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ABSTRACT
Elastic neutron scattering from proteins reflects the motional amplitudes resulting from their internal collective and single-atom dynamics
and is observable if the global diffusion of whole molecules is either blocked or cannot be resolved by the spectrometer under consideration.
Due to finite instrumental resolution, the measured elastic scattering amplitude always contains contaminations from quasielastic neutron
scattering and some model must be assumed to extract the resolution-corrected counterpart from corresponding experimental spectra. Here,
we derive a quasi-analytical method for that purpose, assuming that the intermediate scattering function relaxes with a “stretched” Mittag-
Leffler function, Eα(−(t/τ)α

) (0 < α < 1), toward the elastic amplitude and that the instrumental resolution function has Gaussian form.
The corresponding function can be integrated into a fitting procedure and allows for eliminating the elastic intensity as a fit parameter.
We illustrate the method for the analysis of two proteins in solution, the intrinsically disordered Myelin Basic Protein, confirming recently
published results [Hassani et al., J. Chem. Phys. 156, 025102 (2022)], and the well-folded globular protein myoglobin. We also briefly discuss
the consequences of our findings for the extraction of mean square position fluctuations from elastic scans.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0103960

I. INTRODUCTION

Thermal neutron scattering is a powerful and versatile spectro-
scopic method to probe the structural dynamics of condensed matter
systems.1 An important application concerns quasielastic neutron
scattering (QENS) from proteins, which gives information about the
diffusion and the relaxation dynamics of these macromolecules.2–6

To probe the internal non-exponential multiscale relaxation dynam-
ics, which is crucial for their function and typical for complex
systems, in general,7–10 one can either use hydrated powder samples,
where global diffusional motions are simply blocked, or probe a pro-
tein solution with a spectrometer that will not resolve these motions.
In both cases, information about the motional amplitudes of inter-
nal protein dynamics is contained in the elastic amplitude and elastic
scans are thus, in principle, sufficient to obtain this information.
One must, however, be aware that the extracted motional ampli-
tudes are underestimated due to the unavoidable contamination of

the elastic amplitude by contributions from quasielastic scattering,
and this correction can be particularly important for slowly relax-
ing systems.11 Noting that the “true” elastic amplitude defines the
asymptotic form of the neutron intermediate scattering function
at infinite time, it can only be obtained by assuming some model
for that function. A corresponding “minimalistic” model has been
recently proposed and motivated in Ref. 12 and was then applied in
a few subsequent QENS studies of protein dynamics,13–15 as well as
for confined water molecules in clays.16 In all these studies the elastic
amplitude was a fit parameter, which left some ambiguity about the
physical significance of the resulting fits, in particular, since fit para-
meters are quite interdependent. The goal of this paper is to replace
the elastic intensity as a fit parameter by an estimation on the basis of
its experimentally measured counterpart, the assumed model for the
relaxation function, and the resolution of the instrument under con-
sideration. Computational efficiency is here a fundamental aspect
since it enables the integration of the corresponding function into
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the fitting procedure for the remaining parameters of the relaxation
function.

This paper is organized as follows: The core of the paper is con-
tained in Secs. II and III, which describe the theoretical background
and the method, followed by Sec. IV showing some applications, and
the conclusions in Sec. V.

II. THEORETICAL BACKGROUND
A. Scattering functions

In standard neutron scattering experiments one measures the
dynamic structure factor,

F̃(q, ω) =
1

2π∫
+∞

−∞

dt e−iωtF(q, t), (1)

which is the time Fourier transform of the intermediate scattering
function containing the information about the structural dynamics
of the system under consideration,

F(q, t) =
1
N∑j,k

Γjk⟨e
−iq⋅R̂ j(0)eiq⋅R̂ k(t)⟩. (2)

Usually, the dynamic structure factor is denoted by S(q, ω), but we
use the symbol F̃(q, ω) to label Fourier transforms in a uniform way.
The scattering-related quantities are, respectively, the momentum
and energy transfer from the neutron to the sample, q and ω, in units
of h , N is the total number of atoms in the scattering system and
for each pair { j, k} of them, {R̂j(t), R̂k(t)} denote the associated
time-dependent position operators. The symbol ⟨⋅ ⋅ ⋅⟩ stands for a
quantum ensemble average and the weighting factors Γjk have the
form

Γjk = bj
∗bk + δjk∣bj − bj∣2, (3)

where bj and bk are the (complex) scattering lengths1,17 of the atoms
j and k, respectively. For a given atom, the average runs over all
isotopes and combinations of the nuclear and neutron spins and
we note that bj,coh ≡ bj and bj,inc ≡ (∣bj − bj ∣2)

1/2 are, respectively,
the coherent and incoherent scattering lengths of atom j. Coher-
ent and incoherent scattering probe, respectively, the collective and
average single atom dynamics of the system under consideration,
but since these scattering types are not separable without special
spin-polarization experiments,18–20 we will not explicitly distinguish
between them.

The intermediate scattering function fulfills the symmetry
relations of a quantum time correlation function,

F∗(q, t) = F(q,−t), (4)

F(q,−t) = F(−q, t + iβh̵), (5)

where β = 1/kBT is the inverse Boltzmann temperature. For the
dynamic structure factor, Eq. (5) translates into

F̃(q, ω) = eβ̵hωF̃(−q,−ω), (6)

which is the well-known detailed-balance relation.

B. Elastic and inelastic scattering
Noting that

eiq⋅R̂ j(t) = ∫ d3r exp(−iq ⋅ r)δ(r − R̂j(t))

is the spatially Fourier-transformed single particle density for atom
j, we introduce the deviation of this quantity with respect to its mean
value,

δα̃k(q, t) = eiq⋅R̂ j(t) − ⟨eiq⋅R̂ j(t)⟩, (7)

to split the intermediate scattering function into a static and a time-
dependent component,

F(q, t) = F(q,∞) + δF(q, t), (8)

which are given by

F(q,∞) =
1
N∑j,k

Γjk⟨e
iq⋅R̂ j⟩

∗

⟨eiq⋅R̂ k⟩, (9)

δF(q, t) =
1
N∑j,k

Γjk⟨δα̃†
j (q, 0)δα̃k(q, t)⟩. (10)

Making the physically reasonable assumption

lim
t→∞

δF(q, t) = 0 (11)

shows that F(q,∞) is the asymptotic form of the intermediate scat-
tering function and it follows by the Fourier transform of Eq. (8)
that

F̃(q, ω) = F(q,∞)δ(ω) + δF̃(q, ω). (12)

Therefore, F(q,∞) represents the elastic amplitude of the Fourier
spectrum and δF̃(q, ω) its inelastic component. Here, “inelastic” is
to be understood as “non-elastic” and includes also the quasielastic
component of the spectrum, which is very close to the elastic line
and describes relaxation and diffusion processes.

C. Generic form of the scattering functions
For modeling purposes, it is convenient to introduce the

normalized relaxation function

ϕ(q, t) = δF(q, t)/δF(q, 0), (13)

noting that this function does not monotonously decay for short
times. This leads to the generic form

F(q, t) = F(q,∞) + (F(q, 0) − F(q,∞))ϕ(q, t) (14)

of the intermediate scattering function, which translates into the
corresponding generic form

F̃(q, ω) = F(q,∞)δ(ω) + (F(q, 0) − F(q,∞))ϕ̃(q, ω), (15)

of the dynamic structure factor. We note that

F(q, 0) =
1
N∑j,k

Γjk⟨e
iq⋅(R̂ k−R̂ j)⟩ (16)
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is the total static structure factor, which tends for q ≡ ∣q∣→∞ to a
constant value,

lim
q→∞

F(q, 0) =
1
N∑k

Γkk, (17)

and oscillates for smaller q-values around that constant. For mod-
eling purposes, it is convenient to normalize the intermediate
scattering function such that

1
N∑k

Γkk = 1. (18)

D. Hydrogen-rich systems
We finally consider the frequent of case of neutron scatter-

ing from hydrogen-rich systems, such as proteins and polymers.
Because of the exceptionally large cross section for incoherent scat-
tering from hydrogen, it is sufficient to consider only these atoms,
setting Γjk = δjk. With the normalization (18) it then follows that

F(q, 0) = 1, (19)

and the generic form of the intermediate scattering function
simplifies to

F(q, t) = EISF(q) + (1 − EISF(q))ϕ(q, t), (20)

where

EISF(q) =
1
N∑j∈H
∣⟨eiq⋅R̂ j⟩∣

2
(21)

is referred to as elastic incoherent structure factor and the relaxation
function has the form

ϕ(q, t) =
∑j∈H⟨δα̃†

j (q, 0)δα̃j(q, t)⟩

∑j∈H⟨δα̃†
j (q, 0)δα̃j(q, 0)⟩

. (22)

III. PSEUDOELASTIC SCATTERING
A. Measured and true elastic intensity

We will now consider a measured dynamic structure factor,
which is always broadened due to finite instrumental resolution.
Defining R̃(ω) to be the instrumental resolution function and omit-
ting for simplicity the q-dependence of the relevant quantities, the
measured dynamic structure factor is given by the frequency con-
volution of the true dynamic structure factor and the resolution
function,

F̃m(ω) = (R̃∗ F̃)(ω) ≡ ∫
+∞

−∞

dω′ R̃(ω − ω′)F̃(ω′). (23)

With (15), we obtain then in a first step

F̃m(ω) = F(∞)R̃(ω) + (F(0) − F(∞))(R̃∗ ϕ̃)(ω). (24)

We define now the measured elastic intensity through the integral

Fm(∞) ≡ ∫

+ϵ

−ϵ
dω F̃m(ω), (25)

where ϵ > 0 is defined such that

∫

+ϵ

−ϵ
dω R̃(ω) ⪅ 1, (26)

and the measured total static structure factor through

Fm(0) ≡ ∫
ωmax

ωmin

dω F̃m(ω), (27)

where [ωmin, ωmax] is the dynamical range of the instrument.
It follows then from the generic form (24) of the measured,
resolution-broadened dynamic structure factor that

Fm(∞) ≈ F(∞) + (Fm(0) − F(∞))ξ, (28)

where ξ is the pseudoelastic contribution due to finite instrumental
resolution,

ξ = ∫
+ϵ

−ϵ
dω (R̃∗ ϕ̃)(ω). (29)

Supposing that this contribution can be reliably computed on the
basis of appropriate models for the relaxation function and the
instrumental resolution, the “true” elastic intensity may be estimated
through

F(∞) ≈
Fm(∞) − ξFm(0)

1 − ξ
. (30)

For essentially incoherent scattering, the measured total structure
factor is not needed, since one knows that the incoherent static struc-
ture factor is simply a constant. Assuming the normalization (18),
one can replace Fm(0)→ 1 in this case. It is also worthwhile noting
that the standard definition of the elastic amplitude21,22 corresponds
in our notation to the measured one.

B. Model
1. Symmetrized correlation function

The symmetry relations (4) and (5) show that the intermediate
scattering function becomes a real symmetrical function in time if
one considers the classical limit h→ 0 and if one can assume that the
scattering functions are invariant with respect to the parity operation
q→ −q. Based on this observation, Schofield proposed to use the
time-symmetrized real function F(+)

(q, t) ≡ F(q, t + iβh/2) to define
the semiclassical approximation F(+)

(q, t) ≈ F(cl)
(q, t).23 To be able

to work with classical relaxation models, we consider now the time-
symmetrized generic form

F(+)(t) = F(∞) + (F(0) − F(∞))ϕ(+)(t) (31)

of the intermediate scattering function, where the relaxation func-
tion is defined as

ϕ(+)(t) ≡
ϕ(t + iβh̵/2)

ϕ(iβh̵/2)
, (32)

in order to ensure its correct normalization.
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2. “Minimalistic” model
We assume now that the symmetrized relaxation function is

well represented by the model

ϕ(+)(t) = ϕML(t), (33)

where ϕML(⋅) is the “stretched” Mittag-Leffler (ML) function,

ϕML(t) ≡ Eα(−(∣t∣/τ)α
) (0 < α ≤ 1). (34)

The Mittag-Leffler function, Eα(z), is an entire function in the
complex plane,24 and the Taylor series Eα(z) = ∑∞n=0

zn

Γ(1+αn) shows
that E1(z) = exp(z). The most important property of the model
relaxation function (34) is that it decays asymptotically with a
power law,

ϕML(t)
t→∞
∼
(t/τ)−α

Γ(1 − α)
. (35)

Inserting (34) into the generic form (31) of the symmetrized
intermediate scattering leads to the model

F(+)(t) = F(∞) + (F(0) − F(∞))Eα(−(∣t∣/τ)α
), (36)

which has a priori three parameters:

1. the time scale parameter, τ,
2. the form parameter, α, and
3. the plateau value F(∞) ≡ limt→∞ F(+)

(t).

In this form the model has been used in recent
publications,13–15 noting that only incoherent scattering has
been considered, where F(0) = 1. In the following this restriction
will not be made, assuming that an estimation for F(0) ≡ F(q, 0)
can be provided according to Eq. (27).

The dynamic structure factor corresponding to the model (36)
has then the form

S(+)(ω) = F(∞)δ(ω) + (F(0) − F(∞))ϕ̃ML(ω), (37)

where the Fourier transformed relaxation function is a “generalized
Lorentzian,”25

ϕ̃ML(ω) =
sin( πα

2 )

πω((τω)−α + (τω)α + 2 cos( πα
2 ))

, (38)

which follows from the even simpler analytical form of its Laplace
transform,24

ϕ̂ML(s) =
1

s(1 + (sτ)−α)
, (39)

by using the identity ϕ̃ML(ω) = R{ϕ̂ML(iω)}. The Fourier spectrum
(38) becomes a “normal” Lorentzian function for α→ 1.

3. Choice of the model
The ML relaxation function has the remarkable property of

being close to self-similar (“weakly self-similar”)26 for every t > 0
and the physical reason for using it as model relaxation function are
developed in Ref. 27. We resume here the essential points. From a

mathematical point of view the ML relaxation verifies a fractional
differential equation of the form24,28

∂tϕML(t) + τ−α d
dt∫

t

0
dt′
(t − t′)α−1

Γ(α)
ϕML(t′)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∂1−α

t ϕML(t)

= 0, (40)

where ∂1−α
t denotes a fractional derivative29 of order 1 − α. From a

physical point of view Eq. (40) can be considered as a special form of
the general equation of motion,

∂tϕ(+)(t) + ∫
t

0
dt′ κ(+)(t − t′)ϕ(+)(t′) = 0, (41)

that any symmetric time correlation function fulfills according to the
Mori–Zwanzig theory of the Generalized Langevin equation.30–32

Here, κ(+)
(t) is the associated memory kernel, which is itself a

time autocorrelation function that can be formally derived from the
Hamiltonian of the dynamical system under consideration. The only
point that matters here is to consider that the memory kernel has
essentially two characteristic time scales, τ and τ∗, where τ char-
acterizes the asymptotic regime of the correlation function ϕ(+)

(t)
and τ∗ the transition to that regime. In Ref. 27, it is then shown
that the ML relaxation function emerges whenever τ∗ ≪ τ. Writing
κ(+)
(t) ≡ κ(+)

(t; τ, τ∗), we have then

ϕ(+)(t; τ, τ∗) τ∗→0
∼ ϕ(+)ML (t), (42)

and the fractional derivative in Eq. (40) thus represents the
asymptotic form of a memory kernel.

4. Pseudoelastic model contribution
The estimation of the plateau value of a function from experi-

mental data with an instrument-limited finite time range is clearly
a delicate task and it is desirable to be to have some consistency
check in which experimental data are used. This can be achieved
if the pseudoelastic contribution, ξ, can be efficiently corrected for
the given model relaxation function, such that the estimation (30)
can be integrated into the fitting procedure. For this purpose, we will
assume that the resolution function is well represented by a Gaussian
function,

R̃(ω) =
1
√

2πσ
e−

ω2

2σ2 ←→ R(t) = e−
σ2 t2

2 , (43)

where σ is approximately the half width at half maximum (HWHM)
of the instrument under consideration. Working with symmetrized
neutron scattering spectra and the model relaxation function
ϕML(t), the resulting pseudoelastic contribution becomes then a
function of the parameters α, τ, and σ,

ξML(τ, α, σ) = ∫
+ϵ

−ϵ
dω (R̃ ∗ ϕ̃ML)(ω), (44)

such that

F(∞; τ, α, σ) ≈
Fm(∞) − ξML(τ, α, σ)Fm(0)

1 − ξML(τ, α, σ)
(45)

replaces the fit parameter F(∞). For a Gaussian function, we have
∫
+3σ
−3σ dω R̃(ω) ≈ 0.9978 such that ϵ = 3σ is a good choice.
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C. Computing ξML

In order to obtain a quasi-analytical formula for the pseudoe-
lastic contribution ξML defined in Eq. (44), we introduce the boxcar
function

W̃(ω) = Θ(1 −
∣ω∣
ϵ
)←→W(t) =

2 sin(ϵt)
t

, (46)

where ϵ > 0 is the cutoff frequency. With Parseval’s theorem and the
convolution theorem of the Fourier transform,

(R̃∗ ϕ̃ML)(ω)←→ R(t)ϕML(t), (47)

we write in a first step

ξML = ∫

+∞

−∞

dω W̃(ω)(R̃∗ ϕ̃ML)(ω)

=
1

2π∫
+∞

−∞

dt W(t)R(t)ϕML(t).

Defining the auxiliary function

H(t) ≡W(t)R(t)ϕML(t), (48)

and noting that all functions on the r.h.s. are even in time, it
follows that

ξML =
1
π ∫

∞

0
dt e−stH(t)∣

s=0
. (49)

The pseudoelastic contribution ξML may, thus, be written as Laplace
transform of a product of three functions, evaluated at s = 0. We use
now that for a pair of functions, f (t) et g(t),

∫

∞

0
dt e−st f (t)g(t) =

1
2πi ∮C

ds′ f̂ (s − s′)ĝ(s′), (50)

where C encircles all singularities of the integrand, and use this
formula in two steps:

1. Compute

ϕ̂(R)ML (s) =
1

2πi ∮C
ds′ ϕ̂ML(s − s′)R̂(s′). (51)

2. Compute

ξML =
1
π
{

1
2πi ∮C

ds′ ϕ̂(R)ML (−s′)Ŵ(s′)}. (52)

Here, an analytical form is known for the Laplace transformed
model relaxation function, ϕ̂ML(s) [see Eq. (39)], for the Laplace
transform of the model resolution time window,

R̂(s) =
1
σ

√π
2

e
s2

2σ2 erfc(
s
√

2σ
), (53)

and for the Laplace transform of W(t),

Ŵ(s) = 2arccot(
s
ϵ
). (54)

An analytical form of the contour integrals (51) and (52) cannot be
found, but a good quasi-analytical approximation can be obtained
by replacing R̂(s) and Ŵ(s) by Padé approximants,33

R̂(s) ≈
1
σ

P(s/σ)
Q(s/σ)

, (55)

Ŵ(s) ≈
P′(s/ϵ)
Q′(s/ϵ)

, (56)

where P(⋅), Q(⋅), P′(⋅), Q′(⋅) are polynomials. We note here that the
method has been recently used to compute a good approximation for
the resolution-broadened Fourier transform ϕ̃(R)ML (ω).14 Introducing
appropriately scaled integration variables, the contour integrals (51)
and (52) may then be evaluated by the residue theorem of complex
analysis. The details are described in the Appendix, and the result is

ξML ≈
1
π

m

∑
j=1

m′

∑
k=1

χλcjdkΦ̂ML(−χ(uj + λvk)), (57)

where Φ̂ML(⋅) is the scale-free version of the Laplace-transformed
relaxation function ϕ̂ML(⋅),

Φ̂ML(u) =
1

u(1 + u−α)
, (58)

χ and λ are the dimensionless scaling parameters,

χ = στ and λ =
ϵ
σ

, (59)

and {uj} and {vk} are the roots of the polynomials Q(u) and Q′(v),
respectively. The coefficients

cj =
P(uj)

Πm
k=1,k≠j(uj − uk)

, (60)

dk =
P′(vk)

Πm′
l=1,l≠k(vk − vl)

(61)

are the residues of the dimensionless expressions P(u)/Q(u) and
P′(v)/Q′(v), evaluated at the respective roots of the denominator
polynomials. We have, thus, Q(uj) = 0 and Q′(vk) = 0. The final
expression (57) for ξML is, thus, the linear superposition of simple
terms of the form (58). Coding ξML as a compiled function leads to
sufficiently short execution times, which allow for integrating this
function into a fitting procedure.

D. Numerical test
To obtain a systematic picture of the pseudoelastic contri-

bution as a function of τ and α, we compute it according to
Eq. (57) for α = k × 0.1, k = 0, . . . , 10. In view of later applica-
tions, we define σ to be the resolution (HWHM) of the IN16B
spectrometer, σ = 1.75 μeV, and we set ϵ = 3σ. We vary then χ ∈
[στmin, στmax], where τmin = 0.1 ps and τmax = 104 ps (solid lines).
For comparison, we compute ξML by numerical integration of
ϕ(R)ML (ω), choosing the same values for α, σ, and ϵ and fixing τ to the
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FIG. 1. Pseudoelastic contribution ξML as a function of χ ≡ στ and α. The solid
lines correspond to the calculation according to Eq. (57) and the points to control
calculations by numerical integration. More explanations are given in the text.

discrete values τ = 10 j ps, j = −1, . . . , 4 (points). Defining the matri-
ces ξML ≡ (ξML[ j, k]) and ξ(n.i.)

ML ≡ (ξ(n.i.)
ML [ j, k]), where “n.i.” stands

for “numerical integration,” we find that

∥ξ(n.i.)
ML − ξML∥ = 3.45 × 10−6,

where ∥ ⋅ ⋅ ⋅ ∥ is defined as the maximum singular value of the differ-
ence matrix. The results of the calculations are shown in Fig. 1. On
observes that for “good resolutions,” where στ < 1, the pseudoelastic
contributions increase with decreasing α, and the opposite is true for
“bad resolutions,” where στ > 1. We note that limα→0ϕML(t) = 1/2
for any t > 0, which explains the results for α = 0. All calculations
have been performed with Padé-approximations of order m = 8 for
the denominator polynomials Q(u) and Q′(u) and order n = 8 for
the corresponding numerator polynomials, P(u) and P′(u), choos-
ing s = 1 as the reference point. Constructing the Padé-approximant
for the resolution function through

R̃Padé(ω) ≡
1
π
R{

P(iω)
Q(iω)

},

we find that

∣R̃Padé(ω) − R̃(ω)∣ < 10−6

in the relevant ω-domain. All computations have been performed
with the Wolfram Mathematica software.34

IV. APPLICATIONS
A. QENS analysis of Myelin Basic Protein

To illustrate the pseudoelastic contribution to elastic scattering
we consider now a concrete example related to a recently published
QENS study of Myelin Basic Protein (MBP) in an aqueous solu-
tion.15 Myelin Basic Protein is an elementary constituent of the
myelin sheath of nerves and in aqueous solution, it is an intrinsi-
cally disordered protein (IDP). The incoherent QENS spectra for
the study cited above have been recorded on the new IN16B spec-
trometer of the Institut Laue-Langevin, using the BATS option
(Backscattering And Time-of-flight Spectrometer) with an instru-
mental resolution (FWHM) of 3.5 μeV. The translational diffusion
constant, D, of MBP was measured separately by dynamic light

FIG. 2. Impact of global diffusion on the Fourier spectrum of the model relaxation
function for MBP in D2O buffer at T = 283 K and q = 1.2/Å. The solid blue line
labels the relaxation function and the yellow line the corresponding function with
the diffusion damping factor, where D = 3.3 Å2/ns from DLS. The vertical dashed
indicates the instrumental resolution (FWHM).

scattering (DLS) and was then injected into the fit, writing F(+)(q, t)
= exp(−Dq2

∣t∣)F(+)int (q, t), where F(+)int (q, t) is the symmetrized inter-
mediate scattering function for internal motions, the generic form
of which is given by Eq. (36). The implicit assumption is here that
global and internal motions are not correlated. As mentioned in
Ref. 15, the resulting fits for EISF, α, and τ vary only a little if the
diffusion constant is simply neglected. This is illustrated in Fig. 2,
which shows a log–log plot of the Fourier spectrum of the fit-
ted model relaxation function for MBP in D2O buffer (T = 283 K,
q = 1.2/Å) for the dynamical range of the instrument, together
with the corresponding diffusion-broadened counterpart resulting
from the damping factor exp(−Dq2

∣t∣) of the intermediate scatter-
ing function. We take here D = 3.3 Å2/ns from DLS. Having this
figure in mind, the resolution-deconvolved intermediate scattering
function can, therefore, be fitted directly with the model (36). It is
worthwhile mentioning that more sophisticated treatments of global
protein motions have been developed,35–38 but we consider that our
estimation, which is exact for small q-values, is sufficient to estimate
their impact.

The impact of pseudoelastic scattering on the observed elas-
tic intensities is illustrated in Fig. 3, which shows again the Fourier
spectrum of the fitted model relaxation function ϕ̃ML(ω) for the
same parameters as in Fig. 2 (blue line), together with the model
resolution function (yellow line), where the instrumental resolu-
tion (HWHM) corresponds to σ = 0.0027 THz, and the resulting
resolution-broadened spectrum, ϕ̃(R)ML (ω) (red line). The (dimen-
sionless) area in light red is the corresponding pseudoelastic con-
tribution, which is for this example ξML ≈ 0.47 with ϵ = 3σ. The dif-
ference between the model spectrum and its resolution-broadened
version should also be noticed.

An important result of the study in Ref. 15 was that the fitted
EISF vanishes. This can be explained by the fact that MBP in solu-
tion is a very flexible molecule, such that ⟨exp(iq ⋅ R̂j)⟩ ≈ 0. In the
Gaussian approximation39,40 (in q ≡ ∣q∣) of the elastic amplitude one
would write
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FIG. 3. Model relaxation function ϕ̃ML(ω) (blue line), model resolution function

(yellow line) and the resulting convolution ϕ̃(R)
ML (ω) (red line) for the resolution

of the IN16B spectrometer at ILL. The values for τ and α are taken from the fit
parameters shown in Fig. 4 (three-parameter fit for ∣q∣ = 0.8/Å−1). The vertical
dotted lines indicate the instrumental resolution and the light red area corresponds
to the pseudoelastic contribution of ξML ≈ 0.47 for this example.

EISF(q)∣q∣→0
∼

1
N∑j∈H

e−
1
3 ∣q∣

2
⟨û2

j ⟩ ≈ 0, (62)

where ⟨û2
j ⟩ ≡ ⟨(R̂ j − ⟨R̂ j⟩)

2
⟩ is the mean square position fluctua-

tion of (hydrogen) atom j. For smaller q-values a vanishing EISF
stands thus for large motional amplitudes of the atoms. Keep-
ing in mind that the EISF is a “theoretical quantity,” EISF(q)
= Finc(q,∞), which can only be determined by assuming a model,
we can now check the fits of the three-parameter model (36) with
a two-parameter fit, where the EISF is eliminated according to
Eq. (27). The results in Fig. 4 show that α and τ change only
slightly comparing the two- and three-parameter fits, where the
decrease of α with q indicates that increasingly slower relaxation
modes are mixed in with decreasing spatial resolution, making the
relaxation function less exponential. The vanishing EISF from the
three-parameter fits is, in particular, confirmed if one considers
the relevant scale for this quantity. The measured elastic inten-
sity (bottom panel, green points) is this entirely determined by the
“pseudoelastic contribution” defined in Eq. (57). For its calculation,
we used the same Padé approximations as for the numerical test
described in Sec. III D. We note here that the standard estimation of
the parameter errors for the three-parameter fits (yellow dots) leads
to error bars, which are sometimes hardly visible in the plots and
cannot be performed for the two-parameter fits. The reason is purely
technical—namely that in the latter case the EISF “parameter” is a
compiled function, which is passed as an argument to the fit rou-
tine of the Mathematica software.34 Concerning this point, we think
that the error of the fit parameters is anyway better estimated by
comparing the results of the three- and two-parameter fits.

B. QENS analysis of myoglobin
To show that the model (36) does not systematically lead to

vanishing EISFs for proteins in solution, we have analyzed QENS
data from apo-myoglobin at T = 284 K in D2O buffer (pD = 6),
which have been recorded on the IN5 spectrometer at the Institut

FIG. 4. From top to bottom: Characteristic time scale, τ, form parameter, α, and
elastic scattering amplitude, EISF, for incoherent QENS from MBP in solution. Blue
dots correspond to a two-parameter fit, where EISF ≡ EISF(τ, α, σ) according to
Eq. (45) and yellow points to a three-parameter fit. Concerning the EISF, the green
points correspond to the measured elastic intensity Fm(∞) ≡ Fm(q,∞) defined
in Eq. (25), and on the scale of the plot the results in two- and three-parameter
plots are indistinguishable.

Laue-Langevin in Grenoble, at a resolution (FWHM) of 11.6 μeV.41

In contrast to MBP, myoglobin is a compactly folded globular
protein of about the same weight, but with a well-defined three-
dimensional structure containing eight α-helices as secondary struc-
ture elements. Figure 5 shows that here, as for MBP, global diffusion
can be neglected for the analysis of the QENS spectra. We insert here
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FIG. 5. Impact of global diffusion on the model dynamic structure factor at
q = 0.7/Å for myoglobin in solution. The legends are the same as in Fig. 2.

a global diffusion coefficient of D = 10.1 Å2/ns, which is the mean of
the values reported in Refs. 42 and 43, respectively, but the exact
value is here not important. We note in this context that a somewhat
smaller value of D ≈ 8 Å2/ns is obtained by a very rough estimation
from the Stokes-Einstein relation, D = kBT/6πηRh, inserting here a
hydrodynamic radius of Rh = 2 nm for a myoglobin molecule and for
η the kinematic viscosity of water at 284 K (η = 1.306 mPa s).44 The
hydrodynamic radius is here calculated from PDB structure 1BVC
for apo-myoglobin, assuming the latter to be a sphere.

Since impact of global diffusion can be neglected, model (36)
has again been fitted directly to the resolution-deconvolved inter-
mediate scattering function. Figure 6, bottom panel, shows that the
EISF for myoglobin is clearly non-vanishing and that both the three-
and the two-parameter fits give again similar results. The fact that
the atomic motions in a globular, compactly folded protein are more
hindered than in a polymer-like intrinsically disordered protein like
MBP is thus clearly reflected in the corresponding EISFs, and it
should be noted that this effect is much more pronounced for the
resolution-corrected elastic intensities than for the measured ones. It
should also be noted that the characteristic time scale, τ, is systemati-
cally smaller compared with MBP, reflecting faster localized motions
of the atoms in the more compactly folded myoglobin molecule,
and that the α-values are very similar compared with MBP in the
common q-interval ([0.8/Å < q < 1.06/Å]).

C. Resolution correction for ⟨û 2⟩
The Gaussian approximation (62) of the EISF is also known

as Debye–Waller factor and has been used for decades to analyze
“elastic scans” of incoherent neutron scattering from D2O-hydrated
protein powders in the low q-region, in order to infer the average
mean square position fluctuations of the (hydrogen) atoms in the
protein from these data. There is a large bulk of literature on that
subject and we cite here only Refs. 7, 45, and 46. It follows then from
Eqs. (30) and (62) that the “true,” resolution-corrected mean square
position fluctuation, averaged over all atoms, is given by

⟨û 2⟩
q→0
≈ −

3
q2 log(

EISFm(q) − ξ(q)
1 − ξ(q)

). (63)

FIG. 6. The same quantities as in Fig. 6 for myoglobin in solution. More details are
given in the text.

We assume here an isotropic sample and indicate explicitly the
dependency of all involved quantities on q ≡ ∣q∣. Writing EISFm(q)
= exp(−q2

⟨û 2⟩m/3) and developing Expression (63) into a power
series in ξ(q), we obtain

⟨û 2⟩ ≈ ⟨û 2⟩m +
∞

∑
n=1

3
nq2 (e

n
3 q2
⟨û 2⟩m − 1)ξ(q)n

q→0
≈ ⟨û 2⟩m

∞

∑
n=0

ξ(q)n,

where the geometrical series can be summed up to give

J. Chem. Phys. 157, 134103 (2022); doi: 10.1063/5.0103960 157, 134103-8

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 7. Correction factor to convert the measured mean square position fluc-
tuations into the resolution-corrected ones. More explanations are given in the
text.

⟨û 2⟩
q→0
≈
⟨û 2⟩m

1 − ξ(q)
. (64)

Figure 7 shows the correction factor 1/(1 − ξ), which needs to be
applied to obtain the “true,” resolution-corrected mean square posi-
tion fluctuations from the measured ones. At a first glance, the large
correction factors for “bad resolutions” and close to exponential
relaxation may surprise, but they can be understood noting that in
this case, an elastic scan contains practically the whole integral over
the quasielastic line such that ξ ⪅ 1.

V. CONCLUSIONS
In this paper, we have presented a quasi-analytical method for

computing the pseudoelastic contribution of quasielastic scatter-
ing to the elastic neutron scattering amplitude, which enables the
estimation of the true elastic scattering amplitude for the Mittag-
Leffler relaxation model. Due to the computational efficiency of
the method, which is based on Padé approximants for the Laplace
transformed relaxation and resolution functions, the true elastic
scattering amplitude can be eliminated in the model (36) by using
the measured elastic intensity and the two parameters α and τ of
the ML relaxation function together with the instrument resolu-
tion, σ, as input. We have applied the method to confirm the results
of a recent analysis of incoherent QENS spectra from the internal
dynamics of Myelin Basic Protein in solution,15 which revealed, in
particular, a vanishing EISF. MBP is an intrinsically disordered pro-
tein and to demonstrate that the vanishing EISF is the result of its
“floppiness” and the corresponding large motional amplitudes of the
atoms, we performed a comparative study for myoglobin in solution.
Myoglobin has about the same weight as MBP, but in contrast to the
latter, it is a globular protein with a well defined structure. As one
would expect, we find here a clearly non-vanishing EISF as a result
of the more hindered atomic motions in a compactly folded protein.
An important result in this context is that the resolution-corrected
EISF shows this result much more clearly than the measured one.
We have also shown that the resolution corrections of the elastic
intensity may also strongly impact atomic mean square position
fluctuations, which are routinely extracted from so-called elastic
scans.

It should be kept in mind that the elastic intensity is a
“theoretical quantity,” which can only be extracted from experimen-
tal QENS spectra by assuming a model for the relaxation dynamics of
the protein under consideration. In that light, our analysis is a con-
sistency check for the ML relaxation model, which does, in principle,
not exclude other models for the relaxation function.

We finally emphasize that our method is prepared to deal with a
coherent scattering, in general. This aspect is, for instance, important
for the increasing number of QENS studies of proteins in deuterated
aqueous solutions (D2O-buffer), where coherent scattering from the
solvent becomes visible at higher momentum transfers ⪆ 1.5 Å−1, if
the solvent contribution is not subtracted.
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APPENDIX: DERIVATION OF EXPRESSION (57)

We start from Eq. (51) and insert Eq. (55) for the Padé approx-
imation of the Laplace transformed instrumental time window. In
addition, we use that

ϕ̂ML(s) = τΦ̂ML(sτ)

to obtain in a first step

ϕ̂(R)ML (s) =
1

2πi ∮C

ds′

σ
ϕ̂ML(s − s′)

P(s′/σ)
Q(s′/σ)

s′/σ→u
=

1
2πi ∮C

du τΦ̂ML(τ(s − σu))
P(u)
Q(u)

=
1
σ
{

1
2πi ∮C

du χΦ̂ML(χ(
s
σ
− u))

P(u)
Q(u)

}.
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Writing Q(u) = Πm
k=1(u − uk) and defining the coefficients

cj =
P(uj)

Πm
k=1,k≠j(uj − uk)

,

it follows then from the residue theorem of complex analysis that

ϕ̂(R)ML (s) =
1
σ

m

∑
j=1

χcjΦ̂(χ(
s
σ
− uj)). (A1)

This expression is now inserted into the contour integral (52), and
appropriate changes of the integration variables lead to

ξML =
1
π

⎧⎪⎪
⎨
⎪⎪⎩

1
2πi ∮C

ds′
⎧⎪⎪
⎨
⎪⎪⎩

1
σ

m

∑
j=1

χcjΦ̂(χ(−
s′

σ
− uj))

⎫⎪⎪
⎬
⎪⎪⎭

P′(s′/ϵ)
Q′(s′/ϵ)

⎫⎪⎪
⎬
⎪⎪⎭

,

s′/σ→u
=

1
π

⎧⎪⎪
⎨
⎪⎪⎩

1
2πi ∮C

du
⎧⎪⎪
⎨
⎪⎪⎩

m

∑
j=1

χcjΦ̂(χ(−u − uj))

⎫⎪⎪
⎬
⎪⎪⎭

P′(uσ/ϵ)
Q′(uσ/ϵ)

⎫⎪⎪
⎬
⎪⎪⎭

,

ϵ/σ→λ,u/λ→v
=

1
π

⎧⎪⎪
⎨
⎪⎪⎩

1
2πi ∮C

dv
⎧⎪⎪
⎨
⎪⎪⎩

m

∑
j=1

λχcjΦ̂(χ(−λv − uj))

⎫⎪⎪
⎬
⎪⎪⎭

P′(v)
Q′(v)

⎫⎪⎪
⎬
⎪⎪⎭

.

Writing Q′(v) = Πm′
l=1(v − vl) and defining the coefficients

dk =
P(uk)

Πm′
l=1,l≠k(vk − vl)

,

we get again from the residue theorem the final result

ξML =
1
π

m

∑
j=1

m′

∑
k=1

λχcjdkΦ̂(−χ(uj + λvk)), (A2)

where χ ≡ στ and λ ≡ ϵ/σ.
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