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Recent experimental and simulation studies show that the fractional Ornstein-Uhlenbeck process
describes well the single particle motions in internal protein dynamics. Here the authors use this
model to estimate the influence of finite instrumental resolution on elastic neutron scattering
intensities from hydrated protein powders. They give, in particular, an estimation of the attenuation
factor for the observed atomic position fluctuations, assuming a Gaussian and a triangular resolution
function. © 2007 American Institute of Physics. [DOI: 10.1063/1.2711207]

I. INTRODUCTION

A large part of the investigation of protein dynamics by
neutron scattering techniques has been devoted to studying
the socalled “glass transition,” which occurs in many pro-
teins at about 200 K.'™ Below that temperature one observes
essentially harmonic vibrations about a local minimum of the
potential energy and above 200 K an onset of diffusive mo-
tions. On the time scale of neutron scattering experiments,
which is situated in the picosecond to nanosecond range, the
diffusive motions are dominated by “liquidlike” rigid-body
motions of the protein side chains.* One must, however, be
aware that relaxation processes in proteins cover an enor-
mous spectrum of relaxation times, ranging from picosec-
onds to hours. This has been evidenced by recent studies of
the functional dynamics of proteins based on fluorescence
correlation spectroscopy5 (FCS) and by studying the kinetics
of ligand rebinding upon flash photolysis.6 These techniques
are sensitive to protein relaxation dynamics in the time range
of milliseconds to hours. Such slow stochastic processes are
characterized by a strongly nonexponential decay of the time
correlation functions under consideration, indicating a broad
distribution of relaxation rates. To account for this fact, the
kinetic studies mentioned above have been phenomenologi-
cally described by a time correlation function which is the
solution of a fractional differential equation.7 A slightly more
physical model has been used to interpret the FCS experi-
ments, assuming that the distance between different parts of
a protein, here a fluophore and a quencher, can be described
by fractional Brownian dynamics (fBD) in a harmonic
potential.s’8 The model is a generalization of the well known
Ornstein-Uhlenbeck process9 and accounts for the spatial
confinement of internal protein motions as well as for a
broad spectrum of relaxation rates. A characteristic feature of
the model is the absence of a typical time scale and a corre-
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sponding fractal behavior of the time correlation functions
and their Fourier spectra. Recent investigations have, in par-
ticular, shown that fBD in a harmonic potential captures also
well the relaxation dynamics of proteins on the much shorter
pico- to nanosecond time scale and may thus be used to
interpret quasielastic and elastic neutron scattering (QENS/
ENS) experiments.lo’11 Static correlation functions are the
same as for the simple harmonic oscillator model, which has
been used to relate the average position fluctuation to an
effective force constant characterizing the “resilience” of a
protein.12 Essential mechanical properties and multiscale re-
laxation are thus covered by the same theoretical description,
and contact can also be made with the more realistic multi-
component Gaussian model of coupled overdamped Lange-
vin oscillators.”> We note here that the model of a particle
diffusing in a spherical cavity14 has been frequently used in
the past in order to describe QENS studies of intramolecular
protein dynamics. This description accounts for spatial con-
finement of atomic motions inside a protein, but not for mul-
tiscale relaxation processes, which are characteristic for pro-
tein dynamics.

The purpose of this article is to use fBD in a harmonic
potential as a model for correcting elastic neutron scattering
experiments for unwanted quasielastic contributions due to
finite instrumental resolution. Although such experiments do
not aim at exploring the atomic dynamics in proteins, they
are biased by slow relaxation processes which are too slow to
be detected by the neutron spectrometer and are counted as
“elastic.” Recently this problem has regained interest and has
been tackled by different research groups.ls’16 Here we use
an analytical approach which relies on the capability of the
fBD model to extrapolate the slow relaxation dynamics a
priori to arbitrarily long time scales. The article is organized
as follows: In Sec. II we present the fractional Ornstein-
Uhlenbeck process as a model for internal protein dynamics
and its implications for the resulting correlation functions
measured in QENS and ENS experiments. Section III is then
devoted to the application of the model to correct measured
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elastic intensities for unwanted quasielastic contributions and
the article is concluded by a short résume of the results.

Il. FRACTIONAL ORNSTEIN-UHLENBECK
PROCESS

A. Fokker-Planck equation

In the following we consider a particle whose dynamics
can be modeled by fBD in a harmonic potential of the form
(K>0)

V(x) = 1Kx%. (2.1)
For our purposes it is sufficient to consider a one-
dimensional problem of a particle diffusing along the x co-
ordinate in a Cartesian coordinate system. From a probabi-
listic point of view, fBD in a harmonic potential is described
by a phenomenological, non-Markovian extension of the
Fokker-Planck equation for the Ornstein-Uhlenbeck (OU)
process'’

IP(x,1)

Py (2.2)

= FI—HODII _QEFPP(X, t) .

,1p) denotes the transition probability
density for a move from position x, at time 7 to position x at
time ¢, and Lgp is the Fokker-Planck operator]g‘19

P (2.3)
=np—x+D—. .

P n&x ox?

The two positive constants 7 and D are, respectively, the

relaxation rate and the short-time diffusion constant of the

OU process, which are related by the mean square position

fluctuation of the diffusing particle,

D k
2 *BY
xX)y=—= . 2.4
(=== (2.4)
As usual, kz denotes the Boltzmann constant and 7 the ab-
solute temperature in Kelvin. The operator D % stands for a
fractional derivative of order 1—a.” Its action on an arbitrary
function f(-) is defined through

(1=

T(a) S, (25)

oD (1) = f dr
where I'(-) is the Gamma function.”’ The time scale param-
eter 7 is introduced to ensure the correct physical dimension
of the right-hand side of Eq. (2.2).

The solution of the fractional Fokker-Planck equation
[Eq. (2.2)] has been described in the literature,™ 81017 and we

give directly the result
x' X0
n = Hl’l =
< \5> ( \"2>

(2.6)

exp(—x 2/2)2 1
’27T =0 2"'n!

/0)

XEa(_ ”ﬂafa)-

Here H,(-) are the Hermite polynomials®’ and x’ are the

scaled positions
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‘== (2.7)
x'= ) .
G2
The symbol E,(-) denotes the Mittag-Leffler function,”’
which has the series representation (ze()

E (2) = 2

o L'(1 +ak)

(2.8)

and 7, is the scaled, “fractional” relaxation constant
No=T . (2.9)

One observes that the normal exponential function is re-
trieved from the Mittag-Leffler function by setting a=1.

B. Position autocorrelation function

It is illustrative to consider the position correlation func-
tion associated with the stochastic model described above,

cxx(t)zjfdxdeP(x,t;xo,O)xxo. (2.10)
Assuming a stationary process, the joint probability density
takes the form P(x,t;x,, 0)Py(xp), where
0) is the solution of the fractional Fokker-Planck
equation [Eq. (2.2)], which is given by expression (2.6), and
Py(+) is the equilibrium density probability, which is defined
as Peg(x)=lim,_ 0). From Eq. (2.6) one obtains

2
7 /a3
Pegl)= Vmexp(—i)’

and the resulting position correlation function is found to be
) = COVEq(= 7t") (1= 0). (2.12)

In the following we assume that c,(-) is a classical time
correlation function and thus even in time, ¢, (—t)=c,(7).
Introducing the time scale

=1, (2.13)

(2.11)

the normalized position autocorrelation function,
1) = e (DHXP) = e (1),

which will be considered in the following, takes the form
Wt) = E (- [|t)/7]Y). (2.15)

Many interesting features of () follow from its Laplace
transform, which is defined through 1,Ab(s)= Jodt exp(—st)ydz)
(M{s}>0). From the series expansion [Eq. (2.8)] of the
Mittag-Leffler function one derives
v
s(1+[st]™®"

(2.14)

s) = (2.16)

Since (-) is even in time, its Fourier transform, zZ(w)
=[*"dt exp(—iwt)YAt), can be related to its Laplace trans-

form via :If(w):2i)ﬁi{42r(iw)}. From Eq. (2.16) we obtain
W) =L, (),

where L, (o) is the generalized Lorentzian''

(2.17)
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FIG. 1. Generalized Lorentzian L, (w) for a=0.5 (solid line) and a=0.98
(broken line). The inset shows the corresponding relaxation rate spectrum,
pa,l()\)'

27sin(a/2)
|w7(|or®+2 cos(am/2) + |w™%)’

La,r(w)= O<a$1

(2.18)

The nonexponential character of ¢(r) is reflected in its
long time behavior, which can be derived from its Laplace
transform [Eq. (2.16)] for values of s close to zero. Here

#(s) =~ r(sD*!, yielding

(/)™

"o =~

I'l-a)

A more detailed description of the nonexponential decay of

(1) is contained in the relaxation rate spectrum, p, (\),
which is defined through the relation

for > 7. (2.19)

i) = f dNp o Nexp(=N]). (2.20)
0

It follows from (0)=1 that p,(\) is normalized,

Jod\p,(N)=1, and the Laplace transform of #(r) is related

to p, (\) through a Stieltjes transform

5 - Pa T()\)
= d\N———. 2.21
i(s) fo Y (2.21)
The inversion of the latter is given by22
1.
PaAN) = lim —3{(— [\ +ie€])} (2.22)
e—0" ™
and leads to*'""
T (7N sin(7ra)
N)=— , 0<a<l.
ParAN) (TN +2(7\) ¥ cos(ma) + 1 “
(2.23)

The influence of the parameter @ on J/(w) and the corre-
sponding relaxation rate spectrum are shown in Fig. 1. The
time scale parameter 7 is here set to one. One observes that
Pai(N) is centered on =1 if @— 1, where (r) becomes an
exponential and its Fourier spectrum tends to a normal
Lorentzian. In the case of a=0.5 the relaxation rate spectrum
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exhibits, in contrast, increasing contributions from small re-
laxation rates and the quasielastic scattering profile is almost
featureless.

C. Neutron scattering law

To make contact with neutron scattering experiments we
assume that the internal dynamics of a protein can be de-
scribed by a “representative” scattering atom, knowing that
neutron scattering is dominated by incoherent scattering
from the hydrogen atoms.”** We assume that the system
under consideration is a hydrated powder, such that transla-
tional and rotational diffusions of whole proteins can be ne-
glected. Since such a system is isotropic we can effectively
consider the projection of the atomic dynamics on the mo-
mentum transfer vector q, whose direction is chosen to be
along the x coordinate of a Cartesian coordinate system, q
=ge,. Here ¢ is the modulus of q and e, is the unit vector
along the x coordinate. The incoherent intermediate scatter-
ing scattering function is then given by

I(C]J) =J J dXdXOP(x3t;x090)eXp(iq[x_'XO])s (224)
where the joint probability is again written as P(x,7;x,,0)

=P(x,|xy,0)Peq(xo). One finds the following expression for
the (incoherent) intermediate scattering function: "

2n/ . 2\n
I(q.1) = exp(~ ¢*(x) 2, q}i—),”Ea(— nnt®).  (2.25)
n=0 .

Using the definition of the dynamic structure factor,

S(g,w) = %wa drexp(—iwt)l(q,t), (2.26)

one obtains from Eq. (2.25)

C o 2ny2\n
Stg.0) =exp(- 6] )+ 2 0L Lt

n=1

(2.27)

where L, ,(-) is the generalized Lorentzian defined in Eq.
(2.18) and the time scales 7, are defined as
7, =m Ve, (2.28)
with 7 given by relation (2.13). We note that
EISF(g) = exp(- ¢*(x%) (2.29)

is the elastic incoherent structure factor (EISF), which has a
Gaussian form in this model and which is identical to the
EISF corresponding to the standard Ornstein-Uhlenbeck pro-
cess.

lll. ESTIMATING THE EISF AT FINITE RESOLUTION
A. Approximation for the measured EISF

In the following r(w) is the resolution function of a neu-
tron spectrometer, which is supposed to satisfy the normal-
ization condition
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f dor(w) =1,

and the measured dynamic structure factor is given by the
convolution integral

G. R. Kneller and V. Calandrini

(3.1)

Sm(q,w)=f do'r(w-0")S(q,0'). (3.2)

Convolution integrals of the above form will be abbreviated
as (f+*g)(w) in the following. We confine ourselves to the
region of small ¢ values, where the Gaussian approximation
of I(g,7) can be assumed to be valid for any dynamical
model.”” In this case we have

S(g,w) = exp(- q2<x2>){ Sw) + q2<x2>iLa,T(w)} :
(3.2")

The resolution function r(w) is supposed to have a charac-
teristic width I', which we define to be the half width at half
maximum (HWHM), in order to allow for comparisons be-
tween different resolution functions. The normalized mea-
sured elastic intensity is then given by

dwS,(q,0)

EISF =
nl4) f;dwr((u)

(3.3)
where r(w)=S,,(0,w), irrespective of the dynamical model.
For small ¢ values one may use approximation (3.2') to ob-
tain

EISF,,(q) = exp(= ¢*(x*))(1 + £&5*(x%)), (3.4)
where ¢ is defined as
Hdol2a(r+ L, ) ()
I a,T
ftgdwr(a)) (3.5)

We note here that most authors define the measured elastic
intensity as Sm(q,O),ls’16 leading to a correction factor

_12m(r % L, ,)(0)

) (3.6)

The above expression is, however, not well defined in the
limit I'— 0, where the resolution function becomes a Dirac
distribution, r(w)— &(w). It will be shown later that defini-
tion (3.6) leads nevertheless numerically stable results for &,
which are similar to those obtained from definition (3.5), if
I'7 stays well above machine precision.

The measured position fluctuation is obtained from the
EISF via

(= — &4;2 In(EISF, (q)). (3.7)

using small values of ¢, where the Gaussian approximation is
valid. From expression (3.4) one obtains

(P = ()1 = 8,

using the approximation In(1+x) =~ x for |x| < 1. Since & is by
definition positive, finite instrumental resolution leads thus to
an underestimation of atomic position fluctuations.

(3.8)
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B. Regularization of L, .(w)

The calculation of the attenuation factor ¢ defined in Eq.
(3.5) requires the evaluation of the convolution integral

(r*Ly)(w)= f*“ do'r(o-o')L, (o)

and thus an integration of L, ,(w") over the singularity of the
latter at w’=0. For the following calculations we will regu-
larize L, (), such that such integrations are possible. For
this purpose we define

i, (1) = lr)exp(- 7)), (3.9)

where () is given by Eq. (2.15) and >0 is a small posi-
tive parameter, such that

LY (o) =2R{lio+ 1)}, (3.10)
where (s) is given by Eq. (2.16). Writing

n+io=aexp(ip), @@=\’ + 7, (3.11)
one obtains

L7 ()= 2{(@7)* cos ¢+ cos([a—1]¢)} (3.12)

(@7 +2 cos ap+ (@19

For 7— 0 we have ¢=/2 and L, (w) given in Eq. (2.18) is
retrieved. In contrast to the latter, the regularized version
stays finite at w=0,

2

L0 =

(3.13)

C. Estimating the position fluctuations for a Gaussian
resolution function

Let us suppose that the instrumental resolution of the
spectrometer, which is used to measure the neutron scattering
intensity, is given by a normalized Gaussian (o> 0),

B exp(— w*/26%)

r(w) — , (3.14)
\2mo
with a HWHM of
I'=1.170. (3.15)

In order to estimate the attenuation factor ¢ defined in Eq.
(3.5), we use the convolution theorem of the Fourier trans-
form and write

L(r * L, )(w)= lim f dt exp(— iwt)R(z)
2 ’

7—0+ J 0
XE (= [|tl/7])exp(= 7lt)),  (3.16)
where
_1 22
R(f) = exp(=50°7) (3.17)

and E,(-[|t|/7]%) are, respectively, is the inverse Fourier
transform of r(w) and L, (w). At this point one can use the
decomposition (2.20) for y(r)=E(-[|1]/ 7]*), where p, ,(\)

Downloaded 03 Apr 2007 to 195.221.0.6. Redistribution subject to AIP license or copyright, see http:/jcp.aip.org/jcp/copyright.jsp



125107-5 Elastic neutron scattering from proteins

1

—  A=001,0=1
_____ A=10,0=10
........ A=1,0=001

10

FIG. 2. The function h(w,\) given by expression (3.20) for three combina-
tions of A and the width parameter ¢ of the Gaussian resolution function.

is given by expression (2.23). Defining the auxiliary function

+00

hw,\) = dt exp(— iwt)R(t)exp(— \|t

—00

)\ (3.18)
one obtains thus

L(F*La () =f d\p o (Nh(w,N). (3.19)
2m ’ 0 ’

The above expression can be computed by numerical inte-
gration, taking advantage of the fact that an analytical ex-
pression for A(w,\) can be easily obtained. Using the
Laplace transform of Rg), which has the form?® #(s)
=exp(s?/(20?))erfc(s/(oy2))/(20\2), and that the Fourier
transform of an even function f(¢) is related to its Laplace
transform through f(w)=2R{f(iw)}, we obtain from Eq.
(3.18) h(w,\)=2R{Aiw+\)}. In explicit form one has*®

exp((\2 = w)/207)
2mo

X (i)%{erfc( w) }cos()\—w>
\r’20’ 0'2
+3{erf()H-—m>}sin()\—w)).
\/50' 0'2

Figure 2 shows the function i(w,\) for three different com-
binations of A and the width parameter o of the resolution
function.

h(w,\) =

(3.20)

h(w,\) =—

J. Chem. Phys. 126, 125107 (2007)

Since p,, (\) is singular at A=0, it is more convenient
for the numerical evaluation of expression (3.19) to intro-
duce the new variable

u=(An“ (3.21)
Redefining at the same time
w—wr, oc—or, I'=I7 (3.22)
yields
%T(r *Lo)(w) = 77_;,[0 duu2 + ZZIZE)Z(C::a) + lh(w,u““).
(3.23)

For 0 <a <1 no singularities are encountered in the integra-
tion interval (0,). Using expression (3.23), the attenuation
factor ¢ may be finally expressed in the dimensionless form

_ Jrdw(1727)(r # Ly ) ()
[ dor(w)

(3.24)

D. Estimating the position fluctuations for a triangular
resolution function

We assume now that resolution function of the spectrom-
eter is triangular. Instead of Eq. (3.14) we have now
(w.>0)

Vo (1 -|ol/o,) if |o| < o,

Hw)=

. (3.25)
0 otherwise,

and the HWHM is given by
I'=wJ2. (3.26)

To evaluate expression (3.16) we need to compute A(w,\)
for a triangular resolution function. Using expression (3.18),
the inverse Fourier transform of expression definition (3.25),

2 sin’(w,#/2)
T
and h(w,N)=2R{/io+\)}, where #(s)=2w, arctan(w,/s)

—slog(1+[w?/s*])/ (2mw?), we find that™

R(t) = , (3.27)

arg(1 — i\ +iw)) arg(l +ioJ\ +iw)) o arg(l + w2/(\ +iw)?)
+ +

TW, TW,

N og(@\ 20?0t/ (N + 0®)* + (1 + (N = 0) 02/ (N2 + 0?)?)

2

KON

2 ﬂ'wf

Figure 3 shows the above function for three different combi-
nations of A\ and the cut-off frequency w,.

E. The limiting cases I'->0 and I' - «

We will now show that the attenuation factor & defined in
Eq. (3.5) has the rigorous bounds 0<¢<1, with ¢—0 for
I'—=0and £€— 1 for I' — . For this purpose we introduce the

(3.28)

dimensionless frequency Q=w/I" and the notation r(w;I")
for the resolution function, in order to explicitly indicate the
HWHM as a parameter. Since

1l ([w
ﬁw;F):Fr(F;l),

the attenuation factor ¢ may be cast into the form

(3.29)
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FIG. 3. The function h(w,\) given by expression (3.28) for three combina-
tions of A and the (angular) cut-off frequency w, of the triangular resolution
function.

. DS dO(1/2m) [*2dQ Q- Q' DL (TQ)
B HaQr(Q:1) '
(3.30)
Here we have used the regularized form L (-), which stays

finite at w=0. In the limit ' — 0, i.e., for an ideal spectrom-
eter, one obtains thus

lim é=0 forany #>0.
r—o

(3.31)
In the other extreme case, i.e., for I'— 0, one may use that

lim ;LZ’T(FQ) =84). (3.32)

[—w 20

This relation follows from the scaling property of the Fourier
transform Nf(Aw) < f(/\), with f(-) being an arbitrary func-
tion in the time domain. It follows then that
L} (TQ) <« ¢, (¢/T), where ¢ is dimensionless, and Eg.
(3.32) is obtained in the limit I' —c°, using that ¢,(0)=1.
Inserting identity (3.32) into expression (3.30) one sees eas-
ily that

lim é=1.

I'—ow

(3.33)

We find thus £ has the rigorous bounds 0=<§¢<1, such that

T T

@y (r*L, (@)
@

T T

0.01

T

0.01 0.1

FIG. 4. The function (27)~'(r* L, )(w) for @=0.5 where r(w) is the Gauss-
ian resolution function defined in Eq. (3.14). Results are shown for I’
=0.05 and I'=1.0 (solid lines). The broken line shows the ideal spectrum,
where I'=0.

J. Chem. Phys. 126, 125107 (2007)

g
& oif E
L i 3
& =05 ]
0.01F
1 e Y| i
0.01 0.1 1 10

FIG. 5. The same as Fig. 4, but for the triangular resolution function defined
in Eq. (3.25).

0 =< (x%), <. (3.34)

F. Numerical results

The influence of a Gaussian and a triangular resolution
function on a hypothetical quasielastic neutron scattering
(QENS) spectrum in form of a generalized Lorentzian is
shown in Figs. 4 and 5, respectively. In both cases the con-
volution integral (27)~!(r*L,)(w) is shown for a=0.5 and
a HWHM of I'=0.05 (solid line, upper curve), and for «
=0.5 with I'=1.0 (solid line, lower curve). For comparison
the scattering intensity for an ideal spectrometer with I'=0 is
given (dashed line). All functions are normalized such that
the integral over w is one. It should be noted that the convo-
lution regularizes the spectrum at w=0. The reason to choose
a=0.5 is motivated by the fact that this value is characteris-
tic for fBD in proteins seen by molecular dynamics simula-
tions and by QENS experiments.'o’”

Figure 6 shows the attenuation factor ¢ as a function of
I'r for two values of a and for two definitions of elastic
scattering, assuming a Gaussian resolution function. The

0.7

0.6

0.5

0.4
g

0.3

0.2

0.1

ol . I i ! , | i 1 A
0 0.2 0.4 0.6 0.8 1
I't

FIG. 6. Attenuation factor & as a function of I'7 for @=0.5 (black lines) and
a=0.98 (gray lines). The solid lines and dashed lines refer to ¢ as defined in
Egs. (3.5) and (3.6), respectively.
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0.6 . . 1 , : , , :

FIG. 7. The same as Fig. 6, but for a triangular resolution function.

black and gray lines correspond, respectively, to «=0.5 and
a=0.98, and the solid and dashed lines refer to & as defined
by Egs. (3.5) and (3.6), respectively. For comparison we
show in Fig. 7 the corresponding curves for a triangular reso-
lution function. Defining the elastic scattering intensity by
S,.(¢,0) leads to numerically stable results for the values of
I"7 used here, which are enclosed in the interval 0.005<I"7
< 1. For small values of I'7 the attenuation factor & is con-
siderably larger for a=0.5 than for «=0.98, which corre-
sponds to a quasielastic scattering spectrum close to a normal
Lorentzian. We note that all numerical integrations have been
performed with the program MATHEMATICA. >

Concrete values for I' and 7 can be estimated from the
QENS spectrum for a hydrated myoglobin powder at room
temperature, which is shown in Fig. 8. The data (squares)
have been obtained by Doster et al.”’ combining measure-
ments on the IN6 and IN13 spectrometers at the Institut
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FIG. 8. Fit of model (2.27) to the experimental QENS data in Ref. 1 at
300 K (solid line and squares, respectively). Here w is given on a terahertz
(angular) frequency scale. Apart from a global amplitude factor, the fitted
parameters are 7=24.12 ps and @=0.51. The vertical dashed line indicates
the resolution of the spectrometer IN13 at the Institut Laue-Langevin in
Grenoble, which is 0.012 THz on the (angular) frequency scale, correspond-
ing to 8 ueV on the energy transfer scale. For use with Fig. 6 one notes that
here I'7=0.29.
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Laue-Langevin in Grenoble. The latter is a high resolution
backscattering spectrometer and has a resolution of 8 ueV,
corresponding to I'=0.012 THz (angular frequency). The
solid line shows a fit of the model given in Eq. (2.27). Here
the first five terms in the series have been used, yielding «
=0.51 and 7=24.12 ps.lo Similar values for « and 7 have
been found by analyzing the mean square displacement ob-
tained by molecular dynamics simulations of lysozyme.w
With 7=24.12 ps one obtains I'7=0.29 and a corresponding
attenuation factor £=0.40 for a Gaussian resolution function
and £~=~0.36 for a triangular resolution function, applying
definition (3.5) for the attenuation factor &.

IV. CONCLUSION

In this article we have studied the influence of finite
instrumental resolution on the elastic incoherent neutron
scattering intensities from hydrated protein powders. We es-
timated, in particular, the resulting corrections for the mean
square position fluctuations of the protein hydrogen atoms,
which can be extracted from such experiments. The idea was
to use fractional Brownian dynamics of a particle in a har-
monic potential as a model for the motion of a “representa-
tive” hydrogen atom, in order to construct the missing part of
the quasielastic neutron scattering profile which is not acces-
sible due to finite instrumental resolution. The model is char-
acterized by a wide spectrum of relaxation rates and has
proven to be appropriate to describe protein motion on time
scales from subnanoseconds to hours. Our study shows that
the corrections of the mean atomic position fluctuations de-
pend strongly on the model parameter « describing the de-
viation from normal Lorentzian scattering profiles, which are
characterized by a=1 and a single characteristic relaxation
rate. Comparing the cases of @=0.5, which has been found
by several experimental and simulation studies of slow pro-
tein dynamics, and « close to one, we find, in particular, that
the assumption of a scattering profile close to a normal
Lorentzian leads to an underestimation of the correction for
the position fluctuations if I'7<<1, where 7 is the time scale
parameter of the model and I' the resolution of the instru-
ment. The results suggest that studies of the dynamical tran-
sition seen in most proteins at temperatures of about 200 K
must be interpreted with care. Here one considers typically
the evolution of the mean square position fluctuation with
temperature, and one can assume that the latter has a strong
impact on the time scale parameter 7, leading thus to consid-
erable variations in the corrections for the observed position
fluctuations.
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