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Hamiltonian formalism for semiflexible molecules in Cartesian coordinates
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The article gives a concise description of Hamiltonian dynamics and thermal averages of
semiflexible molecules in Cartesian coordinates. Using the concept of constrained inverse matrices
introduced by Bott and Duffin �Trans. Am. Math. Soc. 74, 99 �1953�� explicit expressions are
derived for the constrained Hamiltonian, the corresponding equations of motion, and the momentum
partition function. In this context Fixman-type corrections of constrained configurational averages
are derived for different forms of the constraints. It is shown that the use of mass-weighted
coordinates leads to a nonbiased sampling of constrained configurational averages in Cartesian
coordinates. The formalism allows moreover to define and to calculate effective masses arising in
thermal velocity averages of atoms in semiflexible molecules. These effective masses are identical
to the corresponding Sachs-Teller recoil masses, which are here generalized to the case of only
partially rigid molecules. © 2006 American Institute of Physics. �DOI: 10.1063/1.2220037�
I. INTRODUCTION

With the development of computer simulation tech-
niques for simple and complex molecular systems, the field
of classical mechanics has regained the interest of many
researchers.1,2 One of the major achievements in the devel-
opment of classical mechanics was the introduction of varia-
tional calculus which allowed to use problem-adapted
coordinates.3 The elegance of this approach, promoted by
Lagrange and Hamilton, is very convincing if one looks at
the typical examples from astronomy and simple point me-
chanics. In computer simulations of large molecular systems,
the situation is, however, very different. Here thousands of
degrees of freedom must be handled and convenient gener-
alized coordinates are not only difficult to find, but they
might moreover lead to terms in the equations of motion
which are difficult to handle from a numerical point of view.
Another disadvantage of generalized coordinates is that they
often require problem-specific implementations, which is a
major obstacle in the development of all-purpose programs,
especially for versions that can be executed on massively
parallel computers.

While Cartesian coordinates are the method of choice
concerning the algorithmic part in molecular dynamics and
Monte Carlo simulations of macromolecular systems, their
use is much less straightforward if thermal averages are to be
computed in the presence of constraints. Even such a seem-
ingly simple task as the calculation of the mean square ve-
locity of an atom in a rigid molecule poses a serious prob-
lem. In contrast to generalized coordinates, which allow to
introduce subspaces in the form of subsets of generalized
coordinates or momenta, Cartesian coordinates necessitate
the consideration of explicit holonomic constraints and cor-
responding tangential spaces. Formal aspects of Hamiltonian
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dynamics with constraints have been treated in the works of
Andersen and Bergman4 and Dirac.5,6 Here the motivation
was to set up relativistic quantum theories, treating the re-
quired invariance properties with respect to Lorentz transfor-
mations and gauge transformations as constraints. Later, de
Leeuw et al. discussed the problem of constrained Hamil-
tonian dynamics in the light of molecular dynamics
simulations7 using the method of Lagrange multipliers in or-
der to account for explicit holonomic constraints. The pur-
pose of this paper is to show that a conceptually elegant
approach to constrained Hamiltonian dynamics can be devel-
oped on the basis of projectors and generalized inverse
matrices9,10 using, in particular, the Bott-Duffin inverse.11

The focus here is on the derivation of Hamiltonian equations
of motion in Cartesian coordinates and on the calculation of
corresponding phase space averages. A Bott-Duffin inverse
can be considered as matrix inverse with respect to a given
subspace. Of particular interest are the constrained mass ma-
trix and its Bott-Duffin inverse, which are associated with
the mass metric tensor in generalized coordinates and its in-
verse, respectively. The discriminant of the Bott-Duffin in-
verse turns out to be very useful for the calculation of ther-
mal averages in momentum space. It is also shown that
constrained inverse mass matrices allow to define effective
atomic masses for semiflexible molecules. The latter are
identical to the Sachs-Teller recoil masses, whose definition
is here extended to only partially rigid molecules.

The paper is organized as follows. In Sec. II the Hamil-
tonian of a constrained dynamical system in Cartesian coor-
dinates is constructed and the corresponding equations of
motion are derived. Section III presents examples for the
calculation of momentum averages and related effective
atomic masses in semiflexible molecules. In Sec. IV the for-
malism is applied to the correction of thermal averages due

to geometrical constraints. The paper is concluded by a final
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discussion and the appendixes contain the mathematical
background in a self-contained form, as well as certain
proofs of relations given in the text.

II. INVERSE MASS TENSOR AND CONSTRAINED
HAMILTONIAN

A. Constraints and projectors

We consider a system of N atoms which is described by
3N Cartesian coordinates. The system may be subjected to s
holonomic constraints, which can be specified in terms of a
set of conditions for the Cartesian coordinates,

hk�r� = hk
�0�, k = 1, . . . ,s , �2.1�

where hk
�0�=const. Here r is a column vector of length 3N

which comprises all Cartesian coordinates of the N atoms. In
a dynamical system the positions are functions of time, and
differentiating �2.1� therefore yields s linear constraints for
the velocities. Introducing the s�3N matrix A through

Aki =
�hk

�ri
, �2.2�

�i=1, . . . ,3N, k=1, . . . ,s� one has

Av = 0 . �2.3�

The above relation indicates that the velocity vector is in the
null space of A, which will be denoted as V� and represents
the tangential space related to the constraints �2.1�. A projec-
tor onto that tangential space can be written in the form

P� = l − A+A , �2.4�

where A+ is the pseudoinverse of A.9,10,12,13 A short presen-
tation of pseudoinverse matrices is given in Appendix A. If
all s rows in A are linearly independent, A+ can be expressed
as

A+ = AT�AAT�−1, �2.5�

where the superscript T denotes a transposition. By construc-
tion, AP� =0 and any velocity vector fulfilling P�v=v thus
verifies the imposed constraints �2.3�. We note that

P� = A+A �2.6�

is the projector onto the row space of A and fulfills P�P�

=0. The rows of A thus span the orthogonal complement of
V�, which will be denoted as V� in the following.

In some cases it may be advantageous to express the
Cartesian velocities v in terms of appropriate generalized
velocities u= �u1 , . . . ,uf�T,

v = Cu , �2.7�

with f being the number of degrees of freedom and f +s
=3N. We recall that s is the number of constraints. In case
that the generalized velocities are the time derivatives of f
generalized coordinates q1 , . . . ,qf, the 3N� f matrix C is a
Jacobian, with Cik=�ri /�qk �i=1, . . . ,3N, k=1, . . . , f�. The
matrices A and C fulfill

AC = 0 �2.8�
and the projector P� can be written in the alternative form
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P� = CC+. �2.9�

Here C+ is given by

C+ = �CTC�−1CT �2.10�

if all columns in C are linearly independent. If one is dealing
with rigid molecules, each composed of N atoms, the gener-
alized velocities are the center-of-mass velocity vCM and the
angular velocity �. The latter may refer to a laboratory-fixed
or to a co-rotating frame. In the first case the vector of gen-
eralized velocities reads

u = �vCM

�
� , �2.11�

and C has the simple form

C =�
1 − R1

1 − R2

] ]

1 − RN

	 . �2.12�

Here 1 is the 3�3 unit matrix, and R is the skew-symmetric
matrix,

R = � 0 − z y

z 0 − x

− y x 0
	 , �2.13�

containing the laboratory-fixed coordinates of the position
r= �x ,y ,z�T with respect to the center of mass. More complex
C matrices for linked rigid bodies have been described in
Ref. 14.

B. Hamiltonian dynamics of constrained systems

1. Constructing the Hamiltonian

Consider the Lagrangian of a dynamical system consist-
ing of N mass points,

L�r, ṙ� =
1

2
ṙTMṙ − U�r� , �2.14�

where M is the diagonal mass matrix,

M =�
m11 0 ¯ 0

0 m21 ¯ 0

] ] � ]

0 0 ¯ mN1
	 , �2.15�

and U is the potential energy of the system. If the system is
subjected to geometrical constraints, the velocities are con-
fined to the tangential space V�, such that P�v=v. In this
situation the Lagrangian may be written in the form

Lc�r, ṙ� =
1

2
ṙTMcṙ − U�r� , �2.16�

where Mc is the mass matrix projected onto V�,

Mc = P�MP� . �2.17�
The momenta are derived in the usual way,
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p =
�Lc

�ṙ
= Mcv , �2.18�

and in order to construct the Hamiltonian of the constrained
system one must be able to express the velocities through the
momenta. For this purpose one uses the relation

McMe
+ = Mc

+Mc = P� , �2.19�

where P� is at the same time projector on the row and column
spaces of the symmetric positive semidefinite matrix Mc. On
account of the first Moore-Penrose condition �A1�, the above
relation allows to write P�p=McMc

+Mcv=Mcv=p. The rela-
tion Mcv=p is thus consistent if p�V�. In this case a unique
solution for v�V� exists and reads

v = Mc
+p . �2.20�

As shown in Appendix B �Theorems 4 and 5�, Mc
+ can be

expressed in terms of the matrix A,8

Mc
+ = M−1 − M−1AT�AM−1AT�−1AM−1, �2.21�

and equivalently in terms of the matrix C,

Mc
+ = C�CTMC�−1CT. �2.22�

We may now construct the Hamiltonian of the con-
strained system via Hc=pTṙ−Lc, expressing the velocities
through �2.20� in terms of the momenta,

Hc�p,r� =
1

2
pTMc

+p + U�r� . �2.23�

It is important to note that P�Mc
+=Mc

+P� =Mc
+, which shows

that both Mc and Mc
+ act only in the subspace V�, and it must

be kept in mind that they both depend on the Cartesian co-
ordinates r.

2. Introducing generalized coordinates

The form �2.23� for the constrained Hamiltonian can be
motivated by introducing f generalized coordinates q
= �q1 , . . . ,qf�T and the associated momenta �q

= ��q,1 , . . . ,�q,f�T. As indicated above, one has in this case
v=Cu, where u= �q̇1 , . . . , q̇f�T and the elements of C are
given by Cik=�ri /�qk, i.e., C is a Jacobian. Introducing the
reduced mass metric matrix

Gqq = CTMC , �2.24�

the constrained Lagrangian has the form

Lc =
1

2
q̇TGqqq̇ − U�q� �2.25�

and leads to the Hamiltonian

Hc =
1

2
�q

TGqq
−1�q + U�q� , �2.26�

where �q=�Lc /�q̇=Gqqq̇. Since P�C=C and v=Cq̇, it fol-
lows from the constrained Cartesian momenta that CTp
=CTMcv=CTP�MP�v=CTMCq̇=�q. Using the form �2.22�
for Mc

+ shows that pTMc
+p=�q

TGqq
−1�q, proving that Hc as
given by �2.23� and �2.26� are equivalent.
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3. Equations of motion

The Hamiltonian equations of motion are derived from
the variational principle �S=�
t0

t1d�L=0, which leads to

�S = �
t0

t1

d���pT�ṙ −
�H

�p
� − �rT�ṗ +

�H

�r
� = 0 �2.27�

if coordinates and momenta are considered as independent
variables. Since the system under consideration is subject to
constraints, the variations �r and �p are not arbitrary. It
follows from the conditions �2.1� that �hk�r�
= ��hk�r� /�ri��ri�0, where all variations of the paths must
satisfy �r�t0�=�r�t1�=0. Here and in the following summa-
tion over indices occurring twice is implicitly assumed. Us-
ing the definition of the matrix A given in �2.2� one finds
thus A�r=0, showing that

�r � V� . �2.28�

The condition for the momenta p�V�, which follows from
the constrained Lagrangian, may be cast into the form Ap
=0. Varying this condition with respect to the momenta
yields A�p=0. The momentum variations are thus in the
same subspace as the position variations,

�p � V� , �2.29�

and it thus follows from the variational principle �2.27� that

P��ṙ −
�H

�p
� = 0 , �2.30�

P��ṗ +
�H

�r
� = 0 �2.31�

are necessary conditions for the stationarity of the action
integral S. By construction, the term contained in the paren-
thesis of Eq. �2.30� is in V� and the corresponding projector
can be omitted. In contrast to ṙ, the time derivative of the
momenta has components in both V� and V�. Equation �2.31�
thus yields only the component ṗ�. The orthogonal comple-
ment can be obtained from the time derivative of the mo-
mentum constraint Ap=0, which yields a linear equation for

ṗ of the form Ȧp+Aṗ=0. The general solution reads

�2.32�

and determines ṗ�. Since ṗ� follows from Eq. �2.31�, the
Hamiltonian equations of motion can finally be written
down,

ṙ = Mc
+p , �2.33�

ṗ = P��−
�U

�r
−

1

2
pT� �Mc

+

�r
�p − A+Ȧp . �2.34�

It should be noted that the above form of the equations of
motion has been derived with out applying the concept of

Lagrange multipliers, which is the usual method to take into
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account constraints.7 The equations of motion �2.33� and
�2.34� are complete in the sense that all quantities involved
can be explicitly expressed in the coordinates and momenta
of the particles involved.

III. MOMENTUM AVERAGES AND EFFECTIVE
MASSES

A. Mean square momenta in constrained systems

In the following we consider atomic mean square mo-
menta for a system composed of semiflexible molecules,
each containing N atoms. The mean square momenta can be
computed from the moment generating function,

G�k� =� d3Np��P�p�wc�p�exp�ikTp� , �3.1�

via the relation

�pipj� = − � �2G�k�
�ki�kj

�
k=0

, �3.2�

where wc�p� is the constrained Maxwell distribution,

wc�p� =
exp�− ��/2�pTMc

+p�

� d3Np��P�p�exp�− ��/2�pTMc
+p�

. �3.3�

Here �= �kBT�−1, T is the absolute temperature, and kB is the
Boltzmann constant. The constraint P�p=p, or equivalently
P�p=0, is accounted for by the Dirac distribution ��P�p�.
The evaluation of the moment generating function is easily
performed in a basis in which Mc is diagonal. Such a basis is
found by singular value decomposition of Mc. Since
McMc

+=Mc
+Mc=P�, the projectors P� and P� are diagonal in

the same basis. The details of the calculation are described in
Appendix C, and we give here only the result

�ppT� = kBTMc. �3.4�

The usefulness of the concept of pseudoinverses is illus-
trated by the calculation of the mean kinetic energy,
Ekin=� 1

2pTMc
+p�= 1

2 tr��ppTMc
+��= 1

2 tr��ppT�Mc
+�. Using that

McMc
+=P� is the projector on the f-dimensional subspace V�

and that tr�P��= f , one verifies easily that

Ekin =
kBT

2
tr�P�� =

kBT

2
f . �3.5�

Here “tr” denotes the trace of a matrix.
Relation �3.4� can be readily converted into an expres-

sion for the atomic mean square velocities in a semiflexible
molecule. In this case one writes �vvT�= �Mc

+ppTMc
+�

=Mc
+�ppT�Mc

+, and with Mc
+McMc

+=Mc
+ one obtains from

�3.4�

�vvT� = kBTMc
+. �3.6�

+
Here Mc can be expressed in the form �2.21� or �2.22�. To

Downloaded 05 Apr 2007 to 195.221.0.6. Redistribution subject to A
obtain the mean square velocity of individual atoms, the ma-
trix Mc

+ is partitioned in 3�3 block matrices,

Mc
+ =�

m11
+ m12

+
¯ m1N

+

m21
+ m22

+
¯ m2N

+

] ] � ]

mN1
+

¯ ¯ mNN
+
	 . �3.7�

For atom � one thus has

�v�v�
T� = kBTm��

+ , �3.8�

and it follows that the mean square velocity �v�
Tv�� is given

by

�v�
Tv�� = kBT tr�m��

+ � . �3.9�

The effective mass M� of atom � can be defined through the
relation �v�

Tv��=3kBT /M� and one obtains

M�
−1 =

1

3
tr�m��

+ � . �3.10�

At this point one should note that the definition of effective
masses is to some extent arbitrary. One could as well start
from the relation �p�

Tp��=3kBTM�, defining M�= 1
3 tr�m���,

where m�� are 3�3 submatrices of the matrix Mc, and the
results are in general not the same. It will be shown below
that the effective atomic masses defined according to �3.10�
are identical to the well-known Sachs-Teller recoil masses, in
case that rigid molecules are considered.

Formula �3.10� will now be applied to a simple model
system—a molecule of water which is considered first as
rigid and then as semiflexible. In the latter case the H–H
distance is not fixed.

�a� Rigid water. We consider a rigid water molecule with
fixed O–H bond lengths of 1 Å and with a fixed
H–O–H angle of 109.47°. The masses are mH1

=mH2
=1.008 and mO=16 using atomic mass units. In case of
rigid water molecules, one can define three distance
constraints,

h1�r� � �rO − rH1
�2 − 1 = 0,

h2�r� � �rO − rH2
�2 − 1 = 0,

h3�r� � �rH1
− rH2

�2 − 8/3 = 0,

where all lengths are measured in angstroms. Con-
structing A according to �2.2� and M according to
�2.15�, the pseudoinverse mass matrix Mc

+ can be ob-
tained from expression �2.21�. From the resulting ma-
trix the block matrices m11

+ , m22
+ , and m33

+ can be ex-
tracted, and the effective masses are computed
according to definition �3.10�. Here 1, 2, and 3 corre-
spond, respectively, to H1, H2, and O. The result is

mH1
= mH2

= 1.896,
mO = 17.08.
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�b� Semiflexible water. Here we have one constraint less
than in the case of rigid water,

h1�r� � �rO − rH1
�2 − 1 = 0,

h2�r� � �rO − rH2
�2 − 1 = 0.

Following the same steps as for rigid water, one obtains

mH1
= mH2

= 1.469,

mO = 16.65.

Here it has been assumed that the H–O–H angle is the
same as in the rigid case. Removing a constraint leads
thus to effective masses which are closer to those of the
corresponding free atoms.

B. Sachs-Teller problem

We will now show that pseudoinverse mass matrices are
also a very elegant tool to compute effective atomic masses
which arise in the context of moderation of neutrons by mo-
lecular systems. The problem has been studied a long time
ago by Sachs and Teller,15 and we revisit the problem here to
show the equivalence with the masses �3.10� arising in ther-
mal velocity averages. At the same time we generalize the
Sachs-Teller problem to define effective atomic masses in
semiflexible molecules. The Sachs-Teller problem can be
formulated as follows. Given a momentum transfer �p�

transferred to atom � in a rigid molecule, compute the mean
velocity change �v�=�p� /M� of the same atom, where M�

is the effective Sachs-Teller mass. It is important to note that
the atomic mass “seen” by the neutron depends on its energy.
Slow neutrons, which cannot excite intermolecular vibra-
tions, “see” effectively mass points in a mechanically rigid
molecule.

The starting point is the velocity constraint Av=0, which
must be fulfilled at any time. Differentiating this constraint

with respect to time yields Av̇+ Ȧv=0. Writing �v= v̇�t and

�A= Ȧ�t yields a constraint for the velocity change �v
within the time span �t, which may be considered as colli-
sion time in this context,

A�v = − ��A�v . �3.11�

Provided that AA+��A�v= ��A�v, the above equation has a
set of solutions which reads

�v = �v� − A+��A�v . �3.12�

Here �v� is an arbitrary vector in V�, satisfying A�v� =0.

Consider now a momentum transfer of the form
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�p =�
0

]

0

�p�

0

]

0

	 �3.13�

which describes the situation that atom � is hit by the neu-
tron. The relation between an arbitrary momentum change
�p and the resulting velocity change �v in the presence of
constraints must have the form

M�v + �p� = �p , �3.14�

where �v is given by �3.12�. Without the term �p�, Eq.
�3.14� will in general not have a solution, since �v is con-
strained but �p is not. Imposing �p��V� makes �3.14� a
Bott-Duffin problem11 �see Appendix B� and ensures that
both �v� and �p� can be determined from the same system
of linear equations. From a physical point of view, �p� is
proportional to the vector of constraint forces and describes
the momentum transfer absorbed by the constraints, i.e., the
momentum transfer which will not lead to a change in ve-
locity. Solving the Bott-Duffin problem �3.14� leads to �v
=Mc

+�p+ �Mc
+M−1�A+��A�v, where Mc is the mass matrix

projected onto the subspace V�, which has been defined in
Eq. �2.17�. A homogeneous linear relation between �v and
�p,

�v = Mc
+�p , �3.15�

is thus obtained if one chooses a comoving frame, in which
all atomic velocities before the collision are zero,

v = 0 . �3.16�

In this case the velocity change of atom � reads, in particu-
lar,

�v� = m��
+ �p , �3.17�

using the partitioning of Mc
+ into 3�3 block matrices m��,

as defined in �3.7�. The block matrix m��
+ contains the com-

ponents of the inverse mass tensor for atom �, and the in-
variant

M�
−1 =

1

3
tr�m��

+ � �3.18�

is the inverse of the corresponding effective mass. Equation
�3.10� shows that the latter is identical to the effective mass
arising in the calculation of atomic mean square velocities in
semiflexible molecules. One verifies that the Sachs-Teller in-
verse mass tensor, whose elements are given by15

�mST
−1�ii =

rj
2

�k
+

rk
2

� j
+

1

M
, �mST

−1�ij = −
rirj

�k
, �3.19�

yields the identical effective masses if the molecules under
consideration are rigid. In �3.19� i, j, and k denote the prin-

cipal axes of the molecule, ri are the corresponding coordi-
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nates of atom � with respect to the center of mass, and �k

are the principal moments of inertia.

IV. PHASE SPACE AVERAGES AND FIXMAN
CORRECTION

A. Constrained configurational averages

We now consider phase space averages of position-
dependent quantities. In the presence of geometrical con-
straints, the average of a function F�r� is given by

�F� =
1

Zc � d3Nr�
i=1

s

��hi�r� − hi
�0��Zp

c�r�F�r�

�exp�−
�

2
U�r�� , �4.1�

where Zc is the partition function of the constrained system,

Zc =� d3Nr�
i=1

s

��hi�r� − hi
�0��Zp

c�r�exp�−
�

2
U�r�� , �4.2�

and Zp
c�r� is the partition function in momentum space,

Zp
c�r� =� d3Np��P�p�exp�−

�

2
pTMc

+p� . �4.3�

The product over the delta functions ��hi�r�−hi
�0�� accounts

for the constraints in position space and the delta function
��P�p� for the corresponding constraints in momentum
space. The latter are again expressed in the form P�p=0. As
for the calculation of momentum averages, the singular value
decomposition of Mc yields a convenient basis to evaluate
Zp

c. Skipping here the details, which are presented in Appen-
dix D, one finds

Zp
c�r� =�2�

�

f

�det�MP� + P�� . �4.4�

Here

det�MP� + P�� � D� �4.5�

is the discriminant of M in V� �see Appendix B�. If no con-
straints are present, P� becomes the unit matrix, P� vanishes,
and one obtains from �4.4� Zp= ��2� /��3N�det�M�=const.

The fact that the momentum partition function is propor-
tional to the square root of the discriminant of a constrained
�mass� matrix allows to use the theorems for discriminants
which are listed and proven in Appendix B. If the discrimi-
nant is to be expressed in terms of the matrix A, it follows
from Theorems 3 and 7 that

D� = det�M�D�, �4.6�

where D� is given by

D� =
det�AM−1AT�

det�AAT�
. �4.7�

Theorem 6 is useful if the constraints are expressed in terms

in the form v=Cu. In this case one can write
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D� =
det�CTMC�
det�CTC�

. �4.8�

Relations �4.7� and �4.8� show that the physical dimensions
of D� and D� are, respectively, mass−s and massf, where s is
the number of constraints and f is the number of degrees of
freedom. Therefore, Zp

c has the correct dimension of a parti-
tion function of f free linear momenta.

The results derived above can be used for a correction of
phase space averages of constrained mechanical systems,
which is similar but not identical to the well-known Fixman
correction.16 In contrast to unconstrained systems, where the
integral over the momenta in phase space averages will con-
tribute a constant factor, one obtains for constrained systems
a position-dependent momentum partition function. The po-
sition dependence of the latter has the effect of an additional
potential, and one can compensate for this effect by introduc-
ing an appropriate bias potential, such that exp�−�Ubias�
=�det�M� /D�, neglecting constant terms. If one works with
A matrices, one derives from �4.6� and �4.7� that

Ubias�r� =
kBT

2
ln�det�AM−1AT�

det�AAT� � , �4.9�

and in terms of C matrices one obtains the alternative form

Ubias�r� =
kBT

2
ln�det�CTMC�

det�CTC� � �4.10�

for the bias potential. It should be noted that the latter van-
ishes in mass-weighted coordinates, where M=1. In this case
the discriminant �4.5� appearing in momentum partition
function �4.4� is, in fact, 1, det�P� +P��=det�1�=1.

B. Fixman correction revisited

It is illustrative to compare the correction of phase space
averages discussed above to the classical Fixman correction.
For this purpose we introduce 3N generalized coordinates xi

which are partitioned into f “soft” variables, q
= �q1 , . . . ,qf�T, and s “hard” variables, h= �h1 , . . . ,hs�T, such
that that r=r�q ,h�. The associated generalized momenta are
denoted by �q and �h, respectively. We suppose that all gen-
eralized hard and soft coordinates are independent and that
the relation r=r�q ,h� can be inverted. Using the definition
of the full Jacobian matrix J, whose elements are given by
Jik=�ri /�xk, we thus require that J−1 exists. With the Jaco-
bian we define the mass metric tensor of the unconstrained
system through G=JTMJ. Using the partitioning into soft
and hard variables, the latter may be written in the form

G = �Gqq Gqh

Ghq Ghh
� . �4.11�

To obtain the Fixman correction for constrained configu-
rational averages of a variable F�q�, we write

�F� =
1

Zc � dfqZp
c�q�F�q�exp�−

�

2
U�q�� , �4.12�

c
where Z is the partition function of the constrained system,
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Zc =� dfqZp
c�q�exp�−

�

2
U�q�� , �4.13�

and Zp
c�q� is the partition function in the space of generalized

momenta,

Zp
c�q� =� df�q exp�−

�

2
�TGqq

−1��
= ��2�

�
� f

�det�Gqq� . �4.14�

Introducing the projectors

Pq = �1 f 0

0 0
�, Ph = �0 0

0 1
� , �4.15�

where 1 f and 1s are unit matrices of dimension f and s,
respectively, the momentum partition function can be written
in the same form as for Cartesian coordinates,

Zp
c�q� = ��2�

�
� f

�det�GPq + Ph� , �4.16�

replacing M by G and the projectors P� and P� by the diag-
onal projectors Pq and Ph, respectively. Formally Zp

c is thus
again expressed by a discriminant, and one may use that
det�GPq+Ph�=det�G�det�G−1Ph+Pq�. Due to the simple
form of the projectors Pq and Ph, it follows that

GPq + Ph = �Gqq 0

Ghq 1s
� �4.17�

and

G−1Ph + Pq = �1 f Gqh
−1

0 Ghh
−1 � . �4.18�

It is now easy to see that det�G−1Ph+Pq�=det�Ghh
−1�, where

�Ghh
−1�ij = �Mkl

−1�hi

�rk

�hj

�rl
� = �AM−1AT�ij , �4.19�

such that

det�Gqq� = det�G�det�AM−1AT� . �4.20�

This is precisely Fixman’s theorem16 and we construct here
the bias potential UF according to exp�−�UF�
=�det�G� /det�Gqq�,

UF�r� =
kBT

2
ln�det�AM−1AT�� , �4.21�

which is not identical to the one given by Eq. �4.9�. The
reason is that the Fixman potential corrects for configura-
tional bias induced by constrained generalized momenta,
whereas �4.9� corrects for configurational bias induced by
constrained Cartesian momenta. Although the total partition
function is invariant with respect to any coordinate transfor-
mation, the same is not true for partial integrals, such as the
momentum partition function. The latter depends clearly on
the choice of the generalized coordinates—in the uncon-

strained as well as in the constrained case. Therefore
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Fixman-type corrections depend of the choice of coordinates
as well.

In this context it is worthwhile to consider again a sub-
ject of debate since the early papers of Kirkwood,17 Erpen-
beck and Kirkwood,18 and Kramers,19 on polymer solutions,
mentioned by Fixman,16 and which concerns the way con-
straints are treated in generalized coordinates and momenta.
One may either set the constrained velocities to zero,

ḣ = 0 , �4.22�

as we did in this paper, or require that the corresponding
associated momenta vanish,

�h = 0 , �4.23�

as, for example, considered by Fixman. Applying condition
�4.22� one finds from the relation between the generalized
momenta and velocities,

��q

�h
� = �Gqq Gqh

Ghq Ghh
��q̇

0
� , �4.24�

that the momenta associated with the constrained variables,
�h, can be expressed through those of the free variables,

�h = GhqGqq
−1�q. �4.25�

Here condition �4.23� is thus not fulfilled, but this does nev-
ertheless not influence the momentum partition function. Ex-
pressing the latter in all momenta, we have

Zp
c =� df�q� ds�h���h − GhqGqq

−1�q�

�exp�−
�

2
�q

TGqq
−1�q� , �4.26�

where the integration over the momenta �h drops out from
the calculation since the Boltzmann factor does depend only
on the free momenta �q and since

� ds�h���h − GhqGqq
−1�q� = 1.

Therefore one is again left with the momentum partition
function used by Fixman given by Eq. �4.14�, and one can
exclude that the differences in the bias potentials found in the
paper and by Fixman are due to a different treatment of the
constraints in generalized coordinates.

V. CONCLUSION AND DISCUSSION

It has been shown that projectors and pseudoinverse ma-
trices, in particular, the Bott-Duffin inverse, are useful tools
for a Hamiltonian description of constrained dynamical sys-
tems in Cartesian coordinates. The key object in this context
is the constrained inverse of the mass matrix with respect to
the velocity space defined by the imposed geometrical con-
straints. It allows first of all to construct the constrained
Hamiltonian in Cartesian coordinates and to relate it to the
well-known representation in generalized coordinates. The
constrained inverse mass matrix allows, in particular, to de-
fine effective atomic masses, as they appear in thermal ve-

locity averages and in the Sachs-Teller problem. The influ-
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ence of constraints on the effective atomic masses has been
demonstrated with the simple example of rigid and semiflex-
ible water, where the H–H distance is flexible and only the
O–H bonds are fixed. The Sachs-Teller tensors and the cor-
responding masses are retrieved in case of rigid molecules.
The discriminants related to the projected mass matrix and
its inverse were shown to be particularly useful for the cal-
culation of momentum partition functions of constrained sys-
tems in Cartesian coordinates. In order to remove the bias
from sampling of constrained configurational averages, ex-
plicit Fixman-type potentials have been derived for different
forms of the constraints. It has been highlighted that the clas-
sical Fixman correction removes the configurational bias in-
duced by constrained generalized momenta, whereas the cor-
rections presented in this paper remove configurational bias
due to constrained Cartesian momenta. In this context it is
important to note that no configurational bias is generated if
mass-weighted coordinates are used.

APPENDIX A: PSEUDOINVERSE MATRICES

�1� Definition. Let A be an arbitrary m�n matrix. A n
�m matrix X is called the pseudoinverse of A if it fulfills
the relations

AXA = A , �A1�

XAX = X , �A2�

�AX�T = AX , �A3�

�XA�T = XA . �A4�

Relations �A1�–�A4� are the Moore-Penrose
conditions9,10,12,13 which define the generalized inverse of a
matrix uniquely. The pseudoinverse is also called Moore-
Penrose inverse or generalized inverse and is usually denoted
by

A+ � X . �A5�

It is easy to see that Pr=A+A is the projector on the row
space of A and the projector on the column space of A+,
whereas Pc=AA+ projects on the column space of A and on
the row space of A+. On account of the Moore-Penrose con-
ditions, one has APr=A, PrA

+=A+, PcA=A, and A+Pc

=A+.
�2� Full-rank factorization. Suppose that A is an m�n

matrix which can be factorized as

A = FG , �A6�

where F is an m�r matrix of full column rank r and G a
r�n matrix with full row rank r. In this case the pseudoin-
verse of B can be given explicitly,9

A+ = G�GGT�−1�FTF�−1FT. �A7�

�3� Singular value decomposition. Another representa-
tion of pseudoinverse matrices is based on the singular value

decomposition �SVD� of A,
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A = U�VT, �A8�

where U is an orthogonal m�m matrix, V is an orthogonal
n�n matrix, and � is the diagonal m�n matrix

�A9�

containing the singular values of A, which fulfill 	i
0. Us-
ing SVD, the pseudoinverse of A can be expressed in the
form

A+ = V�+UT, �A10�

where �+ is the n�m matrix

�A11�

and the projectors on the row and column space of A, re-
spectively, can be cast into the form

Pr = A+A = VP̃rV
T, �A12�

Pc = AA+ = UP̃cU
T. �A13�

Here

P̃r = �+� = ��1 f 0

0 0
�n �A14�

and

P̃c = ��+ = ��1 f 0

0 0
�m �A15�

are quadratic matrices of dimensions n�n and m�m, re-
spectively, and 1 f is a unit matrix of dimension f .

APPENDIX B: BOTT-DUFFIN INVERSES

In the following a short and self-contained description of
Bott-Duffin inverses and their relation to pseudoinverses are
given. Most of the theorems listed in the following and their
proofs can be found in the original article by Bott and
Duffin11 and in textbooks,9,10 but sometimes without proof.

Bott-Duffin inverses are special forms of pseudoinverse
matrices. In the original work by Bott and Duffin on the

theory of electrical networks, one considers the following
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problem. Given an arbitrary quadratic n�n matrix G, one
searches the solution of the system of linear equations

Gv� + v� = h , �B1�

where h is an arbitrary column vector of length n and v�

�V� and v��V� are mutually orthogonal column vectors.
The projectors on V� and V� are represented by the n�n
matrices P� and P�, respectively. Introducing the column
vector y, such that v� =P�y and v�=P�y, Eq. �B1� may be
written in the form �GP� +P��y=h. Under the condition that

D� � det�GP� + P�� � 0, �B2�

where D� is called the discriminant of G in V�, the solutions
for v� and v� thus read v� =P��GP� +P��−1h and v�

=P��GP� +P��−1h. The matrix

T� = P��GP� + P��−1 �B3�

is called the constrained inverse of G in V�.
Theorem 1. The constrained inverse of G in V� is given

by T� = �P�GP��+ and fulfills P�T� =T�P� =T�.
Proof. Applying the projector P� from the left to the

system of equations �B1� and using v� =P�v� yield G�v�

=P�h, where G�ªP�GP�. With Pr=G�
+G� and Pc=G�G�

+, one
thus has from the Moore-Penrose conditions PcG�

=PcP�GP� =P�GP� and G�Pr=P�GP�Pr=P�GP�. Since the
above relations must be fulfilled for any G, in particular for
G=1, it thus follows that Pc=Pr=P�, and from the Moore-
Penrose conditions one obtains P�G�

+=G�
+P�.

Since G�G�
+G�v� =G�v� =G�G�

+P�h=P�h, the system of
equations G�v� =P�h is consistent and the solution for v� is
found by applying G�

+ from the left. One obtains G�
+G�v�

=P�v� =v� =G�
+P�h. It follows now from the Moore-Penrose

conditions that P�G�
+=G�

+P� =G�
+ and therefore v� =G�

+h.
Identifying G�

+�T� the theorem is thus proven.
Theorem 2. If G−1 exists, the solution of Gv� +v�=h for

v� is given by v�=T�G−1h, where T�=P��G−1P�+P��−1

and T� fulfills T�= �P�G−1P��+ and P�T�=T�P�=T�.
Proof. If G−1 exists it follows from Gv� +v�=h that

G−1v�+v� =G−1h. Therefore v�=P��G−1P�+P��−1G−1h
�T�G−1h. Comparing T�=P��G−1P�+P��−1 with T�

=P��GP�+P��−1 shows that in the two Bott-Duffin inverses
G is interchanged with G−1 and P� with P�. Using the prop-
erties of T� one thus obtains T�= �P�G−1P��+ and P�T�

=T�P�=T�.
Theorem 3. The discriminant of T�, given by D�

�det�G−1P�+P��, and the discriminant of T� are related
through D� =D� det�G�.

Proof. Write D� =det�GP� +P��=det�G�G−1P�+P���
=det�G�det�G−1P�+P��=det�G�D�.

Theorem 4. If the columns of C are a basis of V� and if
det�CTGC��0, the constrained inverse of G in V� can be
written in the form T� =C�CTGC�−1CT.

Proof. By definition C is a matrix whose column vectors
span V�. The columns in C are thus linearly independent,
such that the projector on V� can be expressed as P� =CC+

=C�CTC�−1CT and v=Cu, where u is a column vector
of length f and f is the dimension of V�. The relation
G�v=P�GP�v=P�h takes the form C�CTC�−1CTGC

T −1 T T −1 T
�C C� C Cu=C�C C� C h. Multiplication from the left
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by CT thus yields CTGCu=CTh. Solving for u and inserting
the result into the relation v=Cu yield v=C�CTGC�−1CTh,
from which one can conclude T� =C�CTGC�−1CT.

Theorem 5. If the rows of A are a basis of V� and if
det�AG−1AT��0, the constrained inverse of G in V� can be
written in the form T� =G�

+=G−1−G−1AT�AG−1AT�−1AG−1.
Proof. One starts with the relation Gv� +v�=h, which is

equivalent to G−1v�+v� =G−1h if G−1 exists. A subsequent
projection with P� eliminates v�V� and yields P�G−1v�

=P�G−1h. Since P�v�=v� one may also write
P�G−1P�v�=P�G−1h. Here one may now insert P�=A+A
=AT�AAT�−1A; since the rows of A are by definition linearly
independent, this yields AT�AAT�−1AG−1AT�AAT�−1Av�

=AT�AAT�−1AG−1h. Multiplication from the left with A and
using that v� can be represented as a linear combination of
the rows of A, v�=AT�, leads to AG−1AT�=AG−1h. The
solution for � may then be used to write v�

=AT�AM−1AT�−1AG−1h. Since v� =G−1�h−v�� one-obtains
finally v� = �G−1−G−1AT�AG−1AT�−1AG−1�h. Consequently
T� =G−1−G−1AT�AG−1AT�−1AG−1.

Theorem 6. Let C be a matrix whose columns span V�.
The discriminant of G in V� can be written in the form D�

=det�CTGC� /det�CTC�.11

Proof. Consider the matrix U= �C �AT� whose first n
�m columns form a basis of V� and whose last m−n col-
umns form a basis of V�. The respective bases are chosen to
be columns of the matrix C and the rows of the matrix A,
which have both been introduced earlier. With U we con-
struct the matrix

Z = UT�GP� + P��U = �CT

A
��GP� + P���C�AT�

= �CT

A
��GC�AT� = �CTGC 0

AGC AAT � .

Here P�C=C, P�C=0, and AC=0 have been used. From the
above form of Z one sees that det�Z�=det�CTGC�det�AAT�.
On the other hand det�Z�=det�GP� +P��det�UUT�
=D� det�UUT�=D� det�UTU�, where

UTU = �CT

A
��C�AT� = �CTC 0

0 AAT � .

Here AC=0 has again been used. From the above block
matrix form for UTU, it follows that det�UTU�
=det�CTC�det�AAT�, such that D� =det�CTGC� /det�CTC�.

Theorem 7. Let A be a matrix whose rows span V� and
let G be a quadratic matrix whose inverse exists. It follows
that D�=det�G−1P�+P��=det�AG−1AT� /det�AAT�.

Proof. Using Theorem 6, the proof is trivial. Simply re-
place G→G−1 and exchange C↔AT.

APPENDIX C: PROOF OF RELATION „3.4…

The moment generating function G�k� defined trough
�3.1� can be evaluated in a basis in which Mc is diagonal. For
this purpose one uses the singular value decomposition Mc

=U�UT, where � contains the singular values, �

=diag�	1 , . . . ,	 f ,0 , . . . ,0�. Here 	k�0 and U is a 3N�3N
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orthogonal matrix. With Mc
+=U�+UT and �+

=diag�	1
−1 , . . . ,	 f

−1 ,0 , . . . ,0�, it follows that P� =Mc
+Mc

=McMc
+=U�+�UT. Since

the projector can thus be written as

P� = �
k=1

f

ukuk
T.

The above expression shows that V� is spanned by the first f
columns of U. Correspondingly, one has

P� = �
k=f+1

3N

ukuk
T.

Introducing now new momenta via p̃=UTp, it follows that
pk=uk

Tp, and consequently

��P�p� = �
k=f+1

3N

��uk
Tp� = �

k=f+1

3N

��p̃k� .

Since the Jacobian determinant is 1, J= ���p̃� / ��p��= �U�=1,
it follows that

G�k� =� dp̃1 ¯ dp̃fw̃�p̃�exp�i�UTk�Tp̃� ,

where

w̃c�p̃� =
exp�− ��/2�p̃T�+p̃�

� dp̃1 ¯ dp̃f exp�− ��/2�p̃T�+p̃�
.

Defining k̃=UTk, the Gaussian integrals over w̃c�p̃� can be
evaluated straightforwardly, and one obtains

G�k̃� = exp�−
1

2�
�	1k̃1

2 + ¯ + 	 fk̃ f
2�� .

Therefore

��ppT�ij� = − UimUjn� �2G�k̃�

�k̃m�k̃n

�
k=0

,

where summation over pairwiselike indices is implied. Using

the simple form of G�k̃�, we find

� �2G�k̃�

�k̃i�k̃j

�
k=0

= − �−1���ij ,

and with Mc=U�UT it follows that

�ppT� = kBTMc,

replacing �−1 by kBT.

APPENDIX D: PROOF OF RELATION „4.4…

To evaluate the momentum partition function Zp
c �the po-

sition dependence is omitted�, one proceeds as for the calcu-
lation of thermal averages for the velocities, working in par-
ticular, in a basis in which Mc is diagonal, M=U�UT. Using

˜ T
the new momenta p=U p one finds
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Zp
c =� dp̃1 ¯ dp̃f exp�−

�

2
p̃T�+p̃�

= ��2�

�
� f

�	1 ¯ 	 f .

To prove relation �4.4� one writes

Using that UTU=1 one thus obtains det�MP� +P��=det��
+ P̃�M̃P̃� + P̃��, where

such that �the indices indicate the dimensions of the block
matrices�

� + P̃�M̃P̃� + P̃� =�
	1

�

	 f

0 fs

�P̃�M̃P̃��sf 1ss

	 .

Consequently det�MP� +P��=det��+ P̃�M̃P̃� + P̃��
=	1 . . .	 f, which thus proves that

Zp
c = ��2�

�
� f

�det�MP� + P�� .
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