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Abstract

This paper presents a study of the influence of non-denaturing hydrostatic pressure on the relaxation dynamics of lysozyme in solu-
tion, which combines molecular dynamics simulations and quasielastic neutron scattering experiments. We compare results obtained at
ambient pressure and at 3 kbar. Experiments have been performed at pD 4.6 and at a protein concentration of 60 mg/ml. For both pres-
sures we checked the monodispersity of the protein solution by small angle neutron scattering. To interpret the simulation results and the
experimental data, we adopt the fractional Ornstein–Uhlenbeck process as a model for the internal relaxation dynamics of the protein.
On the experimental side, global protein motions are accounted for by the model of free translational diffusion, neglecting the much
slower rotational diffusion. We find that the protein dynamics in the observed time window from about 1 to 100 ps is slowed down under
pressure, while its fractal characteristics is preserved, and that the amplitudes of the motions are reduced by about 20%. The slowing
down of the relaxation is reduced with increasing q-values, where more localized motions are seen.
� 2007 Published by Elsevier B.V.
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1. Introduction

In the last decades many studies have been devoted to
the influence of pressure on the structure of proteins, which
can be considered as the building blocks of living matter.
One of the motivations is to understand the adaptation
of living organisms to extreme thermodynamic conditions,
as they occur for example at the deep sea level, where pres-
sures up to several hundred bars must be sustained. Prob-

ably the first published study of proteins under pressure
goes back to 1914, when Bridgman observed that exerting
pressure on egg white has a similar effect as boiling it [1]. A
recent review on the topic can be found in [2]. From a ther-
modynamic point of view, the extensive conjugate variable
related to pressure is the volume and changing the pressure
exerted on a system permits a fine-tuned exploration of its
energy landscape through small volume changes. Particu-
larly interesting in this context is the study of biological
macromolecules by high pressure X-ray crystallography,
which yields high resolution atomic structures and permits
thus to relate energetic changes of these molecules to con-
formational changes [3]. This aspect plays a fundamental
role in medical research, since the relation between pressure
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and the energy landscape affects amyloid fibril formation,
which is typical for diseases like Alzheimer and the Creutz-
feld–Jacob syndrome [4]. In the vast majority of experi-
ments which have been performed in the past, the
temperature has been used as a parameter to steer the
exploration of the energy landscape via entropy changes.
In this context we refer to neutron scattering studies of
the dynamical transition, which is seen in many proteins
at temperatures of about 200 K [5] and which manifests
itself through an increase of the amplitudes of motions seen
in these experiments.

In this work we study the influence of pressure on the
internal dynamics of lysozyme in solution, using molecular
dynamics (MD) simulations and quasielastic neutron scat-
tering (QENS) experiments. Concerning structural changes
under pressure, lysozyme has been studied in the past by X-
ray crystallography in the pioneering work of Kundrot and
Richards [6] and more recently by NMR by Refae et al. [7].
As for the simulations and the experiments, the work is
based on the thesis work of Hamon [8]. The paper is orga-
nized as follows: In Section 2 the QENS experiments and
the simulations are briefly described and Section 3 contains
an introduction of the model we used for the analysis of the
simulations and of the experiments. Section 4 describes the
analyses of the simulations and of the experimental data,
which is followed by a presentation of the results. The
paper is concluded in Section 5 by a short résumé.

2. Materials and methods

2.1. Experiments

We prepared deuterated solutions of lysozyme at a con-
centration of 60 mg/ml and a pD of 4.6. The protein was
purchased in powder form and was dissolved in a deuter-
ated sodium acetate buffer at a concentration of 50 mM.
All labile hydrogen atoms in lysozyme were exchanged by
dialysis during three days, and the final solution was centri-
fuged to eliminate possible aggregates. The concentration
of 60 mg/ml was chosen as a compromise between the
necessity to use a maximum concentration for the neutron
scattering experiments and to avoid, on the other hand,
aggregation of the lysozyme molecules. Under the condi-
tions described above lysozyme has a positive charge of
about 11e, and small angle neutron scattering experiments
have shown that the solution is monodisperse up to
100 mg/ml [9]. In this context we also quote dynamic light
scattering experiments on lysozyme in solution under pres-
sure, where a concentration of 80 mg/ml was used to mea-
sure the diffusion coefficient of lysozyme [10]. These
experiments have been performed in a hydrogenated buffer,
where the lysozyme–lysozyme interactions are less attrac-
tive than in the corresponding deuterated buffers [9] and
the tendency to form aggregates is thus reduced. We
checked, however, by a short run on a small angle neutron
scattering spectrometer that aggregation did not occur –
neither at ambient pressure, nor at high pressure.

The QENS experiments presented in this article were
performed on the time-of-flight spectrometer IN5 at the
Institut Laue-Langevin in Grenoble. The neutron spectra
were measured with an incident neutron wavelength of
k = 5 Å corresponding to an elastic q-range of 0.3–
2.3 Å�1. The elastic energy resolution determined by vana-
dium standard runs was DE = 0.060 meV (half width half
maximum). Experiments have been performed at room
temperature on both the lysozyme solution and the deuter-
ated buffer at ambient pressure and at a pressure of 3 kbar.
Buffer runs are used to evaluate the solvent contribution in
the solution runs in order to isolate the contribution arising
from the protein alone. For the given protein concentration
of 60 mg/ml, the volume fraction of the protein and its first
hydration shell can be estimated as 0.06, and the remaining
fraction of 0.94 corresponds thus to the bulk solvent. This
shows that the measured signal is dominated by scattering
from the deuterated solvent, and that the incoherent scat-
tering from the hydrogenated protein is very small, despite
the large incoherent cross section of the hydrogen atoms.
The subtraction of the solvent contribution has thus to
be performed carefully. We used a pressure cell made of
a ‘null alloy’ of 34% titanium and 66% zirconium, which
was conceived to carry out earlier experiments on liquid
heavy water [11]. Using the above composition the mean
coherent scattering length is zero, the coherent scattering
lengths of Ti and Zr atoms having opposite signs (see
Table 1), and the cell scatters thus only incoherently. The
null alloy has been elaborated by the manufacture of
CEZUS (Compagnie europenne du zirconium, Ugine,
Savoie), France where tests of mechanical resistance have
been performed. Table 2 gives the mechanical characteris-
tics of the alloy. The cell has cylindrical geometry and its
dimensions (internal diameter = 5.7 mm, wall thickness =
5.2 mm) have been determined in order to withstand pres-
sures up to 10 kbar. The cell was connected to the hydrau-
lic pressurizing system via a capillary; the pressurizing

Table 1
Characteristics of the null Ti–Zr alloy

Ti Zr

Coherent scattering length (10�12 cm) �0.3438 0.716

Null alloy
Composition 67 at.%

(52 wt%)
33 at.%
(48 wt%)

Scattering cross section (barn) 1.930
Absorption cross section (barn)a 11.504
Transmission linear coefficient (cm�1)a 0.697

a Referred to k = 5 Å.

Table 2
Mechanical properties of the null Ti–Zr alloy from Ref. [11]

Tensile strength Rm 923 MPa
Yield point r0.2 762 MPa
Elongation at the fracture A 8%
Young modulus E 85,000 MPa
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medium was heavy water which was isolated from the sam-
ple by a Teflon piston (see Fig. 1). The strong scattering by
the pressure cell was corrected for. Moreover, QENS data
were corrected for detector efficiency, normalized to the
integrated vanadium intensity, converted to the energy
scale as well as converted from constant scattering angle
h to constant momentum transfer q.

2.2. Simulations

The simulated system consists of one lysozyme molecule
and 3403 H2O molecules in a box of dimensions
6.15 · 4.10 · 4.61 nm3. The protein structure was taken
from the Brookhaven protein databank [12] (code 193L
[13]), to which the hydrogen atoms were added according
to standard criteria concerning the chemical bond structure
of amino acids. This leads to 1960 atoms for the lysozyme
molecule and to 12,169 atoms in total for the simulated sys-
tem. All simulations have been performed in the thermody-
namic NpT-ensemble, using the program package MMTK
[14] with the AMBER94 force field [15] for molecular sim-
ulations of proteins. Within the AMBER force field the
H2O molecules are modeled by the TIP3P potential. Since
we were not interested in the solvent dynamics, we avoided
the adaptation of the TIP3P potential to model heavy
water, which was used in the experiments, and simulated
light water instead. We note that only the dynamics of
the slow, large amplitude motions of a protein is influenced
by the solvent [16], and one can consider that it is essen-
tially the viscosity of the solvent which has a major effect
in this context. Since the viscosities of light and heavy
water are similar, the replacement D2O! H2O in the sim-
ulation is thus justified.

The long-range electrostatic forces and energies have
been computed with a modified Ewald summation proce-
dure [17]. In contrast to the experimental conditions, where
each lysozyme molecules carries a charge of 11e (pD 4.6),
the simulated lysozyme molecule was kept neutral to ensure
global neutrality of the simulated system. This is necessary

because the system is too small to model protein–protein
interactions and the buffer realistically. The trajectories
used for this article have been recorded with a sampling
step of Dt = 0.04 ps. The water trajectories were not stored
and for subsequent analyses global translations and rota-
tions of the simulated lysozyme molecule have been filtered
out by performing for each sampling time step an optimal
superposition of the molecular structure with the corre-
sponding initial structure [18]. The generated trajectories
thus describe only the internal dynamics of the simulated
lysozyme molecule.

3. A simple model for protein dynamics

To interpret both the simulated and experimental data,
we use the fractional Ornstein–Uhlenbeck (OU) process
[19] as an analytical model for the atomic motions in a pro-
tein. The model describes anomalous diffusion in a har-
monic potential, where the latter accounts for the fact
that atomic motions in a protein are confined in space.
The anomalous diffusion describes slow, non-exponential
structural relaxation in the functional dynamics of pro-
teins, which has been observed in the past on the microsec-
ond to second time scale by fluorescence correlation
spectroscopy [20] and by kinetic studies [21]. The existence
of fractional Brownian dynamics in proteins on the nano-
second time scale has been recently demonstrated by anal-
yses of molecular dynamics simulations [22] and the
fractional OU process has been introduced in [23] for the
interpretation of QENS spectra from proteins. It can be
considered as an extension of a simple harmonic protein
model, which has been used in the past to describe elastic
neutron scattering profiles, in particular to extract the
‘‘resilience’’ of the protein under consideration in terms
of an average force constant [24]. The fractional OU pro-
cess adds to this a description of the relaxation dynamics,
which is measured in QENS experiments.

3.1. Time-dependent mean-square displacement

The most elementary quantity to be considered in the
context of diffusion processes is the time-dependent
mean-square displacement (MSD),

W ðtÞ :¼ h½xðtÞ � xð0Þ�2i; ð1Þ

where x is the position of the diffusing particle and the
brackets indicate a thermal average. In case that the
dynamics of the particle is confined in space, the MSD will
tend to a plateau value, which is given by 2hx2i. This fol-
lows simply from definition (1), assuming a stationary sto-
chastic process, such that W(t) = 2(hx2i � hx(t)x(0)i),
where hx2i is finite due to the confinement. Using that
any position autocorrelation function hx(t)x(0)i tends to
zero for t!1, one obtains thus limt!1W(t) = 2hx2i.
For the fractional OU process one has

hxðtÞxð0Þi ¼ hx2iEað�½t=s�aÞ; 0 < a 6 1; ð2Þ

Fig. 1. Scheme of Ti–Zr high pressure cell.
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and the MSD takes the form

W ðtÞ ¼ 2hx2i 1� Eað�½t=s�aÞð Þ: ð3Þ

Here Ea(z) is the Mittag–Leffler function [25]

EaðzÞ ¼
X1
k¼0

zk

Cð1þ akÞ ; ð4Þ

where C(Æ) denotes the generalized factorial [26]. One recog-
nizes that for a = 1, where C(1 + ak) = C(1 + k) = k!, the
exponential function is retrieved from expression (4), i.e.
E1(z) = exp(z). In this case the fractional OU process be-
comes the well-known Markovian OU process [27–29].
As indicated in [23], the fractional counterpart is character-
ized by non-Markovian memory effects, which lead to non-
exponential correlation functions.

Expressions (2) and (3) show that the proposed model
contains three parameters:

(1) the position fluctuation hx2i,
(2) the parameter a indicating the deviation from Mar-

kovian behavior,
(3) the time scale parameter s.

3.2. Relaxation rate spectrum

The function Ea(�[t/s]a) appearing in (2) and (3) can be
considered as a ‘‘stretched’’ generalized exponential func-
tion. The non-exponential character of this function can
be most easily visualized by writing it as a superposition
of normal exponential functions. Using for simplicity a
dimensionless time variable we have

Eað�taÞ ¼
Z 1

0

dkpaðkÞ expð�ktÞ; ð5Þ

where pa(k) is a normalized and positive distribution func-
tion, which is of the form [21,23]

paðkÞ ¼
1

p
ka�1 sinðpaÞ

k2a þ 2ka cosðpaÞ þ 1
; 0 < a < 1: ð6Þ

In the limit a! 1 we have [23]

lim
a!1

paðkÞ ¼ dðk� 1Þ; ð7Þ

in agreement with lima!1 Ea(�ta) = exp(�t).

3.3. Modeling incoherent neutron scattering

We consider in the following the dynamic structure fac-
tor for incoherent neutron scattering:

Sðq;xÞ ¼ 1

2p

Z þ1

�1
dt expð�ixtÞIðq; tÞ; ð8Þ

where I(q, t) is the incoherent intermediate scattering
function, which depends on the position of the scattering
atom

Iðq; tÞ ¼ hexpðiq½xðtÞ � xð0Þ�Þi: ð9Þ

Here q = jqj is the modulus of the momentum transfer
which the neutron transfers to scattering atom in the scat-
tering process. Within the model we assume that the system
under consideration is isotropic and that the protein
dynamics, which is seen in incoherent neutron scattering,
can be described by one ‘‘representative’’ atom. In this case
it suffices to consider one coordinate of the scattering atom,
which is chosen to be the x-coordinate. In view of the pre-
dominance of incoherent scattering by hydrogen atoms, the
representative atom in the model is a representative hydro-
gen atom.
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Fig. 2. Simulated EISF of lysozyme for p = 0.1 MPa (bullets) and p = 300 MPa (squares). The inset shows the position fluctuations derived from
expression (13).
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Within the model the intermediate scattering function
has the form

Iðq; tÞ ¼ expð�q2hx2iÞ
X1
n¼0

q2nhx2in

n!
Ea �½t=sn�að Þ; 0< a6 1;

ð10Þ
where sn is given by

sn ¼ sn�1=a: ð11Þ
Static correlation functions obtained from the model are
the same as for the standard OU process. In the context
of neutron scattering this concerns the elastic incoherent
structure factor (EISF),

EISFðqÞ ¼ lim
t!1

Iðq; tÞ ¼ expð�q2hx2iÞ; ð12Þ

which has Gaussian form. In reality the Gaussian approx-
imation holds strictly only for q! 0 [30]. Calculating hx2i
via

hx2i ¼ � lnðEISF½q�Þ=q2 ð13Þ
one obtains a strongly q-dependent position fluctuation.
Fig. 2 illustrates this aspect. Therefore, in the following
hx2i, as well as the parameters a and s of the fractional
OU process are considered q-dependent.

The dynamic structure factor associated with the inter-
mediate scattering function (10) reads

Sðq;xÞ ¼ expð�q2hx2iÞ dðxÞ þ
X1
n¼1

q2nhx2in

n!2p
La;snðxÞ

( )
;

ð14Þ
where La,s(Æ) is the generalized Lorentzian [22]

La;sðxÞ ¼
2s sinðap=2Þ

xs ðxsÞa þ 2 cosðap=2Þ þ ðxsÞ�að Þ ; 0 < a 6 1:

ð15Þ

4. Data analysis and results

4.1. Fitting simulated time correlation functions

The ‘‘natural’’ quantities for the analysis of MD simula-
tions are MSDs and time correlation functions, which can
be directly computed from the trajectories. In the present
study we used the MD analysis package nMoldyn for this
purpose [31]. To fit expressions (3) or (10) to the corre-
sponding simulated functions one needs thus to evaluate
functions of the type Ea(�ta). We found the following pro-
cedure satisfactory. Starting from the decomposition (5) we
perform the variable change u = ka to obtain

Eað�taÞ ¼ 1

pa

Z 1

0

du
sinðpaÞ

u2 þ 2u cosðpaÞ þ 1
expð�u1=atÞ;

ð16Þ
where the integral is evaluated numerically. The variable
change k! u leads to a well-behaved, non-singular inte-

grand and allows to compute Ea(�ta) for large arguments
t, where the series expansion (4) converges extremely
slowly. The method can be tested for the special case
a = 1/2, for which an analytical solution is known:
E1=2ð�t1=2Þ ¼ expðtÞerfcð

ffiffi
t
p
Þ [25].

4.2. Fitting QENS spectra

The model introduced in Section 3 describes internal
protein dynamics and to be useful for the interpretation
of QENS spectra of protein solutions the effects of global
diffusion and of finite instrumental resolution must be
incorporated. Neglecting multiple scattering effects and
absorption, and assuming that global diffusion of the lyso-
zyme molecules and internal motions are decoupled, we
write the measured dynamic structure factor as convolu-
tion product (defining ðf � gÞðxÞ ¼

Rþ1
�1 dx0f ðx� x0Þ

gðx0Þ):

Smðq; tÞ ¼ ðS � l � rÞðxÞ: ð17Þ

Here S stands for the dynamic structure factor of the mod-
el, l is a Lorentzian describing translational diffusion (D is
the diffusion constant),

lðxÞ ¼ 1

p
Dq2

ðDq2Þ2 þ x2
ð18Þ

and r is the resolution function, which is well described by a
Gaussian,

rðxÞ ¼
exp � x2

2r2

� �
ffiffiffiffiffiffi
2p
p

r
; ð19Þ

with r > 0 and a half width at half maximum (HWHM) of
DE � 1.17r. Both r(Æ) and l(Æ) are normalized such thatRþ1
�1 dxrðxÞ ¼ 1 and

Rþ1
�1 dxlðxÞ ¼ 1.

From light scattering experiments one can estimate the
relevance of translational diffusion for QENS spectra. In
the work of Nystrom and Roots [10], which has been per-
formed in similar conditions, the diffusion coefficient at
p = 0.1 MPa and p = 300 MPa is found to be D =
1.45 · 10�4 nm2/ps and D = 1.25 · 10�4 nm2/ps, respec-
tively. The width of the corresponding Lorentzian being
Dq2, we obtain for q = 20 nm�1 and p = 0.1 MPa a width
Dq2 = 0.038 meV, which is comparable to the instrumental
resolution. To estimate the influence of rotational diffusion
on the measured QENS spectra we use the diffusion con-
stant for rotational diffusion [32], assuming that the protein
under consideration has spherical shape,

cr ¼
kBT

4pga3
: ð20Þ

Here a is the radius of the protein and g is the shear viscos-
ity of the solvent (water). For lysozyme, which has a radius
of a = 1.45 nm, one obtains cr = 1.06 · 108 s�1 at T =
293 K. This corresponds to a width of 7 · 10�5 meV, which
is far below the instrumental resolution. Rotational diffu-
sion needs therefore not be considered in the model.
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The convolution product (17) for the measured dynam-
ics structure factor can be written in the following form,
using S as the model (14),

Smðq;xÞ ¼ expð�q2hx2iÞ

� ðl � rÞ þ
X1
n¼1

q2nhx2in

n!2p
ðLD

a;sn
� rÞðxÞ

( )
: ð21Þ

Here LD
a;sn
ðxÞ ¼ ðLa;sn � lÞðxÞ is the convolution of a gener-

alized Lorentzian with a normal Lorentzian, for which an
analytical form can be given. Defining

~x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðDq2Þ2

q
; / ¼ argðDq2 þ ixÞ; ð22Þ

one obtains [33]

LD
a;sðxÞ ¼

2 ð~xsÞa cos /þ cosð½a� 1�/Þf g
~x ð~xsÞa þ 2 cos a/þ ð~xsÞ�af g : ð23Þ

In contrast to La,s, its convolution with a normal Lorentz-
ian stays finite at x = 0 if D > 0. This point is important if
one aims at evaluating the convolutions in (21) by the effi-
cient Fast Fourier Transform technique [34], as we did for
the fits presented in this article. With this method singular
functions cannot be treated and we refer to [33] to handle
the case of D = 0. It is worthwhile mentioning that the lat-
ter method can be easily generalized to include also global
diffusion, but the FFT technique is more efficient.

4.3. Results

We start the presentation of the results with the analysis
of the MD simulations. The most basic quantity to con-
sider is the time-dependent mean-square displacement.
Fig. 3 shows the neutron-weighted average atomic MSD
of lysozyme and the fit of the model function (3). The
atomic weights are chosen to be the squared incoherent

scattering lengths. We note that the MSD computed from
MD is the sum of the MSDs in the x-, y- and z-direction,
and expression (3) must thus be multiplied by 3 for the
fit. In the latter only two of the three parameters of the
model, s and a, were used and the mean square position
fluctuation hx2i has been fixed by a separate analysis of
the MD trajectory. The resulting fit parameters can be read
off from Table 3. It is important to emphasize that the
model parameters are quite strongly correlated, in particu-
lar hx2i and s. Therefore a good estimation of hx2i is crucial
even to estimate tendencies of s with pressure. In this con-
text we found that the direct calculation of hx2i from the
MD trajectories is less reliable than the calculation from
the EISF via expression (13) in the limit q! 0. For ambi-
ent pressure this procedure gives a very similar result as the
direct calculation, but for p = 300 MPa the direct calcula-
tion yields a value which is about 10% smaller than the
one obtained from the EISF. This small difference leads
even to a slight shortening of s with pressure instead to
the lengthening seen in Table 3, and the fit is clearly less
good. If all parameters are left free in the fit, one also finds
a lengthening of s with pressure, and the resulting para-
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Fig. 3. Average atomic mean-square displacement of lysozyme in solution obtained from MD simulation at p = 0.1 MPa and at p = 300 MPa (solid lines).
The broken lines correspond to a fit of the model according to expression (3). See Table 3 for the resulting parameters. More explanations are given in the
text.

Table 3
Parameters for the fractional Ornstein–Uhlenbeck process obtained from
fits to the simulated MSDs and to the simulated intermediate scattering
functions

0.1 MPa 300 MPa

hx2i (nm2) a s (ps) hx2i (nm2) a s (ps)

MSD 6.17 · 10�3 0.54 31.75 4.74 · 10�3 0.54 39.08

Finc(6 nm, t) 4.68 · 10�3 0.53 13.48 3.94 · 10�3 0.50 19.43
Finc(10 nm, t) 3.96 · 10�3 0.51 8.86 3.28 · 10�3 0.49 13.58
Finc(20 nm, t) 2.57 · 10�3 0.52 2.53 2.21 · 10�3 0.45 4.39
Finc(22 nm, t) 2.41 · 10�3 0.50 2.3 2.08 · 10�3 0.44 3.64

The value of hx2i is fixed according to Eq. (13).
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meters are very similar to the ones found by imposing hx2i
obtained from the EISF. In view of these findings the fitted
values for a and s for the MSD at p = 300 MPa, which
have been published in [35], must be considered erroneous.

Fig. 4 shows the intermediate scattering function and
the fitted model for q = 6 nm�1 and q = 20 nm�1 for the
two pressures of p = 0.1 MPa and p = 300 MPa, respec-
tively. The corresponding model parameters are listed in
Table 3. The fits were performed with expression (10),
using eight terms in the sum. As already indicated, I(q, t)
has been fitted by using the q-dependent position fluctua-
tions shown in Fig. 2.

Fig. 5 displays experimental QENS spectra at q =
20 nm�1 and the corresponding fit of expression (21),
which accounts for finite instrumental resolution and for
free translational diffusion of the lysozyme molecules in
the solution. As for the fits of the simulated intermediate
scattering functions, the position fluctuations have been
read off from Fig. 2. The fit parameters a, s and the diffu-
sion coefficient D are given in Table 4 for two q-values:
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Fig. 4. Fit of the simulated incoherent dynamic structure factor (solid
lines) with expression (10) (broken lines) for p = 0.1 MPa (upper part) and
p = 300 MPa (lower part). The parameters are given in Table 3.
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function of x (angular frequency). The solid lines represent the fits of the
analytical model defined in Eq. (14) using the parameters given in Table 4.

Table 4
Parameters obtained from a fit of expression (21) to the experimental
QENS spectra

Sinc(20 nm�1,x) Sinc(22 nm�1,x)

0.1 MPa hx2i (nm2) 2.57 · 10�3 2.41 · 10�3

a 0.35(2) 0.40(2)
s (ps) 3(2) 3(1)
D ðnm2 ps�1Þ 0.53(3) · 10�4

300 MPa hx2i (nm2) 2.21 · 10�3 2.08 · 10�3

a 0.52(1) 0.55(1)
s (ps) 5.2(2) 4.7(3)
D ðnm2 ps�1Þ 0.50(3) · 10�4

The value of hx2i is fixed according to Eq. (13).
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Fig. 6. Fitted model parameter s as a function of q for p = 0.1 MPa and
p = 300 MPa. The black squares and the circles correspond to the analysis
of the MD data at 0.1 MPa and at 300 MPa, respectively. The black
and white triangles correspond to the fits to the experimental QENS
spectra.
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q = 20 nm�1 and q = 22 nm�1. For lower q-values the
quasielastic signal was to small to be exploitable at the
given resolution. The diffusion coefficients we find are
about a factor of three smaller than what one would expect
from quasielastic light scattering experiments.

The evolution of the time scale parameter s for both
simulation results and QENS experiments is summarized
in Fig. 6, where the values for q = 0 correspond to the fits
of the simulated mean-square displacements. One observes
that the influence of pressure becomes less pronounced
with increasing q, corresponding to increasingly localized
motions.

5. Conclusion

In the present article we have studied the influence of
pressure on the internal dynamics of lysozyme, using
molecular dynamics simulations and quasielastic neutron
scattering. The fractional Ornstein–Uhlenbeck process
was used as a model to interpret both simulations and
experiments, which were performed at ambient tempera-
ture and pressures of p = 0.1 MPa and p = 300 MPa. For
both pressures, the analysis of the MSD and of the interme-
diate scattering functions obtained from MD simulation
show that the relaxation time scale s decreases progres-
sively with increasing q, while the parameter a, which
describes the fractal self-similarity of the observed relaxa-
tion dynamics, remains essentially constant at a value of
a = 0.5. This shows that the observed relaxation dynamics
becomes increasingly faster the more localized the observed
motions are, while the fractal characteristics of the dynam-
ics is the same over all investigated spatial scales. We
emphasize that the model parameters, which have been
obtained from the QENS spectra at q = 20 nm�1 and at
q = 22 nm�1 are in agreement with those obtained from
the simulation data.

Concerning the effect of the pressure on both experimen-
tal QENS spectra and simulated quantities, we find that a
does not change with pressure either, indicating that pres-
sure does not change the fractal behavior of the relaxation
dynamics. It does, however, reduce the amplitude of the
motions by about 20%, and it has an effect on the observed
relaxation time scale. For all values of q pressure leads to
an increase of s, thus indicating a systematic slowing down
of the relaxation processes. This effect is the more pro-
nounced the smaller q is, i.e. the larger the spatial scale
of the relaxation dynamics is. This finding can be explained
by an increase in the packing density of the atoms, which
causes longer waiting times for large conformational rear-
rangements than for more localized rearrangements on
the residue level, which are seen at higher q-values.

In order to obtain more insight into the relaxation
mechanisms leading to the fractional Brownian motion
observed protein dynamics, it is interesting to relate the
present study to an analysis of a normal mode decomposi-
tion of the same trajectory [16]. The slowest relaxation time
scales we find in this article are also observed in the dynam-

ics projected on the most collective modes, which is purely
diffusive. On the other hand, the projection of the dynamics
onto normal modes representing more localized motions
also contains vibrational components. For this dynamical
regime, fractional Brownian dynamics describes diffusive
hopping processes between conformational substates, the
relaxation time scale being the residence time in one of
these substates.
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