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ABSTRACT
The article presents a theoretical framework for molecular dynamics simulations of complex systems
subject to any combination of holonomic and non-holonomic constraints. Using the concept of con-
strained inverse matrices both the particle accelerations and the associated constraint forces can be
determined from given external forces and kinematical conditions. The formalism enables in partic-
ular the construction of explicit kinematical conditions which lead to the well-known Nosé–Hoover
type equations of motion for the simulation of non-standard molecular dynamics ensembles. Illus-
trations are given for a few examples and an outline is presented for a numerical implementation of
the method.

1. Introduction

Since many years, classical molecular dynamics (MD)
simulations are an indispensable tool for the investiga-
tion of structural and dynamical properties of condensed
matter systems. Starting with the pioneering MD simula-
tions by Rahman and Verlet [1,2], the simulated systems
rapidly evolved from simple liquids to polymers and
biomolecular systems [3,4]. In this context, constraints
were an important methodological concept to develop
the field of MD simulations. A standard application is the
replacement of fast intramolecular vibrations by bond
constraints, which enables the use of larger time steps
for the iterative integration of the Newtonian equations
of motion [5,6]. New routes for the application of MD
simulations were opened by conceiving constraints for
the simulation of rare events [7,8] and for the sim-
ulation of many particle systems in non-equilibrium
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conditions [9,10]. Thermodynamic constraints, which
have been conceived to simulate non-standard MD
ensembles, such as the canonical and the isobaric-
isothermal ensemble, play here a special role since they
are not defined through explicit kinematical conditions,
but by coupling the physical system to an external heat
and/or pressure reservoir. The method is usually referred
to as ‘extended systems approach’ [11–13]. For this rea-
son, the construction of equations of motion for systems
which are subjected to a combination of thermodynamic
and ‘normal’ constraints remains a difficult task. An
example is the simulation of semi-rigid polymers in
the isobaric or isobaric-isothermal ensemble, where
the bond constraints interfere with the scaling of the
simulation box which is used to adapt the pressure.
The corresponding equations of motions can be derived
within the extended systems approach [14,15], but their
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construction is quite involved since one has to consider
constrained Hamiltonian systems [16,17].

In this paper it is shown that explicit non-holonomic
kinematical conditions corresponding to thermody-
namic constraints can be derived within an existing
theory of constrained many particle systems [18,19],
enabling a quasi-automatised derivation of the equa-
tions of motion of multi-constrained dynamical systems
as well as the handling of redundant and inconsistent
constraints. The numerical implementation of the novel
method is outlined.

2. General framework

2.1. Newton’s equations ofmotion

In the following we considerN point-like particles, repre-
senting typically atoms or pseudo-atoms whose positions
are described by three Cartesian coordinates, x, y, z. The
3N-dimensional column vector x contains the ensemble
of all these coordinates:1

x = (x1, y1, z1, . . . , xN, yN, zN )T . (1)

The unconstrained dynamics of the system is described
by Newton’s equations of motion,

M · ẍ(t ) = f (x, ẋ, t ), (2)

where the external forces, f , are arbitrary and may
depend on the particle positions, velocities, and explicitly
on time. The mass matrixM has diagonal form

M = diag(m1,m1,m1, . . . ,mN,mN,mN ), (3)

with mk > 0 (k = 1,…N) being the masses of the parti-
cles.

2.2. Constraints

Themechanical system is now considered to be subject to
constraints which are grouped into

(1) nh holonomic constraints of the form

f j(x(t ), t ) ≡ 0, j = 1, . . . , nh, (4)

(2) nnh non-holonomic constraints of the form

gk(x(t ), ẋ(t ), t ) ≡ 0, k = 1, . . . , nnh. (5)

By differentiating Equation (4) twice and Equation (5)
once with respect to time, one obtains in total a set of nc =

nh + nnh linear equations to be satisfied by the 3N com-
ponents of the acceleration vector, ẍ (the argument t is
omitted):

A(x, ẋ, t ) · ẍ = b(x, ẋ, t ). (6)

Since the number of constraints must be smaller than the
number of degrees of freedom, i.e. nc < 3N, Equation (6)
defines an underdetermined system of linear equations
for the accelerations (Figure 1(a)). If a solution exists, it
defines the set of all possible accelerations which are com-
patible with the imposed constraints.

The condition for the existence of a solution of
Equation (6) and the solution itself can be conveniently
expressed in terms of the generalised inverse of A [20],
whose definition and properties are briefly resumed in
the appendix. Multiplying Equation (6) from the left
withA · A+ and using theMoore–Penrose condition (A2)
leads to

A · A+ · b = b, (7)

which is a consistency condition for the imposed con-
straints. This condition is trivially fulfilled if b = 0 and
if A · A+ = 1nc×nc , which holds if A has full rank. Given
that Equation (7) is true, Equation (6) has an infinite
number of solutions of the form (Figure 1(b)),

ẍ = A+ · b+ ẍ0, (8)

where ẍ0 ∈ R
3N is an arbitrary vector in the null space of

A,

A · ẍ0 = 0. (9)

The dimension of this null space defines the number of
degrees of freedom of the dynamical system:

f = 3N − rank(A). (10)

The number of degrees of freedom is not necessarily con-
stant since A varies with time and its rank may vary too.

It is worthwhile noting that Expression (8) is also the
solution of the least squares problem,

‖A · ẍ − b‖2 = Min, (11)

which may be considered instead of Equation (6) if the
consistency condition (7) is not fulfilled. In this case, the
resulting acceleration vector ẍminimises the inconsisten-
cies in the constraints in a least square sense:

∥∥A · A+ · b− b
∥∥2 = Min. (12)
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ẍ b=A

(a) Matrix structure of Eq. (6).

b=ẍ +A+ ẍ0

(b) Matrix structure of the solution
of Eq (6).

Figure . Linear acceleration constraints. (a) Matrix structure of Equation () and (b) matrix structure of the solution of Equation ().

In the following, the null space of A will be denoted
as N (A) and its orthogonal complement, the row space
of A, asR(A). It follows from the Moore–Penrose condi-
tions (A1) and (A3) that

P = 1 − A+ · A, (13)

Q = A+ · A, (14)

are orthogonal projectors on N (A) and R(A), respec-
tively, and that

P · ẍ = ẍ0, (15)

Q · ẍ = A+ · b. (16)

Equation (8) is thus an orthogonal decomposition of
the acceleration vector into its components in N (A)

andR(A), respectively.

2.3. Equations ofmotion for constrained systems

... General form
The standard form of the equations of motion for a clas-
sical dynamical system is

ẍ(t ) = a(x, ẋ, t ) (17)

which expresses that, for a given time, the particle accel-
erations are uniquely determined by the positions and
velocities. This is not so in constrained systems, where
the particle accelerations are partially determined by the
imposed constraints. Equation (8) may, in fact, be con-
sidered as a partially defined equation of motion, where
the influence of the external forces still needs to be deter-
mined. This point will be discussed in the following.

... Possibly rank deficientmatricesA andM
If the decomposition (8) of the acceleration vector is
inserted into Newton’s equations of motion (2), the lat-
ter will in general not hold since the external force vector
f on the r.h.s of Equation (2) is arbitrary, but the vector
M · ẍ on the l.h.s. is not if constraints are imposed. It fol-
lows, in fact, from Equation (8) that ẍ is composed of a
fixed componentA+ · b, which is determined by the posi-
tions and velocities of all or some particles of the dynam-
ical system, and a component ẍ0, which is constrained
to the null space of A. Therefore, Newton’s equations of
motion must be supplemented by appropriate constraint
forces,

M · (A+ · b+ ẍ0︸ ︷︷ ︸
ẍ

) = f + z, (18)

which are comprised in the vector z. For-
mally,Equation (18) is a linear set of 3N equations
for two vector variables, ẍ0 and z. A necessary and
sufficient condition for the existence of a solution is

z ⊥ ẍ0 ⇔ z ∈ R(A), (19)

and its explicit form has been discussed by Bott and Duf-
fin in the context of linear network theory [21]. Following
their line of thinking, we define the matrix

G = M · P + Q (20)

and the vector

h = f − M · A+ · b, (21)

which define a normal system of linear equations,

G · u = h, (22)



4 G. R. KNELLER

from which ẍ0 and z are computed in two steps:

(1) Solve the system of linear equations (22) for u, for-
mally

u = G−1 · h, where det(G) �= 0. (23)

The determinant of G is the discriminant of M
inN (A).

(2) Extract ẍ0 and z by projection,

ẍ0 = P · u, (24)

z = −Q · u. (25)

With Equations (8) and (24) we obtain the most general
form for the equations of motion:

ẍ = P · u + A+ · b︸ ︷︷ ︸
a(x,ẋ,t )

. (26)

These equations of motion even hold for possibly rank-
deficient matrices A and M, as long as det(G) �= 0. In
physical terms this means that there may be redun-
dant constraints and some particles may have vanishing
masses. At a first glance, particles with zero mass may
seem unphysical, but such objects can be used to define
force centres in partially rigidmolecules where forces can
act, but which do not contribute to the inertial proper-
ties of the molecule. A well-known example is the clas-
sical ST2 model for water [22], where the force centres
represent electron pairs.

... Full rankmatricesA andM
We consider now the special situation where the matri-
ces A and M have full rank. In this case the constraint
forces can be analytically computed, which yields insight
into their physical meaning. Referring to Equation (19),
the constraint force vector z can be expressed by the row
vectors of the matrix A:

z = AT · λ. (27)

Here, λ = (λ1, . . . , λnc )
T is a yet unknown column vec-

tor whose components (‘Lagrange parameters’) define the
strength of the different contributions to the constraint
forces. Inserting Equation (27) into the general form (18)
of the equations of motion and multiplying from the left
with A · M−1 leads to a system of linear equations for the
components of λ:

(
A · M−1 · AT) · λ = b− A · M−1 · f . (28)

One uses here that A · ẍ0 = 0 and that A · A+ = 1nc×nc
since A has full rank. Since M has full rank, too, it
follows that det(A · M−1 · AT ) �= 0 and (28) thus has a
unique solution which determines the constraint forces.
The canonical form of the equations of motion, in which
all quantities on the r.h.s. are then known, reads

ẍ = M−1 · (
f + AT · λ

)︸ ︷︷ ︸
a(x,ẋ,t )

. (29)

2.4. Gauß’ principle of least constraint

The determination of the acceleration vector described in
Section 2.3 can be formulated as aminimumprinciple for
the accelerations. On account of Equation (8) all possible
variations of the acceleration vector ẍ which are compat-
ible with the imposed constraints are in the null space of
A:

δẍ = δ(A+ · b+ ẍ0) = δẍ0 ∈ N (A).

The above relation holds since only ẍ0 can be varied
and since ẍ0 ∈ N (A) implies that δẍ0 ∈ N (A). Since z ∈
R(A) is in the orthogonal subspace, it follows that

(M · ẍ − f )︸ ︷︷ ︸
z

·δẍ = 0. (30)

This relation can be considered as necessary condition
for

g(ẍ) ≡ 1
2
ẍ · M · ẍ − ẍ · f = Min, subject to A · ẍ = b,

(31)
which can be written in the form of Gauß’ principle of
least constraint [23–25]:

G(ẍ) = 1
2
‖M−1/2 · z‖2 = Min, subject to A · ẍ = b.

(32)
One uses here that M · ẍ − f = z and that G(ẍ) and
g(ẍ) differ only by the constant term f T · M−1 · f /2.
The equivalence of Equations (31) and (32) requires, of
course, that det(M) �= 0, i.e. that all masses are non-zero.

3. Analytical examples

Based on the equations ofmotion derived in Section 2.3.3,
a few analytical examples will be discussed in the fol-
lowing. They illustrate in particular how the simulation
of non-standard MD ensembles can be enforced through
explicit non-holonomic constraints.
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3.1. Rigid diatomicmolecule

We consider first a rigid diatomic molecule with equal
atomic masses as the simplest example for a holonomic
geometrical constraint. Defining x1 and x2 to be the posi-
tions of the two atoms and x12 ≡ x1 − x2, the constraint
reads

|x12(t )|2 − d212 = 0, (33)

where d12 is the prescribed bond length. Double differen-
tiation of Equation (33) with respect to time leads then
to xT12 · ẍ12 = −|ẋ12|2, which may be written as A · ẍ = b
(cf. Equation (6)), with

A = (xT12, −xT12) and b ≡ b = −|ẋ12|2. (34)

Note that A ∈ R
1×3N is here a row vector and b ≡ b ∈

R
1×1 is a scalar. It follows then from Equation (28) that

the equation for the one Lagrange parameter λ takes the
form

2d212
m

λ = −|ẋ12|2 − 1
m
xT12 · f 12,

where |x12|2 = d212. With f 12 = f 1 − f 2 and n12 =
x12/d12, the equation of motion becomes

M · ẍ = f − m|ẋ12|2
2d212

(
x12

−x12

)
− 1

2

(
(nT12 · f 12)n12

−(nT12 · f 12)n12
)

.

(35)

The constraint forces acting on the individual atoms are
each split into a component compensating for the cen-
trifugal forces and a component compensating for forces
acting along the bond. Their sum vanishes, and therefore
the centre-of-mass motion is determined by the sum of
forces f 1 and f 2, which act on particles 1 and 2, respec-
tively.

3.2. Isokinetic ensemble

A simple illustration for a non-holonomic constraint is
the ‘isokinetic ensemble’, where the kinetic energy is
forced to have a prescribed value:

1
2
ẋT · M · ẋ = 3NkBT

2
. (36)

This example was considered by Hoover [26] and is
treated here to prepare for the construction of non-
holonomic constraints for the canonical ensemble. Dif-
ferentiation of Equation (36) with respect to time leads to

the linear acceleration constraint,

ẋT · M · ẍ = 0, (37)

where M is symmetric. Comparing to Equation (6), the
matrix A and the vector b here take the form

A = ẋT · M and b ≡ b = 0. (38)

Using that ẋT · M · ẋ = 3NkBT , it follows from
Equation (28) that 3NkBT λ = −A · M−1 · f = −ẋT · f .
The resulting equation of motion

M · ẍ = f (t ) −
(
ẋT · f (t )
3NkBT

)
M · ẋ

︸ ︷︷ ︸
z(t )

, (39)

shows that the constraint force has the form of a friction
force depending linearly on velocity. In contrast to the
friction constant in purely dissipative systems, the fac-
tor ẋT · f (t )/(3NkBT ) can be positive or negative. The
constraint force represents effectively a controller which
maintains a desired kinetic energy. It is important to be
aware that the kinetic energy is not steered towards that
value and for this reason condition (36) must be initially
fulfilled, such that z(0) = 0.

3.3. Canonical ensemble – Nosé–Hoover thermostat

We now consider a system of particles in thermodynamic
equilibrium, which is coupled to an external heat bath.
Here the corresponding kinematic condition is not given,
but is to be constructed on the basis of given equations
of motion. The latter have been derived by Nosé and
Hoover [12,13] using the extended systems approach:

ẋ = M−1 · p, (40)

ṗ = f − ξ (t ) p, (41)

ξ̇ (t ) = 1
Q

(2Ekin(t ) − 3NkBT ) . (42)

Here, Q plays the role of a mass which determines the
characteristic reaction time of the thermostat.Writing the
above equations of motion in Newtonian form,

M · ẍ = f −ξ (t )M · ẋ︸ ︷︷ ︸
z(t )

, (43)

shows that the thermostat corresponding to the canon-
ical ensemble is realised by a constraint force which
has again the form of a friction force, z = −ξ (t )M · ẋ.
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Comparing this expression to the general form (27) of
the constraint forces shows that A = ẋT · M and that the
single Lagrange parameter is given by λ = −ξ (t). Inser-
tion into Equation (28) yields b ≡ b = −ξ (t ) ẋT · M ·
ẋ + ẋT · f . The NVT-ensemble thus corresponds to the
linear acceleration constraint:

ẋT · M︸ ︷︷ ︸
A

·ẍ = −ẋT · M · ẋ ξ (t ) + ẋT · f︸ ︷︷ ︸
b

. (44)

In case the forces can be derived from a potential, f =
−∂U/∂x, Equation (44) is of the form

d
dt

(
Ekin(t ) +U (x(t ))

) = −2ξ (t )Ekin(t ), (45)

where Ekin(t ) = ẋT · M · ẋ/2 is the kinetic energy of
the system. Expressing the inertial parameter as Q =
3NkBTτ 2

NH , where τNH defines a time scale, it follows
from Equation (42) and the initial condition ξ (0) = 0
that

ξ (t ) = 1
τ 2
NH

∫ t

0
dτ

[
2Ekin(τ )

3NkBT
− 1

]
. (46)

Note that ξ (0) = 0 implies that z(0) = 0, which guar-
antees that the imposed constraint is initially fulfilled.
Expression (46) shows that τNH is the reaction time of
the temperature controller. The friction coefficient ξ van-
ishes for τNH → � and Equation (45) expresses that the
initial total energy is constant. Since the total energy of a
Hamiltonian system is automatically conserved, the cor-
responding constraint forcemust be zero, which is indeed
the case, since z ∝ ξ (t ). Any kinematical condition for a
dynamical system which leads to a vanishing constraint
force expresses, in fact, a conservation law.

3.4. Berendsen thermostat

If Equation (46) is replaced by

ξ (t ) = γ

(
2Ekin(t )
3NkBT

− 1
)

, (47)

where γ has dimension 1/time, one obtains the equations
of motion for the Berendsen thermostat [27]. This ther-
mostat is widely used, in particular for the simulation
of biomolecular systems, but it does not correspond to a
proper thermodynamic ensemble. From a technical point
of view, the Berendsen thermostat acts as a proportional
controller, whereas the Nosé–Hoover thermostat acts as
an integral controller. As for the previous thermostats, the
Berendsen thermostat is represented by constraint force
of the form z = −ξ (t )M · ẋ and z = 0 must be fulfilled

to guarantee that the system is initially on the constraint
surface. Therefore, one must require that ξ (0) = 0.

3.5. Isobaric-isoenthalpic ensemble – Anderson
barostat

Another important thermodynamic constraint is the sim-
ulation of a molecular system in the isobaric-isoenthalpic
ensemble, where the pressure fluctuates about a pre-
scribed value. As in the preceding example, we wish
to derive the corresponding non-holonomic constraint
from given equations of motion. These equations of
motion have been first derived by Andersen [11],

ẋ = M−1 · p+ V̇
3V

x, (48)

ṗ = f − V̇
3V

p, (49)

μV̈ (t ) = Pext − 1
3V

(
ẋT · M · ẋ + xT · f ) , (50)

where Pext is the external pressure on the system, V is the
volume of the simulation box, which here is assumed to
be cubic, andμ is the ‘mass’ of the barostat (‘piston’). The
equations ofmotion are again first transformed intoNew-
tonian form in order to extract the constraint forces cor-
responding to the NPH-ensemble. Solving Equation (48)
for p and inserting the result into Equation (49) leads to

M · ẍ = f + λ(t )M · x, (51)

where the parameter λ(t) is given by

λ(t ) = L̈(t )
L(t )

, with L(t ) = V (t )1/3. (52)

The constraint force here has the form

z = λ(t )M · x, (53)

and comparison with Equation (27) shows that A = xT ·
M. From the general equation (28) for the Lagrange
parameters one obtains b ≡ b = (xT · M · x)λ(t ) + xT ·
f , and the corresponding linear acceleration constraint
describing the NPH-ensemble reads

xT · M︸ ︷︷ ︸
A

·ẍ = (xT · M · x)λ(t ) + xT · f︸ ︷︷ ︸
b

. (54)

Noting that M · ẍ − f = z, the above constraint corre-
sponds to imposing a particular form for the virial of the
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constraint forces:

xT · z = (xT · M · x)λ(t ). (55)

The Lagrange parameterλ can be determined fromEqua-
tions (50) and (52),

λ(t ) = −2
9

(
d lnV
dt

)2

+ 1
3μV

(
Pext − 1

3V
(
ẋT · M · ẋ + xT · f )) , (56)

where V(t) is the solution of Equation (50). The ini-
tial conditions must be chosen such that λ(0) = 0, i.e.
V̇ (0) = 0 and V(0) = V0, where PextV0 = (ẋ(0)T · M ·
ẋ(0) + x(0)T · f (0))/3.

4. Numerical solution of the Bott–Duffin
problem

Until now, the construction of explicit equations of
motion for constrained dynamical systems has been
treated on a purely formal level. In the following it will be
shown how this problem can be solved numerically. The
central point is to use the singular value decomposition
(SVD) [28] of a given nc × 3N matrix A. The SVD can
be very efficiently computed with linear algebra libraries,
such as LAPACK [29].

4.1. Bases forN (A) andR(A)

Concrete representations for the basis vectors spanning
the null space of matrix Amay be obtained from its SVD,

A = U · � ·V T , (57)

� = (σ , 0) , with σ = diag(σ1, . . . σr, 0, . . . , 0).
(58)

Here, U and V are orthogonal matrices of dimensions
nc × nc and 3N × 3N, respectively, and � is a rect-
angular diagonal matrix of dimensions nc × 3N which
contains the r ≡ rank(A) strictly positive singular values
of A. Now let p be an arbitrary vector in the null space
of A, such that U · � ·V T · p = 0. Defining the coordi-
nate transform p̃ ≡ VT · p, it follows from the special
form of � that p̃ = (0, . . . , 0, p̃r+1, . . . , p̃3N )T . There-
fore, p = V · p̃ has the form

p =
3N∑

k=r+1

p̃kvk ∈ N (A).

where vk are the column vectors ofV . Similarly any vector
q ∈ R(A) can be represented as

q =
r∑

k=1

q̃kvk ∈ R(A),

where q̃1, . . . , q̃r are the only non-zero components
of q̃ = V T · q = (q̃1, . . . , q̃r, 0, . . . , 0)T . Projectors on
N (A) and R(A) are readily constructed with the SVD
of the generalised inverse of A,

A+ = V · �+ ·U T , (59)

�+ =
(

σ+
0

)
, with σ+ = diag(σ−1

1 , . . . σ−1
r , 0, . . . , 0).

(60)

Inserting the SVDs of A and A+ into Expressions (13)
and (14) shows that the matrixV generates a transforma-
tion to a coordinate system in which the projectors P and
Q are diagonal:

P = V · P̃ ·V T , P̃ =
(
0r×r 0r× f
0 f×r 1 f× f

)
, (61)

Q = V · Q̃ ·V T , Q̃ =
(
1r×r 0r× f
0 f×r 0 f× f

)
. (62)

4.2. Bott–Duffin problem

The matrix structure of the Bott–Duffin problem (22)
takes a particularly simple form if it is transformed into
the coordinate system inwhich the projectorsP andQ are
diagonal. One obtains

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . 0 M̃1,r+1 . . . M̃1,3N
...
. . .

...
...

...
0 . . . 1 M̃r,r+1 . . . M̃r,3N

0 . . . 0 M̃r+1,r+1 . . . M̃r+1,3N
...
. . .

...
...

...
0 . . . 0 M̃3N,r+1 . . . M̃3N,3N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
G̃

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−z̃1
...

−z̃r
¨̃x0,1
...

¨̃x0, f

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
ũ

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h̃1
...
h̃r
h̃r+1
...

h̃3N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
h̃

,

(63)
where

G̃ = VT · G ·V = M̃ · P̃ + Q̃,

M̃ = VT · M ·V ,

ũ = VT · u,

h̃ = VT · h = f̃ − M̃ · �+ ·U T · b.
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The definition (21) of the vector h has here been used
in combination with the explicit form (59) for the gen-
eralised inverse of A and the definition f̃ = V T · f . The
block triangular structure of G̃ enables the successive cal-
culation of the f components of ¨̃x and of the r ≡ rank(A)

components of z̃. Partitioning Equation (63) in the
form

(
1 G̃r f

0 G̃ f f

)
·
(
ũr
ũ f

)
=

(
h̃r
h̃ f

)
, (64)

yields

ũ f = G̃
−1
f f · h̃ f , where det

(
G̃ f f

)
�= 0, (65)

ũr = h̃r − G̃r f · ũ f . (66)

Note that det(G̃ f f ) = det (G), such that the condi-
tions for the solvability of Equations (22) and (64) are
equivalent. The 3N-dimensional vectors ẍ and z are
finally obtained through (compare Equations (24) and
(25))

ẍ0 = V ·
(
0
ũ f

)
=

3N∑
k=r+1

ũkvk, (67)

z = V ·
(−ũr
0

)
= −

r∑
k=1

ũkvk, (68)

where r ≡ rank(A) and vk are the column vectors ofV .

5. Conclusion and outlook

The theory of constrained dynamical many body systems
which has been presented in this paper has the following
key features:

� It is based on the concepts of linear algebra and leads
to a transparent explanation of Gauß’ principle of
least constraint, which is itself based onD’Alembert’s
principle of virtual displacements.

� Any type of holonomic and non-holonomic con-
straint can be handled, as long as the resulting con-
straints for the particle acceleration are linear func-
tions of the accelerations.

� It permits the construction of explicit non-
holonomic constraints corresponding to ther-
modynamic constraints.

� Redundant constraint andmassless force centres can
be handled.

It is crucial to realise that the equation motions are
correct from a theoretical point of view. As mentioned
previously, this implies in particular that the constraints
are just maintained and there is no mechanism steer-
ing the system back to the surface in phase space on
which it is supposed to stay. Numerical errors will thus
inevitably lead to violation of the imposed constraints if
they are not corrected for. This is well known for geomet-
rical constraints and was actually the reason to develop
the SHAKE-algorithm [5]. In the theoretical framework
for constraints presented here such and similar correction
algorithms can be effectively added ‘on top’ of a standard
MD integrator since the underlying equations of motions
are correct from a theoretical point of view.

A numerically challenging point is the calculation of
the SVD of the matrix A (see Equation (57)), which must
be performed at any time step of the MD simulation
under consideration. The computational complexity for
anm× nmatrix isO{4mn2+8mn2+9n3} if no special fea-
tures of A, such as sparseness or a special block structure
are used [28]. If A has for example block form, the com-
putational costs can be drastically reduced by breaking
the SVD down to a series of SVDs for smaller matrices.
Such a situation occurs for example if geometrical con-
straints are imposed in a solvent ofmany smallmolecules,
such as water. The numerical efficiency of the SVD of the
A-matrix still needs to be explored in detail in order to
develop efficient integration algorithmswhich implement
the theory presented here. There is in particular a large
bulk of literature on the SVD of very large matrices and
corresponding work on our side is in progress.

Note

1. The symbol T denotes a transposition.
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Appendix. Generalised inverses

A Definition
For any matrix A ∈ R

m×n exists a generalised inverse
A+ ∈ R

n×m which is uniquely defined by the Moore–
Penrose conditions:

A+ · A · A+ = A+ (A1)

A · A+ · A = A, (A2)

(A+ · A)† = A+ · A, (A3)

(A · A+)† = A · A+. (A4)

The above relations define the projector matrices,

Prow = A+ · A ∈ R
n×n, (A5)

Pcol = A · A+ ∈ R
m×m, (A6)

which fulfill the general projector relations P2 = P and
P† = P and which project, respectively, on the row
and column space of A (column and row space of
A+). If A has full rank, its generalised inverse is given
by

A+ =
{
A† · (A · A†)−1 ifm < n,
(A† · A)−1 · A† ifm ≥ n. (A7)

For a full rank square matrix A, the generalised inverse
reduces to the normal inverse, A+ = A−1.

A Singular value decomposition
The numerical calculation of generalised inversematrices
is efficiently performed by singular value decomposition
(SVD). The SVD of an arbitrary complexm× nmatrixA
reads

A = U · � ·V †, (A8)

whereU andV are hermitianm×m and n× nmatrices,
respectively. Them × nmatrix � has the form

� =
⎧⎨
⎩

(σ, 0) if m ≤ n,(
σ

0

)
if m > n, where

σ = diag(σ1, . . . σr, 0, . . . , 0) (A9)

is a diagonal matrix of dimension r × r, with

r ≡ rank(A) ≤ min(m, n). (A10)

The elements σ k on the diagonal of σ are the singular
values of A and they fulfill σ k > 0 (k = 1,… , r). With
these prerequisites, the generalised inverse of A is given
by

A+ = V · �+ ·U †, (A11)
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where

�+ = �T({
σ−1
k

})
. (A12)

Since U and V are hermitian matrices, it follows
from (A8) and (A11) that

Prow = V · �+ · � ·V †, (A13)

Pcol = U · � · �† ·U †. (A14)

Noting that

�+ · � =
(
1r×r 0r×(n−r)
0(n−r)×r 0(n−r)×(n−r)

)
≡ P̃row, (A15)

� · �+ =
(
1r×r 0r×(m−r)
0(m−r)×r 0(m−r)×(m−r)

)
≡ P̃col, (A16)

the matrices U and V describe thus transformations to
coordinate systems in which the projectors Pcol and Prow,
respectively, are diagonal.
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