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ABSTRACT
We report an analysis of high-resolution quasielastic neutron scattering spectra from Myelin Basic Protein (MBP) in solution, comparing
the spectra at three different temperatures (283, 303, and 323 K) for a pure D2O buffer and a mixture of D2O buffer with 30% of deuterated
trifluoroethanol (TFE). Accompanying experiments with dynamic light scattering and Circular Dichroism (CD) spectroscopy have been
performed to obtain, respectively, the global diffusion constant and the secondary structure content of the molecule for both buffers as
a function of temperature. Modeling the decay of the neutron intermediate scattering function by the Mittag-Leffler relaxation function,
ϕ(t) = Eα(−(t�τ)α) (0 < α < 1), we find that trifluoroethanol slows down the relaxation dynamics of the protein at 283 K and leads to a
broader relaxation rate spectrum. This effect vanishes with increasing temperature, and at 323 K, its relaxation dynamics is identical in both
solvents. These results are coherent with the data from dynamic light scattering, which show that the hydrodynamic radius of MBP in TFE-
enriched solutions does not depend on temperature and is only slightly smaller compared to the pure D2O buffer, except for 283 K, where it
is much reduced. In accordance with these observations, the CD spectra reveal that TFE induces essentially a partial transition from β-strands
to α-helices, but only a weak increase in the total secondary structure content, leaving about 50% of the protein unfolded. The results show
that MBP is for all temperatures and in both buffers an intrinsically disordered protein and that TFE essentially induces a reduction in its
hydrodynamic radius and its relaxation dynamics at low temperatures.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0077100

I. INTRODUCTION

Since the 1990s, the literature has seen a considerable increase
in studies targeting the so-called intrinsically disordered proteins
(IDPs), which have a well-defined function but not a well-defined
structure.1–4 The discovery of IDPs marked a change of the long-
standing paradigm in structural biology that a protein structure is
a prerequisite for the protein function. A protein is usually consid-
ered intrinsically disordered if it contains at least one region of 40

consecutive amino acids that do not correspond to any particular
secondary structure (α-helix or β-strand). One of the prominent
members of the family of IDPs is Myelin Basic Protein (MBP), which
is the basic constituent of the myelin sheath of nerves and the second
most abundant protein in the central nervous system. The protein
plays an important role in understanding diseases of the human ner-
vous system, such as multiple sclerosis. In its predominant form,
MBP contains 170 residues and has a molecular weight of 18.5 kDa.
In aqueous solution, the protein is intrinsically disordered, and the
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present study focusses on the effect of trifluoroethanol (TFE)–water
mixtures on its global and internal dynamics. TFE is used since
many years as an agent, which is known to induce the formation
of α-helices in IDPs, but its action is still not completely under-
stood. The formation of secondary structure elements does, for
instance, not necessarily lead to a well-defined global native struc-
ture as for globular proteins.5 The aim of the present quasielastic
neutron scattering (QENS) study is to shed some light on the action
of TFE on the global folding and the dynamics of MBP. Thermal
neutron scattering is a unique technique to study the structural
dynamics of condensed matter at the atomic scale, including soft
matter and biological molecules. The energy of thermal neutrons
matches by definition the thermal energies of atoms in condensed
matter systems, and its wavelength is compatible with typical inter-
atomic distances. High-resolution quasielastic neutron scattering
(QENS), with typical resolutions in the �eV range, corresponding to
a few nanoseconds, is, in particular, suitable to study the slow inter-
nal relaxation dynamics of complex macromolecular systems.6–8

We mention here that QENS is complementary to neutron spin-
echo spectroscopy, which probes macromolecular conformational
dynamics on much longer time scales of up to several hundred
nanoseconds and which has also been applied previously to study
the dynamics of MBP.9,10

The internal dynamics of proteins and complex molecular sys-
tems, in general, is characterized by a strongly non-exponential
relaxation of the relevant time correlation functions, which exhibit
an asymptotic power law decay. The power law decay reflects self-
similarity, i.e., forms invariance of the correlation functions under
a change of the time scale, which is also typical for glasses.11–19 The
typical properties of internal protein dynamics described above must
be taken into account in the model for QENS from MBP, and the
challenge is that the dynamics of very slow relaxation modes over-
laps with elastic scattering20 and also with the diffusion of whole
molecules, which must be taken into account since MBP is studied
in solution. For this purpose, we extend a model for internal protein
dynamics, which has been recently used to analyze QENS data from
protein powder samples of human acetylcholinesterase.21,22

This paper is organized as follows: Sec. II describes the experi-
mental details and is followed by a presentation of the model for the
intermediate scattering function, a discussion of the results, and a
conclusion, which are, respectively, presented in Secs. III–V.

II. EXPERIMENTS
A. QENS spectra
1. Sample preparation

Bovine Myelin Basic Protein (MBP) and all used chemicals
were bought from Sigma-Aldrich (St. Louis, MO, USA). MBP pow-
der was dissolved in D2O (99.9 at. % D) and incubated for one
day to allow for exchange of liable protons. The MBP solution was
then again freeze dried. The QENS experiments have been per-
formed for D2O-exchanged MBP in solution, using for the latter
a D2O buffer (20 mM Na2HPO4�NaH2PO4, pH 4.8) and a corre-
sponding D2O buffer with 30 vol. % per volume of deuterated 2,2,2-
trifluoroethanol-d3 (TFE). The protein concentration was 55 mg/ml.
The protein concentration was determined by optical absorption at
280 nm wavelength with an absorbance of E1% = 5.89.23

2. Instrument
All QENS spectra have been collected on the IN16B spectrom-

eter operated by the Institut Laue-Langevin in Grenoble. IN16B is
a neutron backscattering spectrometer with a new “BATS mode”
(Backscattering And Time of flight Spectrometer) that consider-
ably extends the accessible energy transfer range.24,25 The data have
been collected for three different temperatures, 283, 303, and 323 K,
with an energy resolution of 3.5 �eV, an energy transfer range of±150 �eV, and a momentum transfer range of 0.8 Å−1 < q < 1.8 Å−1

in units of �h. All samples and buffers were measured in annular alu-
minum sample holders with a gap thicknesses of 0.3 mm. The QENS
data of the samples were normalized by the vanadium reference, and
the data reduction was performed with the MANTID software.26

B. Accompanying experiments
Accompanying experiments with dynamic light scattering

(DLS) and Synchrotron Radiation Circular Dichroism (SRCD) spec-
troscopy have been performed to estimate, respectively, the global
diffusion coefficient of MBP and its secondary structure content as
a function of temperature and buffer. The details are described in
the supplementary material, and we mention here only the respec-
tive protein concentrations that were used in the experiments since
they are important for the discussion of the results.

Concerning the DLS experiments, we used a protein concentra-
tion of 4 mg/ml for the pure D2O buffer and 7 mg/ml for the D2O
buffer with 30% TFE. We found that MBP coagulates T = 323 K in
the pure D2O buffer, which manifests itself in a drastic decrease in
the measured diffusion constant. Therefore, we replaced the latter
for subsequent data analysis by an estimate through linear extrapo-
lation from smaller temperatures (see the supplementary material).
The SRCD spectra were recorded with 44 mg/ml for the pure D2O
buffer and with 20 mg/ml for the D2O buffer with 30% TFE.

III. THEORY AND DATA ANALYSIS
A. Scattering functions

Thermal neutron scattering probes the differential scattering
cross section of the sample under consideration,

d2σ
d�dω

= k
k0
S(q, ω), (1)

where k0 and k are the momenta of the incident and scattered neu-
trons, respectively, in units of �h and S(q, ω) is the dynamic structure
factor. The latter depends on the kinematical variables q and ω,
which are, respectively, the momentum and energy transfer from
the neutron to the sample. It can be written as the time Fourier
transform of the intermediate scattering function,

S(q, ω) = 1
2π�

+∞
−∞ dte−iωtF(q, t), (2)

which splits into a coherent and an incoherent part,

F(q, t) = Fcoh(q, t) +Finc(q, t), (3)
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containing, respectively, the information about the collective and
average single-atom dynamics of the scattering system,

Fcoh(q, t) = 1
N�i,j b∗i,cohbj,coh�e−iq⋅R̂i(0)eiq⋅R̂j(t)�, (4)

Finc(q, t) = 1
N�i

b2
i,inc�e−iq⋅R̂i(0)eiq⋅R̂i(t)�. (5)

Here, R̂i(t) denotes the position operator of atom i, �⋅ ⋅ ⋅� denotes
a quantum ensemble average, and bi,coh and bi,inc are the coherent
and incoherent scattering lengths of atom i, respectively.7,27 Being
the quantum time correlation function, the intermediate scattering
verifies the symmetry relation

F(q, t) = F(−q,−t + iβ�h), (6)

which translates into the detailed balance relation

S(q, ω) = S(−q,−ω)eβ�hω�2 (7)

for the dynamic structure factor.
Protein solutions are isotropic systems, and the total observed

dynamic structure factor may be expressed as an isotropic angular
average over all directions of q,

Stot(q, t) = Stot(q, t) = 1
4π � sin(θ)dθdϕStot(qn(θ, ϕ), t). (8)

Here, nq = (sin θ cos ϕ, sin θ sin ϕ, cos θ) is the unit vector pointing
into the direction of q and q ≡ �q�. The QENS spectra of MBP were
then extracted according to

Sprotein(q, ω) ≈ Stot(q, ω) − (1 − ϕ)Sbuffer(q, ω), (9)

using that the partial specific volume of the protein is v = 0.73 ml/g.
For a concentration of c = 55 mg�ml, this leads to a volume frac-
tion for the protein of ϕ = cv = 0.040 15 (see Ref. 28). Since the
incoherent neutron scattering from hydrogen dominates by far
the coherent and incoherent scattering from all other atoms, the
dynamic structure factor for MBP may be approximated by

Sprotein(q, ω) ≈ b2
H,incSH,protein(q, ω), (10)

and we abbreviate in the following S(q, ω) ≡ SH,protein(q, ω), i.e.,

S(q, ω) ≡ 1
2π�

+∞
−∞ dte−iωt F(q, t), (11)

F(q, t) = 1
N �

i∈proteinH
�e−iq⋅R̂i(0)eiq⋅R̂i(t)�. (12)

The above definition shows that

� +∞
−∞ dω S(q, ω) = 1 = F(q, 0), (13)

and this normalization will be used in the following.

B. Symmetrization of the QENS spectra
For the further data analysis, we will be using the symmetrized

dynamic structure factor

S(+)(q, ω) = e−β�hω�2S(q, ω)
∫ +∞−∞ dω e−β�hω�2S(q, ω) , (14)

which is an even function in ω and which is normalized such that

� +∞
−∞ dω S(+)(q, ω) = F(+)(q, 0) = 1. (15)

The corresponding intermediate scattering function is a symmetric
function in time,

F(+)(q, t) = F(q, t + iβ�h�2)
F(q, iβ�h�2) , (16)

and we note in this context that S(+)(q, ω) ≈ S(cl)(q, ω) and
F(+)(q, t) ≈ F(cl)(q, t) correspond to Schofield’s semiclassical
approximation,29 where the superscript “(cl)” indicates the cor-
responding classical scattering function. With this reasoning
essentially, classical models can be used for the interpretation of
QENS spectra.

C. Resolution deconvolution
The experimental dynamic structure factor, denoted by an

index “m,” can be written as the convolution of the “ideal” dynamic
structure factor and the instrumental resolution plus a noise,

S(+)m (q, ω) = � +∞
−∞ dω′S(+)(q, ω − ω′)R̃(q, ω′) + Ñ(q, ω), (17)

where Ñ(q, ω) and R̃(q, ω) represent the noise and the instru-
mental resolution, respectively, and are supposed to be symmetric
in ω. In the context of this paper, R̃(q, ω) = S(+)vanadium(q, ω) is the
symmetrized dynamic structure factor of a vanadium sample with
identical dimensions to the sample of interest, and the noise is
essentially unknown. Here, one uses the fact that vanadium can be
considered as an ideal isotropic and elastic scatterer. In the time
domain, Eq. (17) becomes

F(+)m (q, t) = F(+)(q, t)R(q, t) +N(q, t), (18)

noting that the convolution term in ω becomes a normal product.
The “ideal” resolution corrected intermediate scattering function is
therefore obtained through

F(+)(q, t) = F(+)(q, t)
R(q, t) − N(q, t)

R(q, t) . (19)

The above equation shows that the limit of the instrumental decon-
volution by Fourier transform is set by the term N(q, t)�R(q, t),
which becomes dominant for small values of the resolution window,
R(q, t). In practice, the threshold for R(q, t) is attained for

tmax ≈ h
2�ω

, (20)

where h is Planck’s constant and �ω is the instrumental energy
resolution. For the IN16B spectrometer, on which the QENS data
analyzed in this paper have been recorded, we have �ω = 3.5 �eV,
corresponding to tmax ≈ 600 ps. Figure 1 illustrates the spectral
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FIG. 1. Left panel: Symmetrized and normalized dynamic structure factor, S(+)m (q, ω), of MBP in D2O buffer at q = 1.06 Å−1 and T= 283 K (blue line) with the corresponding
resolution function R̃(q, ω) (dark yellow line) obtained from a vanadium run. Right panel: Corresponding intermediate scattering function, F(+)m (q, t), in the time domain
(dark yellow dots) and resulting deconvoluted intermediate scattering function F(+)(q, t) (green dots). The vertical dashed line indicates the accessible time domain
corresponding to the resolution of the instrument [Eq. (20)].

deconvolution for the QENS spectrum of MBP in D2O buffer for T= 283 K at q = 1.057�Å. In the left panel, we show the symmetrized
and normalized dynamic structure factor S(+)m (q, ω) (blue line)
together with the corresponding spectrum of vanadium, R̃(q, ω),
which defines the instrumental resolution (dark yellow line). Here,
individual data points cannot be resolved for the full accessible
ω-range. The right panel displays the corresponding intermediate
scattering functions, F(+)m (q, t) (blue dots) and R(q, t) (dark yellow
dots), which have been obtained by discrete (Fast) Fourier trans-
form from equidistantly sampled arrays representing S(+)m (q, ω) and
R̃(q, ω). The resolution-deconvoluted intermediate scattering func-
tion, F(+)(q, t), is given by the green dots, and the dashed vertical line
indicates the threshold of tmax ≈ 600 ps corresponding to the instru-
mental resolution. All displayed data points fulfilling t ≤ tmax have
been used for the fit of the model to be described in the following.

D. QENS model
1. Generic form of the intermediate scattering
function

The data analysis of the QENS spectra from intrinsically disor-
dered proteins presents the difficulty that the center-of-mass motion
and the motions relative to the center of mass are entangled. Here,
we use the simplest approximation of the intermediate scatter-
ing function that consists in neglecting this entanglement in the
functional form,

F(+)(q, t) ≈ e−Dq2 �t�F(+)int (q, t), (21)

and considering D to be an apparent translational diffusion coeffi-
cient that also contains contributions from motions relative to the
center of mass. The intermediate scattering function for the internal
dynamics of MBP has the generic form

F(+)int (q, t) = EISF(q) + (1 − EISF(q))ϕ(+)(q, t), (22)

where the symbol EISF(q) stands for the elastic incoherent structure
factor,

EISF(q) = 1
N�i∈H��eiq⋅R̂i��2, (23)

and ϕ(+)(q, t) describes the relaxation of F(+)(q, t) toward this
plateau value. Introducing the fluctuation of the Fourier trans-
formed density of atom i,

δρi(q, t) = eiq⋅R̂i(t) − �eiq⋅R̂i�, (24)

the relaxation function ϕ(q, t) can be explicitly expressed as a
normalized quantum time correlation function,

ϕ(q, t) = �∑i∈H�δρ†
i (q, 0)δρi(q, t)�

∑i∈H�δρ†
i (q, 0)δρi(q, 0)��, (25)

and its Fourier transform

ϕ̃(q, ω) = 1
2π�

+∞
−∞ dt e−iωtϕ(q, t) (26)

leads to

Sint(q, ω) = EISF(q)δ(ω) + (1 − EISF(q))ϕ̃(q, ω), (27)

which shows explicitly that the EISF determines the elastic compo-
nent of the QENS spectrum for the internal protein dynamics.

2. Multiscale relaxation
The internal dynamics in MBP is described by a Mittag-Leffler

(ML) relaxation function,18,19

ϕ(+)ML (t) = Eα�−(�t��τR)α�, 0 < α < 1, (28)

where the q-dependence is omitted for better readability. Here, Eα(⋅)
is the Mittag-Leffler (ML) function,30 which is defined by the Taylor
series,

Eα(z) = ∞�
n=0

zn

Γ(1 + αn) (α > 0), (29)

for all arguments in the complex plane. For 0 < α ≤ 1, the ML relax-
ation function (28) decays monotonously, with an asymptotically
power law form,
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ϕML(t)t�τR∼ (t�τR)−α

Γ(1 − α) , (30)

and exponential relaxation is retrieved for α = 1,

lim
α→1

ϕML(t) = exp(−�t��τ), (31)

where the power-law long time tail vanishes.
Since the Laplace transform of the ML relaxation function has

a simple analytical form,30

ϕ̂ML(s) = 1
s(1 + (sτR)−α) , (32)

its Fourier and relaxation rate spectra can be easily obtained through

ϕ(+)(ω) = lim
�→0

1
π
R�ϕ̂(+)(iω + �)�, (33)

which leads to a “generalized Lorentzian,”31

ϕ̃ML(ω) = 1
π

sin� πα
2 ��ω��(�ω�τR)−α + (�ω�τR)α + 2 cos� πα

2 �� . (34)

Here, ∫ +∞−∞ dω ϕ̃ML(ω) = 1, and the standard Lorentzian is retrieved
for α→ 1. It should be noted that ϕ̃ML(ω) ∼ �ω�α−1 for ω→ 0 and
becomes thus singular for 0 < α < 1.

The Laplace transform (32) of the ML relaxation function can
also be used to obtain an analytical form of its relaxation rate spec-
trum. For an arbitrary monotonously decaying relaxation function,
ϕ(t), the latter is defined through the relation

ϕ(t) = � ∞
0

dλ p(λ) exp(−λ�t�), (35)

where p(λ) ≥ 0 and ∫ ∞0 dλ p(λ) = 1. Using that

p(λ) = lim
�→0

1
π
I�ϕ̂(+)(−λ − i�)�, (36)

one finds for the ML relaxation function31

pML(λ) = sin(πα)
πλ((λτR)−α + (λτR)α + 2 cos(πα)) . (37)

The slow power law decay (28) of ϕML(t) leads here to a power
law form of the relaxation rate spectrum for small arguments,
pML(λ)λ→0∼ λα−1.

3. Total dynamic structure factor
Using the general form (21) of the total intermediate scattering

function, we write the symmetrized version in the form

F(+)(t) = e−��t�(EISF + (1 − EISF)ϕML(�t�)), (38)

omitting again the q-dependence in the formulas and defining

� ∶= Dq2. (39)

The dynamic structure factor can then be expressed in terms of the
Laplace transformed intermediate scattering function,

S(+)(ω) = 1
π
R�F̂(+)(iω + �)�, (40)

which leads to

S(+)(ω) = EISF
1
π

�
ω2 + �2 + (1 − EISF) ϕ̃(�)ML(�ω�), (41)

where ϕ̃(�)ML(ω) is the Fourier transform of the diffusion-damped ML
relaxation function,32

ϕ̃(�)ML(ω) = ��ω2 + �2�α�2 + ω sin(α arg(� + i�ω�)) + � cos(α arg(� + i�ω�))
(ω2 + �2)�((ω2 + �2)α + 1)(ω2 + �2)−α�2 + 2 cos(α arg(� + i�ω�))� . (42)

Note that the term � = Dq2 makes ϕ̃(�)ML(ω) regular at ω = 0. In
this context, it should be noted that the Lorentzian function that is
weighted by the EISF in Eq. (41) tends to a Dirac distribution in the
limit �→ 0.

IV. RESULTS AND DISCUSSION
The results shown in the following have been obtained by

the fitting model (38) to the resolution-deconvoluted experimental
intermediate scattering functions. To make the model parameters
and functions explicitly appear, we write

F(+)(q, t) = e−Dq2t�EISF(q) + (1 − EISF(q))Eα�−(t�τ)α��, t ≥ 0,
(43)

where

● D is the apparent translational diffusion coefficient,

● EISF(q) determines the elastic intensity,● α ≡ α(q) sets the form of the relaxation function,● τ ≡ τ(q) sets the time scale of the relaxation function.

Fitting all four parameters at the same time is possible but
leads to fits with large error bars, in particular, for the apparent
translational diffusion coefficient, D. For this reason, we used the
true translational diffusion coefficient obtained from dynamic light
scattering (DLS) and, for comparison, the q-averaged diffusion coef-
ficients, DQENS(q), from the four-parameter fit of the QENS spectra.
Both fits give very similar values and confidence intervals for τ, α,
and EISF, and we show here those for those with a fixed value for
DDLS. Table I shows both diffusion coefficients, where the error bars
of DQENS(q) are given by the standard deviation of DQENS(q) with
respect to the mean value DQENS(q). The very small value of DDLS
for D2O buffer at 323 K indicates the coagulation of MBP, and we
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TABLE I. Diffusion coefficients from DLS and QENS for MBP in solvents I and II.

Temp (K) DDLS I (Å2�ns) DQENS I (Å2�ns) DDLS II (Å2�ns) DQENS II (Å2�ns)

283 3.31 ± 0.053 6.04 ± 0.46 2.05 ± 0.049 5.59 ± 0.73
293 5.72 ± 0.057 ⋅ ⋅ ⋅ 3.17 ± 0.145 ⋅ ⋅ ⋅
303 7.49 ± 0.090 6.15 ± 0.80 4.42 ± 0.19 5.91 ± 0.70
313 9.85 ± 0.049 ⋅ ⋅ ⋅ 6,32 ± 0.292 ⋅ ⋅ ⋅
323 0.31 ± 0.013 6.43 ± 0.83 8.15 ± 0.19 6.29 ± 0.36

11.94 (extrapol.)

show in the same position also the extrapolated value from lower
temperatures for a non-coagulated solution.

The resulting three-parameter fits of the resolution-
deconvoluted and symmetrized intermediate scattering function,

F(+)(q, t), are shown in Fig. 2. All fits have been performed for
the two solvents, D2O buffer (solvent I) and D2O buffer with
30% deuterated trifluoroethanol (TFE) (solvent II), and the three
different temperatures, 283, 303, and 323 K. The blue data points

FIG. 2. Plot of the deconvoluted intermediate scattering function F(+)(q, t) of MBP at different temperatures, comparing solvents I and II (blue and dark yellow points,
respectively), and the corresponding fits with model (43) (solid lines) for the minimum and maximum value of q.
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FIG. 3. Left panel: Arrhenius plot of the diffusion coefficient for MBP in solvent I (blue symbols) and solvent II (dark yellow symbols). The solid lines represent the
corresponding fitted Arrhenius laws. Right panel: Effective hydrodynamic radii of MBP in the two solvents as a function of temperature.

correspond here to solvent I, the dark yellow points correspond
to solvent II, and the corresponding solid lines label the fits. We
note that not all data points have been used for the fits but a
selection of points, which takes all data for F(q, t) at short time lags
and increasingly less points at large time lags. The reason is that
the evaluation of the ML relaxation function is time consuming.
We verified that that the resulting fit parameters are only weakly
influenced by this choice.

We discuss first the results for the diffusion constants in the two
buffers at the three temperatures, which have been obtained by DLS
and QENS. We recall that MBP in D2O buffer coagulates at 323 K,
and we note in this context that the DLS experiments have been
performed at lower protein concentrations than the QENS experi-
ments (4 mg/ml for solvent I and 7 mg/ml for solvent II), which are
thus certainly affected by coagulation. We are though confident that
this phenomenon does not affect our results concerning the inter-
nal dynamics probed by the IN16B spectrometer since even setting
D = 0, i.e., neglecting completely global diffusion in the fits of τ, α,
and EISF, does only slightly alter the resulting values for τ, α, and
EISF. The fits are though sensitive to deviating too much from the
DLS and QENS values toward higher values. Replacing DDLS for sol-
vent I at 323 K by the extrapolated value from lower temperatures is
not tolerated since the corresponding width Dq2 for all q-values lies
clearly outside the resolution of IN16B. The left panel of Fig. 3 shows
an Arrhenius plot of the diffusion constants, where for solvent I at
323 K the extrapolated triangular data point has been used instead
of the measured one. Here, the blue symbols refer again to solvent I
and the dark yellow symbols refer to solvent II. The corresponding
solid lines denote the fits of an Arrhenius law,33,34

D(T) = D0e− �G
kBT , (44)

where the activation energy is �G = 5.10 kcal�mol for solvent I and
�G = 6.05 kcal�mol for solvent II. We note in this context that the
activation energy for solvent I is close to the values that have been
found for other IDPs34 and corresponds to the activation energy for
self-diffusion in liquid water.35,36 The right panel of Fig. 3 shows
an estimation of the effective hydrodynamical radius, Rh, of MBP

as a function of temperature and solvent using the Stokes–Einstein
relation

D = kBT
6πηRh

, (45)

with the diffusion coefficients from DLS and experimental values
for the dynamic viscosity, η, which are given in the supplementary
material. The viscosity was measured with a rolling ball viscome-
ter for both solvents and the relevant temperature range (see the
supplementary material). The results show that Rh is essentially con-
stant with increasing temperature, and between 283 and 303 K, it

FIG. 4. Secondary structure content of MBP in solvent I (hollow symbols) and
solvent II (full symbols).
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decreases for MBP in D2O buffer. Such a behavior has been, in
fact, reported for IDPs,37,38 but we will here not comment on that.
The essential point is that no unfolding transition is observed with
increasing temperature, which is characteristic for folded globular
proteins. Figure 4 shows that this result is in agreement with the
observation from CD spectroscopy that the secondary structure con-
tent is essentially constant over the whole temperature range, being
slightly larger for the TFE-enriched buffer (solvent II). TFE is known
to induce α-helical motives, and one can observe that at 283 K,
but with increasing temperature, this effect disappears continuously,
and at high temperatures it is even inverted. The effect of TFE con-
sists thus in moving β-strands into α-helical motives and vice versa,
keeping the total secondary structure content constant.

In Fig. 5, we show the fit parameters concerning the internal
dynamics of MBP, comparing again the three different tempera-
tures, 283, 303, and 323 K, and solvents I and II. The time scale
parameter τ varies considerably with temperature and q, where the
general rule is that it decreases with temperature and with q. This
can be understood since lowering the temperature means slowing

down the dynamics and since the higher values of q probe increas-
ingly more localized and faster motions. The form parameter, α, of
the relaxation function varies, in contrast, weakly with temperature
and increases with q to values close to 1, indicating a close to expo-
nential relaxation for localized motions. The particularly interesting
result is that the relaxation dynamics of MBP in the two solvents
becomes similar with increasing the temperature and is practically
identical at 323 K. The observation is coherent with the observation
that both the hydrodynamic radii and the content and composition
of α-helices and β-strands are comparable. We also see that the coag-
ulation of MBP, which is found by DLS in solvent I at 323 K and
certainly present in the QENS samples of higher concentration, has
no influence on the internal dynamics of the protein.

Concerning the EISF parameter, we observe that it is generally
close to zero for the accessible q-range, except for solvent II at 283 K
and small q-values, which indicates that at low temperatures sol-
vent II hinders somewhat more large-amplitude motions compared
to solvent I. We note in this context that EISFs are not systemati-
cally small for our model and refer to recent work on a QENS data

FIG. 5. From top to bottom, the model parameters τ, α, and EISF for MBP at different temperatures comparing the two solvents, D2O buffer and D2O buffer with 30%
deuterated TFE.
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analysis from hydrated powders of human acetylcholinesterase,19,20

which is an enzyme with a well-defined structure. Here, the EISF was
found to be clearly non-zero, as one would expect for such a pro-
tein that is more compact and such a sample, where global protein
motions are prevented.

To complement the discussion of the fit parameters, we show
in Fig. 6 the corresponding relaxation rate spectra, p(λ), which are
defined through Eq. (37). For both solvents and all temperatures,
we observe that the peak of the relaxation rate spectrum shifts to
higher values with increasing q, and its width decreases. This reflects
the fact that the form parameter α approaches 1 with increasing
q, noting that α = 1 corresponds to exponential relaxation and a
perfectly monodisperse relaxation rate spectrum of the form p(λ)= δ(λ − 1�τ); we are now in the position to give a physical interpre-
tation of the form parameter α, referring to the concept of protein

energy landscapes proposed by Frauenfelder et al.13 Proceeding as
in Ref. 19, we consider the variable

δξ(q, t) = ξ(q, t) − �ξ(q, t)�, where ξ(q, t) = eiq⋅Rj(t), (46)

which is the spatial Fourier transform of the atomic density
δ(r − Rj(t)) of atom j, and assume that the dynamics of δξ(q, t)
can be modeled as a fractional Ornstein–Uhlenbeck (fOU) process.
The latter can be interpreted as the diffusion process in a “rough”
parabolic potential, or “energy landscape,” which tends to restore
ξ(q, t) to its mean value, �ξ(q, t)�. Since ξ(q, t) is a complex func-
tion, the real and the imaginary part should here be considered as
independent variables, and the left panel of Fig. 7 depicts a sketch of
the “rough” parabolic potential as a function of R{δξ} and I{δξ}.
If the variable δξ was diffusing in a smooth parabolic potential, then

FIG. 6. From top to bottom, relaxation
rate spectra p(λ) [see Eq. (37)] for
T = 283 K, T = 303 K, and T = 323 K,
respectively, in D2O buffer (left panel)
and D2O buffer with 30% TFE (right
panel).
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FIG. 7. Left panel: Sketch of a rugged harmonic potential for the real and imaginary part of δξ(q, t). Right panel: Sketch of the energy barrier distribution, P(h, α), given in
Eq. (48).

its time autocorrelation function would be an exponential function,�δξ∗(0)δξ(t)�∝ exp(−t�τ), and diffusion in the rugged potential
leads to longtime memory effects, which are described by a ML relax-
ation function, i.e., �δξ∗(0)δξ(t)�∝ Eα(−(t�τ)α). As discussed in
Ref. 19, one can find the distribution of the energy barriers in the
“rough” parabolic potential by using the diffusion model proposed
by Zwanzig,39 which describes diffusion of a particle in a rough
harmonic potential with a fixed energy barrier. Introducing the
dimensionless energy barrier height

h = �E
kBT

, (47)

the distribution for the energy barriers corresponding to the ML
relaxation function is found to be19

PML(h) = 2h sin(πα)
π�e−αh2 + eαh2 + 2 cos(πα)� . (48)

The right panel of Fig. 7 displays this distribution of energy barri-
ers as a function of u and α. It shows that limα→1PML(h) = δ(h),
i.e., becomes more and more the energy barrier distribution for a
smooth potential with vanishing barrier height, whereas for α→ 0,
the distribution PML(h) becomes very broad, including also barri-
ers of almost infinite height. Having this interpretation in mind,
the plots of the fit parameters shown in Fig. 5 show that localized
motions are characterized by a smoother potential than global ones
(α increases with q). This simply reflects that the relaxation rate
spectrum of large-amplitude motions in a protein is more disperse
than for localized motion since they require the concerted motion
of many modes with different relaxation time scales. Concerning the
influence of the solvent on the effective local potential of the hydro-
gen atoms, one sees that solvent II leads to a slightly rougher effective
potential for δξ at T = 283 K compared to solvent I. This difference
vanishes with increasing temperature, which makes the differences
in the relaxation dynamics of MBP disappear.

V. CONCLUSIONS
The present analysis of high-resolution quasielastic neu-

tron scattering spectra from myelin basic protein shows that
“minimalistic” multiscale models for the relaxation dynamics of pro-
teins combined with results from dynamic light scattering yield
meaningful insights into the dynamics of intrinsically disordered
proteins and permit, in particular, the detection and interpreta-
tion of changes in the relaxation dynamics as a function of solvent,
temperature, and spatial resolution. With our choice of the Mittag-
Leffler relaxation function as a model for the relaxation of the
intermediate scattering function, the relaxation dynamics of MBP
can be interpreted in terms of a simple energy landscape model. The
QENS analysis shows that a trifluoroethanol-enriched solvent buffer
at 283 K makes this energy landscape rougher, which leads to slower
relaxation dynamics with a more disperse relaxation rate spectrum,
and that this effect disappears continuously with increasing tem-
perature. In accordance with this observation, the complementary
experiments with dynamic light scattering and SRCD experiments
show that TFE reduces at 283 K the radius of hydration of MBP
and increases the α-helix content at the expense of β-strands. These
effects disappear with increasing temperature, where the radii of
hydration are comparable and constant, and at higher temperatures
even more β-strands appear. Independent of if trifluoroethanol is
added to the D2O buffer or not, there is no unfolding transition
with increasing temperature, which would manifest itself by a sud-
den increase in the hydrodynamic radius and which is typical for
folded proteins. Our CD measurements confirm this observation,
showing that the global secondary structure content in the presence
of TFE is constant with temperature and only slightly higher com-
pared to a pure D2O buffer. To confirm our findings, small-angle
x-ray scattering/small-angle neutron scattering (SAXS/SANS) will
certainly be useful to obtain information about the radii of gyra-
tion and possible aggregation of MBP at exactly the same protein
concentrations and solvents, which have been used for the QENS
experiments.

From a technical point of view, we think that the high qual-
ity of the data and the extended energy transfer range of the IN16B
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spectrometer with the new “BATS mode” (Backscattering And Time
of flight Spectrometer) were crucial to obtain the results quoted
above. We finally remark that all numerical and several analytical
calculations have been performed with the Wolfram Mathematica
package.40

SUPPLEMENTARY MATERIAL

In the supplementary material, we give information about com-
plementary experiments by dynamic light scattering, viscosimetry,
and synchrotron radiation circular dichroism spectroscopy on MBP
as a function of solvent and temperature. We show, in particular,
the global diffusion constants measured by DLS, the correspond-
ing viscosities that have been used to compute the respective radii
of hydration, and the SRCD spectra that have been used to evaluate
the secondary structure content of MBP.
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