A simple and crucial constraint to consider is there-
fore the constant population constraint, > which we formu-
late in the most simple form as

Z c;=1. (22)

Here, we define c¢;=N;/N, where N, is the number of mol-
ecules of species i and N=2_,N; is the total number of mol-
ecules. Experimentally, such a constraint is realized by a so-
called chemostat in which the total number of molecules is
kept constant, but which allows for variations in the decom-
position {N,...,N,}. These variations may be due to a
chemical reaction in the reaction vessel or due to an ex-
change with the exterior.

The second constraint we impose concerns entropy pro-
duction and has not been considered so far. It is motivated by
the fact that molecular replication must be considered in non-
equilibrium conditions, since chemical reactions evolve
irreversib]y.l’19 The entropy change in the system may be
decomposed as dS=dS;,+dS.,,, where the indices “int” and
“ext” stand for “internal” and “external” with respect to the
reaction vessel, respectively. From a thermodynamic point of
view, the latter is a priori an open system, allowing for ex-
change of matter across the boundaries. The internal entropy
change is due to the irreversible process of entropy produc-
tion by the chemical reaction, dS;,;>0, whereas dS.,; is due
to reversible exchanges with the exterior. Here, we suppose
that the system is close to equilibrium, such that the expres-
sions for the thermodynamic potentials from equilibrium
thermodynamics can still be used.! Introducing the entropy
per molecule, s=S/N, we have then Tdsy=—3", wdc™,
where dci-nt is the change of c¢; due to the chemical reaction in
the vessel, u; the corresponding chemical potential, and 7 is
the temperature. If the reaction vessel is isolated, we must
have s=s;,,>0 and c',:c"}m. In order to construct an explicit
constraint for the evolution of the entropy, we impose

5(1) = 50+ (seq = so)[1 —exp(-#/7)], (23)

where sy=5(0) and s.,>s,. The parameter 7, sets the time
constant of the exponential relaxation process. Since s
>, we get a positive entropy production, $(¢) >0, and s(z)
exhibits a concave form, in agreement with general assump-
tions concerning reactions in nonequilibrium conditions (see
for example Ref. 20). Using the time derivative of Eq. (23)
as entropy production rate, we obtain a linear constraint for

the velocities ¢4, ... ,¢,,
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n T _
S ey - D00 g, (24)
i=1 T

S

For the chemical potentials, we suggest the form w,= ,ul(,o)

+kgT In(c;/ Z]_,c;), which is suitable for mixtures.”' Here, kg
is the Boltzmann constant and kg7 sets the scale for the
chemical potentials. The differences in ,uf,o) may be attributed
to the differences in states of the polyfunctional
molecules”™* that form hypercyclic catalytic chains or reac-
tion networks. The equilibrium entropy is expressed in the
form seq=—kp2i_ c;? In ¢{4. The equilibrium concentrations
fulfill chocexp[—,uio)/ (kgT)] and can be obtained by mini-
mizing the Gibbs free energy Fo=2_, u,c; subject to the CP
constraints.

Alternatively, we can consider an open system, where
the entropy production in the reaction vessel is compensated
by a negative entropy flow into the vessel, such that s=s;,
+5.=0. Assuming that external entropy changes are only
due to particle flow, we have Ts=—3" u,(¢™+¢™), where
¢™ denotes the change of concentration of species i due to
an exchange of matter across the boundaries of the system.
With ¢;=¢"+¢ one obtains instead of Eq. (24)

2 pic; =0. (25)
i=1

The constraints introduced above lead to matrix
elements A;;=0;+u;5,, where &; is the Kronecker
symbol. The elements of b=(b;,b,)" are b;=0, by=—T (s,
—so)exp[-t/ 7]/ 7, for the Egs. (22) and (24) and b;=0, b,
=0 for the Eq. (22) and (25). Straightforwardly, we obtain

[G(J__])]i,j = nM[Mi/‘l’j - M (i + Mj) +M,], (26)

where the “moments” M, are given by M, =3 ujc,
g=1,2 and 7y=1/(M,—M?3), and the vector of constraint
fields is found to be

zi= vl (71 + oM ) i — (M + oM, ] (27)

where 7g=k 2 ciCiv1, M =by—kn 2L CiCiv1 1> and €y =c.

Figure 1 shows a numerical solution of the equations of
motion for n=>5 species in the hypercycle. The corresponding
model parameters are given in the figure caption. The dotted
black lines show the effect of the constant population con-
straint alone, which leads to undamped phase-shifted nonlin-
ear oscillations in the five concentrations, c¢,...,cs. The
same observation has been reported some time agol9 and a
similar behavior is found for the well-known Lotka—Volterra
model,* although in this case the conserved quantity is not
the total number of individuals. Imposing in addition the
entropy production constraint [Eq. (24)] corresponding to an
isolated system leads to a damping of the oscillations in the
individual concentrations, which approach each its respective
equilibrium value (solid black lines). Imposing instead zero
entropy production, which corresponds to an open system,
leads again to undamped oscillating populations (solid gray
lines). We note here that the development of oscillations
depends on the choice of the ,u(o) (i=1,...,n), which

i

determine the equilibrium concentrations. If the vector ¢4
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FIG. 1. Dynamics of a hypercycle with n=>5 populations for different types
of constraints: (a) constant total population (dotted black line), (b) constant
total population and entropy production (solid black line), (c) constant total
population and zero entropy production (solid gray line). The calculations
have been performed for 7,=30 a.t.u. (arbitrary time units), a rate constant
ky=3/a.tu., and p”=(0.1+0.05)ksT (I=1,...,5).

=(c§9,...,ci97 is close to the boundaries of the simplex de-
scribed by = ,c;=1, oscillations are unlikely to develop.
The above example illustrates that the combination of
holonomic and nonholonomic constraints in the dynamics of
chemical reactions and biological populations can be el-
egantly handled by using the same mathematical tools as for
the treatment of constraints in mechanical systems. One can,
in particular, formulate a principle of least constraint, in anal-
ogy with Gauss’ principle in classical mechanics. The possi-
bility to treat also nonholonomic constraints opens a route to
introduce concepts of nonequilibrium thermodynamics into

J. Chem. Phys. 131, 171101 (2009)

reaction kinetics, leading to meaningful results, such as
damping effects though entropy production.
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