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Abstract

The slow dynamics of proteins around its native folded state is usually described by di�usion in a strongly anhar-

monic potential. In this paper, we try to understand the form and origin of the anharmonicities, with the principal aim

of gaining a better understanding of the principal motion types, but also in order to develop more e�cient numerical

methods for simulating neutron scattering spectra of large proteins. First, we decompose a molecular dynamics (MD)

trajectory of 1.5 ns for a C-phycocyanin dimer surrounded by a layer of water into three contributions that we expect to

be independent: the global motion of the residues, the rigid-body motion of the sidechains relative to the backbone, and

the internal deformations of the sidechains. We show that they are indeed almost independent by verifying the fac-

torization of the incoherent intermediate scattering function. Then, we show that the global residue motions, which

include all large-scale backbone motions, can be reproduced by a simple harmonic model which contains two con-

tributions: a short-time vibrational term, described by a standard normal mode calculation in a local minimum, and a

long-time di�usive term, described by Brownian motion in an e�ective harmonic potential. The potential and the

friction constants were ®tted to the MD data. The major anharmonic contribution to the incoherent intermediate

scattering function comes from the rigid-body di�usion of the sidechains. This model can be used to calculate scattering

functions for large proteins and for long-time scales very e�ciently, and thus provides a useful complement to MD

simulations, which are best suited for detailed studies on smaller systems or for shorter time scales. Ó 2000 Elsevier

Science B.V. All rights reserved.
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1. Introduction

One of the most important applications of
neutron scattering in the biological sciences has
been the study of protein dynamics. In this ®eld,
computer simulations have always been essential

for interpreting the experimental spectra due to
the complexity of the systems [1,2]. The prevalent
simulation technique has been molecular dynamics
(MD) simulation, which calculates the detailed
motion of all atoms. From this information, all
observable quantities can be calculated in princi-
ple, although the length of simulation runs that
can be performed in practice is often a limiting
factor. Few, if any, MD trajectories ever pro-
duced for proteins are long enough to permit a
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conformational sampling that includes the low-
frequency large-amplitude motions. As an alter-
native technique, normal mode analysis has been
used to reproduce vibrational spectra. This tech-
nique has the advantage of permitting the ana-
lytical calculation of time-dependent quantities on
all time scales, without the sampling problems of
MD, but it is inherently unable to describe the
di�usive dynamics that dominates protein motion
on long time scales and at physiological tempera-
tures. Another problem is the limitation to a single
local minimum of the potential energy surface,
which cannot describe the amplitudes of large-
scale motions correctly.

Several attempts have been made to introduce
friction and thereby di�usive motions into normal
mode models. Smith et al. [3] used a model in
which they assigned a friction term to each normal
mode independently, i.e. they neglected the cou-
pling between modes that results from the ran-
dom forces. They used an empirical model for the
frequency-dependent friction constant. This ap-
proach has also been used by Hayward et al. [4].
Kottalam and Case [5] and later Ansari [6] have
applied the Langevin mode formalism developed
by Lamm and Szabo [7] on the basis of a theory by
Wang and Uhlenbeck [8] to proteins, using an
atomic model and force ®eld with friction con-
stants calculated according to an empirical for-
mula that was developed by Pastor and Karplus [9]
for liquid alkanes. The validity of this model for
proteins is questionable, however, and as in the
work of Smith et al., the limitation to a local
minimum of an atomic force ®eld remains. Fric-
tion constants have also been obtained from MD
trajectories (e.g. Ref. [10]), but this approach has
not become widely used.

The aim of this article is to gain a better un-
derstanding of the long-time di�usive dynamics of
proteins, as measured by neutron scattering, and
to examine whether it is possible to describe it by a
much simpler model than explicit Newtonian dy-
namics on the atomic scale. Our starting point
(Section 2) is a long MD trajectory for a mid-sized
protein, a C-phycocyanin dimer. In Section 3, we
decompose this trajectory into three terms which
we expect to be approximatively independent:
one term describes the large-scale motions of the

backbone, the second one, the rotational di�usion
of the sidechains relative to the backbone, and the
third term describes the internal deformations of
the sidechains.

In a compactly folded protein with a single well-
de®ned equilibrium structure, the overall shape of
the potential energy surface must be that of a
single well. It is well known that the stable equi-
librium con®gurations of proteins actually consists
of multiple conformational substates [11±13], but
this ``®ne structure'' of the potential energy surface
can be regarded as a modulation of a smooth
single-well potential that de®nes the protein's
general folding topology. Motion in such a system
can be described qualitatively as vibrational mo-
tion within a local potential energy minimum on a
short-time scale, and as di�usion on a smooth ef-
fective potential energy surface on a long-time
scale. In Section 4, we will attempt to describe the
large-scale dynamics of a protein by precisely such
a model, assuming both the local minima and the
overall potential well to be harmonic.

2. Molecular dynamics simulation

The MD trajectory was prepared and used to
compare the simulation data with neutron scat-
tering experiments performed on a hydrated
powder of C-phycocyanin [14±16]. Protein pow-
ders obtained by lyophylisation and re-hydration
are disordered systems that di�er structurally both
from solutions and from crystalline powders. A
realistic description of such a system would have
been an arrangement of four to eight molecules
in the simulation box, with the corresponding
amount of hydration water. However, this would
have increased the number of atoms beyond what
can be reasonably treated by MD simulations. It
was therefore decided to use the simplest model
that still retains the essential properties of the
system: a protein dimer surrounded by a small
amount of water such that the water/protein
weight ratio is the same as in the powders used in
experiments [15,16].

The preparation of the hydrated C-phycocyanin
model and the generation of the MD trajectory
were performed using the CHARMMCHARMM program [17]

26 K. Hinsen et al. / Chemical Physics 261 (2000) 25±37



with version 22 of the all-atom potential function
[18]. The parametrization for the chromophores,
for which there are no parameters in this potential
function, will be described elsewhere.

The starting point of the simulation was a
crystallographic structure by Duerring et al. [19],
PDB code 1CPC, from which an all-atom repre-
sentation of the C-phycocyanin dimer was con-
structed. This model consists of the two peptide
chains, three phycocyanobilins, and 243 water
molecules. A box with water molecules at normal
density of dimensions 9� 6� 4:5 nm3 was equili-
brated using CHARMMCHARMM. Water molecules with the
oxygen within 0.26 nm from any heavy atom of
the protein and at a distance larger than 0.47 nm
were eliminated, as were ®ve water molecules that
would have been placed in pockets inside the
protein where no water is found in the X-ray
structure. In this way, a shell corresponding to a
hydration level of �0.6 g gÿ1 and corresponding
approximately to two hydration shells was gener-
ated around the protein. In total, there are 1086
water molecules in our system, which together with
the protein make up for 8417 atoms.

The simulation was performed in the microca-
nonical (NVE) ensemble. The cuto� distance for
the nonbonded list was set to 1.4 nm instead of the
more usual value of 1.2 nm. The cuto� distances
for the smoothing function were 0.9 m, for the
start and 1.3 nm for the end. These values were
found to increase the accuracy of the simulation
without greatly a�ecting the computational e�ort
per simulation step. To allow a simulation time
step of 2 fs, bonds between hydrogens and heavy
atoms were kept rigid.

After an initial energy minimization (500 steps
of steepest descent, followed by 5000 steps with the
second-order adopted basis Newton±Raphson
(ABNR) algorithm), the system was brought to the
simulation temperature of 300 K in steps of 5 K
over 3000 steps. In the subsequent equilibration
phase, the particle velocities were rescaled to bring
the temperature back to 300 K whenever it devi-
ated by more than 10 K from this value. This was
continued until such rescaling steps were no longer
necessary, which was after 5000 steps. Finally, a
production run was started in which the system
con®guration was stored in a trajectory ®les every

50 steps over a total simulated time of 1.6 ns. The
root-mean-square (RMS) deviation from the crys-
tal structure during the dynamics was less than
0.15 nm.

3. Trajectory analysis

The ®rst step in the analysis was the elimination
of global translation and rotation from the tra-
jectory, followed by the construction of three new
trajectories of which each one contains only one
speci®c part of the total motion. The Molecular
Modeling Toolkit [20] was used for these opera-
tions.

To represent the collective motions of the
backbone, we chose the Ca atoms; other choices
(e.g., the center of mass of each residue) are pos-
sible, but make little di�erence. For the calculation
of the scattering functions, each Ca atom was as-
signed the scattering length of the whole residue
that it represents.

The second trajectory contains the rigid-body
motion of the sidechains. However, contrary to an
earlier study on rigid sidechain motions [21,22], we
include only the motion relative to the backbone
because the global motion of the whole residue is
already taken into account in the ®rst trajectory.
Since the sidechains are connected to the backbone
by a chemical bond, relative translation is negli-
gible, such that only rotational motion must be
kept. In the sidechain rotation trajectory, the
backbone atoms keep their initial positions at all
times. For the sidechains, a rigid-body superposi-
tion ®t [23] onto the initial conformation is per-
formed at each time step. The result of this ®t is
the linear transformation that transforms initial
conformation of the sidechain to the conformation
at time t with the smallest possible error; this
transformation is described by a displacement
vector dsc�t� and a rotation matrix Rsc�t�. The same
superposition ®t is performed for a ®ve-residue
segment of the backbone whose center is the resi-
due under consideration; the result of this ®t is
described by dbb�t� and Rbb�t�. The displacement
vectors are not used because only the rotational
motion is of interest. The rotation of the side-
chain relative to the backbone is described by the
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rotation matrix Rrel�t� � Rÿ1
bb �t� � Rsc�t�. This rota-

tion is applied to all atoms of the sidechain in the
initial con®guration, with the position of the Ca

atom as reference point. The resulting trajectory
can contain unphysical con®gurations in which
some interatomic distances are very small. How-
ever, this is not a problem as long as only single-
atom quantities, such as incoherent scattering
functions, are calculated.

The third trajectory contains the internal de-
formation of the sidechains. As for the sidechain
rotation trajectory, the backbone atoms keep their
initial positions at all times. The sidechain atom
positions are determined by rotating the sidechains
around the Ca positions with the rotation matrix
Rÿ1

sc �t�. Again there is a possibility of generating
unphysical con®gurations, limiting the use of these
trajectories to the calculation of single-atom
quantities.

The second step of the analysis is the calcula-
tion of the incoherent intermediate scattering
function Finc�q; t� for the full trajectory and for the
three extracted trajectories, using a recent reim-
plementation [24] of the NMOLDYNNMOLDYN package [25].
For each value of q, the scattering functions were
calculated as an average over 30 q-vectors chosen
randomly from a uniform direction distribution.
We call the four results F all

inc, F Ca
inc , F rot

inc , and F def
inc . If

we assume that the three extracted trajectories to
be approximately uncorrelated and their combi-
nation to represent all possible motions, then the
product

F prod
inc �q; t� � F Ca

inc �q; t�F rot
inc �q; t�F def

inc �q; t� �1�

should be a good approximation for F all
inc�q; t�.

This approximation is veri®ed in Fig. 1. The
most important conclusion from this comparison
is that the Ca and sidechain rotation contributions
together provide an excellent approximation at
low q, i.e. for large-scale motions, as well as for
short times at all q. The Ca and the sidechain ro-
tation contributions are of similar magnitude. The
sidechain deformation contribution, however, is
much smaller. At short times, it reduces the
agreement with the full trajectory result, which
means that the assumption of negligible correla-
tion is not valid. For long times, when all corre-

lations become small and Finc measures essentially
the position ¯uctuations of the atoms, the side-
chain deformation term improves the agreement
by providing the missing ¯uctuation contribution.

Fig. 1. The incoherent intermediate scattering function F all
inc�q; t�

compared to the factorization approximation from Eq. (1). (a)

F Ca
inc and F Ca

inc F rot
inc compared to F all

inc for two values of q. The Ca

contribution alone is clearly insu�cient, but the product with

the sidechain rotation contribution is an excellent approxima-

tion for q � 0:5 �A
ÿ1

and also for q � 0:5 �A
ÿ1

and short times.

(b) F Ca
inc F rot

inc and F Ca
inc F rot

inc F def
inc compared to F all

inc for four values of

q. The addition of the sidechain deformation term provides the

correct long-time values, but leads to a wrong behavior at short

times. This shows that the assumption of negligible correlation

between the three types of motion is not entirely justi®ed.
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We conclude from this analysis that the motions
which are measured by Finc�q; t� can to a good
approximation be described by an uncorrelated
combination of whole-residue motion (represented
by the motion of the Ca atoms) and rigid-body
rotation of the sidechains relative to the backbone.

4. Brownian modes

Our next aim is the reproduction of the long-
time large-scale motions, measured by F Ca

inc �q; t�,
with a much simpli®ed physical model, in order to
verify if the assumption of harmonic motion is
justi®ed. Our protein model consists only of the Ca

atoms, which however are assigned the masses of
the whole residues they represent. Such a model
has been used successfully for studies of thermal
¯uctuations [26] and domain motions [27,28]. The
Ca atoms interact via an harmonic pair potential,
which is derived from the MD trajectory, and are
subject to friction originating from the solvent and
from the other protein atoms that are not included
explicitly.

We assume to be in the Brownian motion re-
gime in which the only dynamical variables are the
positions of the atoms. The usual justi®cation for
this model is that the velocities are supposed to be
uncorrelated on the time scale under consideration
and their distribution thus is the equilibrium dis-
tribution. In a damped harmonic system, the re-
laxation times of the position and velocity
autocorrelation functions are the same. However,
as shown in Ref. [29], on a coarse-grained time
scale, the neutron scattering law for the Langevin
and Brownian motion regime are the same if fric-
tion dominates. This is certainly the case for the
large-scale motions that we wish to describe. Here,
the local dynamics is governed by many jumps
between local minima which create an e�ective
friction on a coarse-grained time scale. The net
e�ect is di�usion in a smooth e�ective potential.
We will deal with this di�usion ®rst and come back
to the short-time vibrations in a local minimum in
Section 4.4. All the techniques described in this
section were implemented using the Molecular
Modeling Toolkit [20].

4.1. Brownian motion in an harmonic potential

The equation of motion for Brownian dynamics
is the Smoluchowski equation,

o
ot

P � rT �D � rP ÿ 1

kBT
rT �D � fP ; �2�

where P�R; tjR0; t0� is the probability for a move
R0 ! R within a time interval t0 ! t, and R and R0

are the 3N -dimensional position vectors (N being
the number of particles) at time t and t0, respec-
tively. The vector f comprises the forces, and the
di�usion matrix D is related to the friction matrix
c by D � kBTcÿ1. In the case of an harmonic sys-
tem, we have f � ÿK � �Rÿ Req�, where Req is a
(stable) minimum of the potential energy. The
force constant matrix K is positive (semi-)de®nite,
and the solution of the Smoluchowski equation is
a Gaussian distribution. The corresponding sto-
chastic process described by it is known as the
Ornstein±Uhlenbeck process [8]. This solution can
be expressed in a form that is similar to standard
normal mode analysis, and analytic expressions
for the scattering functions can be derived [29].
The expressions below are taken from Ref. [29]
but are rewritten in non-mass-weighted Cartesian
coordinates to be suitable for direct numerical
application. Here, we cannot make the assumption
that the force constant matrix is positive de®nite,
because for a system without external forces, it
always has six zero-frequency eigenvalues. This
requires some minor modi®cations to the expres-
sions found in Ref. [29]. Essentially, the inverse of
K has to be replaced by the pseudoinverse, K�,
which has the properties that K� � K � K � K� is
the projector on the subspace describing in®nites-
imal global rotations and translations.

The incoherent intermediate scattering function
for a harmonic Brownian system can be written
as

Finc;bm�q; t� �
XN

a�1

b2
a;inc faa�q;1�f 0aa�q; t�; �3�

with

faa�q;1� � exp
ÿÿ kBT qT � Kaa� �� � q�; �4�
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f 0aa�q; t� � exp
X3Nÿ6

k�1

exp�
 

ÿ kkt�y�k�aa �q�
!
; �5�

where

y�k�aa �q� � kBT
�qT � u�a�k �2

kkmauT
k �Mÿ1=2 � c �Mÿ1=2 � uk

�6�

and the eigenvalues kk and eigenvectors uk satisfy
the relation

A � uk � kkuk; �7�
with A �M1=2cÿ1 � K �Mÿ1=2, where M is the di-
agonal matrix containing the particle masses.
Furthermore, u

�a�
k is the displacement of atom a in

the eigenvector of mode k. Note, that we have
eliminated the six modes with kk � 0 which de-
scribe global translation and rotation of the pro-
tein.

For numerical calculations, Eq. (7) has the in-
convenience that the matrix A is not symmetric.
However, an equivalent symmetric eigenvalue
problem can be constructed by de®ning the sym-
metric matrix

Â � cÿ1=2 � K � cÿ1=2 �8�
and the modi®ed eigenvectors

ûk � c1=2Mÿ1=2 � uk: �9�
It can easily be veri®ed that the vectors ûk are the
eigenvectors of Â with eigenvalues kk.

The essential di�erence between Brownian
mode analysis and standard normal mode analysis
is thus that the force-constant matrix K is not mass
weighted, but friction weighted. A simple physical
interpretation of the Brownian modes can be given
in the absence of random forces, i.e. with no
coupling to a heat bath. Then each Brownian
mode k will independently move from its initial
amplitude along Mÿ1=2 � uk towards the stable
equilibrium con®guration with a time constant of
kk; this motion is overdamped for all modes. In the
presence of random forces, all modes are always
excited, such that no single-mode motion can exist.
The Brownian modes then only provide a conve-
nient description of the probability density for
con®gurational changes.

4.2. E�ective potential well

In a study of domain motions in large proteins
by normal mode analysis [27,28], it was found that
domain motions can be reproduced using a simple
harmonic potential of the form

U�R1; . . . ;RN � �
X

all pairs a;b

Uab�Ra ÿ Rb� �10�

with the pair potential

Uab�r� � k R
�0�
ab

� �
rj j

�
ÿ R

�0�
ab

��� ����2

: �11�

Here and in the following xa � Ra ÿ Req
a are the

particle displacements with respect to the equilib-
rium position, and R

�0�
ab � Req

a ÿ Req
b is the pair

distance vector in the stable equilibrium con®gu-
ration. The pair force constant was chosen as

k�r� � exp

 
ÿ jrj

2

r2
0

!
�12�

with r0 � 0:7 nm, essentially for mathematical
convenience. For the determination of domain
motions, the only important feature of the poten-
tial energy well is a clear distinction between
slow and fast motions; reproduction of dynamical
time scales or of the total atomic ¯uctuation is
not important. This potential can therefore not be
expected to yield good results in the present
study.

One can derive a force constant matrix for a Ca

model from the force constant matrix for an all-
atom model by assuming that for any given dis-
placement of the Ca atoms, the other atoms move
along in such a way as to minimize the potential
energy. For an harmonic potential energy well,
this energy-minimizing displacement vector can be
determined analytically. In the following, we in-
dicate the Ca atoms by the superscript a and the
other atoms by the superscript o. We thus divide
the all-atom force constant matrix K into four
submatrices,

K � K�aa� K�ao�

K�oa� K�oo�

� �
�13�
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and the vector x describing the atomic displace-
ments from the energy minimum into the subvec-
tors x�a� and x�o�. Then for given x�a�, the x�o� are
given by

x�o� � ÿ K�oo�ÿ �1 � K�oa� � x�a� �14�

and the e�ective force constant matrix ~K for the Ca

atoms becomes

~K � K�aa� ÿ K�ao� � K�oo�ÿ �1 � K�oa�: �15�

The inversion of K�oo� poses no problem in prin-
ciple, because this matrix does not have zero ei-
genvalues. However, in practice this approach can
only be used for small proteins, both because of
the inversion of this large matrix and because a
careful energy minimization is required before the
evaluation of K.

In order to obtain a simpler model, we assume
again the functional form given by Eqs. (10) and
(11), but with a di�erent distance-dependent force
constant than the one from Eq. (12). We determine
this force constant from the e�ective force con-
stant matrix Eq. (15) which we calculate for
crambin using the AMBER 94AMBER 94 force ®eld [30]. Then,
we assume that each pair entry ~Kij can be derived
from a pair potential that has the form of Eq. (11)
and calculate the e�ective pair force constant

kij � ÿTr ~Kij

� �
: �16�

By plotting this quantity against the distance be-
tween atoms a and b (Fig. 2), we ®nd that the
points can be approximated well by

The two distance categories are required to de-
scribe the substantial di�erence between nearest-
neighbor pairs along the backbone (distances
below 0.4 nm) and all other pairs.

It can be seen from Fig. 2 that this ®t yields a
very good approximation of the original e�ective
force constant matrix ~K. However, this matrix, like

the all-atom force constant matrix K from which it
was derived, describes a single local minimum in
the AMBER 94AMBER 94 potential energy surface. What we
need for our Brownian modes study is an e�ective
potential well that describes large-scale motions.
There is no a priori reason why these two potential
wells should have anything in common; the e�ec-
tive potential well is expected to contain many
local minima that even might di�er from each
other signi®cantly. However, there is evidence that
the local minima are very similar to each other
[31], and also, up to a global scaling factor, to the
e�ective potential well describing large-scale mo-
tions. The evidence for this latter similarity comes
from numerous normal mode studies on proteins
which, in spite of being limited to a single local
minimum of the potential energy surface, can re-
produce experimental information that is clearly
related to large-scale motions, such as domain
motions or the residue dependence of atomic
¯uctuations, if only a scaling factor is applied to
the amplitude of the motions. There seems to be a
fundamental self-similarity principle in protein
energy surfaces which has not yet been studied in
detail.

We thus apply a global scaling factor s to our
potential energy surface, which we obtain by ®t-
ting to the MD trajectory for the Ca atoms. From
Eq. (4), it is evident that the long-time limit
Finc�q; t!1�, also known as the elastic incoher-
ent structure factor (EISF), depends only on the
shape of the potential well, described by K, but not
on the friction constants c. We thus determine the
scaling factor s by ®tting to the EISF obtained
from the MD trajectory; the resulting value is

s � 0:115. The ®t is shown in Fig. 3. In view of the
completely di�erent potential energy surfaces and
sampling techniques in the two approaches, the
agreement is remarkably good, even considering
the fact that the EISF is not highly sensitive to
force ®eld details. It also provides a ®rst indica-
tion that the assumption of an e�ective harmonic

k�r� � 8:6� 105 kJmolÿ1 nmÿ3 � r ÿ 2:39� 105 kJ molÿ1 nmÿ2 for r < 0:4 nm;
128 kJ nm4 molÿ1 � rÿ6 for r P 0:4 nm:

�
�17�
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potential for the long-time dynamics of C-phyco-
cyanin is reasonable.

4.3. Friction constants

In the most general case, the friction matrix c is
an arbitrary symmetric and positive-de®nite 3N �
3N matrix that depends on the con®guration x. In
the absence of a well-de®ned microscopic model
for the origin of friction in solvated proteins, we
prefer to limit ourselves to the simplest case in
which there is one friction constant ci or each atom;
the o�-diagonal elements of c are assumed to be
zero. We thus have only N friction parameters
which can be obtained from the MD trajectory.

The most convenient dynamical quantity for
®tting the friction constants is the mean-square

Fig. 2. The pair force constants (Eq. (16)) obtained from the e�ective Ca force constant matrix (Eq. (15)) derived from the AMBER 94AMBER 94

force ®eld, and the ®t given by Eq. (17). The force constants derived from the AMBER 94AMBER 94 force ®eld can become negative because the

assumption that the e�ective force constant matrix is a sum of pair terms is not entirely justi®ed. Distances less than 0.4 nm correspond

to neighboring Ca atoms along the backbone; the force constant in this region increases linearly with the distance. The ®t for larger

distances has the form a=r6.

Fig. 3. The EISF from the MD trajectory for the Ca atoms

compared to the results from Brownian mode analysis (long-

time limit of Eq. (3)).
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displacement of atom a, which can be expressed in
terms of Brownian modes as

xa�t��
D

ÿ xa�0��2
E
� 2kBT

X3N

k�1

û
�a�
k

��� ���2
cikk

1ÿ eÿkk t
ÿ �

:

�18�

For short times, we obtain

xa�t��
D

ÿ xa�0��2
E
� 6kBT

ca

t � O�t2�; �19�

the well-known Einstein relation for Brownian
motion. In principle, the friction constants can
therefore be calculated from the initial linearly
increasing part of the mean-square displacements
for the Ca atoms, which we obtain from the MD
trajectory by an e�cient FFT-based method [25].
However, our model also contains a short-time
vibrational component which contributes to the
mean-square displacement; the presence of such a
term is even visible in the simulation data, which
shows oscillatory behavior for short times. It is
therefore preferable to include data at longer times
into the ®t as well. We have used a very simple
two-parameter model that describes each atom by
three Brownian oscillators with the same relax-
ation time, i.e.

xa�t��
D

ÿ xa�0��2
E
� 6kBT

ca

1ÿ eÿkt

k
: �20�

This model is certainly not perfect, and the simu-
lation data su�ers from insu�cient statistics at
long times, which results in a noticeable depen-
dence of the ®tted parameters of the time interval
in which the ®t was performed; the friction con-
stants can di�er by up to a factor two. Fortu-
nately, the Brownian modes are not particularly
sensitive to such variations, as will be shown in
Section 4.5. In the following, we use the friction
constants obtained from a ®t in the interval
0 < t < 40 ps.

One could use the ®tted friction constants di-
rectly in a Brownian mode calculation, but a few-
parameter model is clearly preferable because it
allows a transfer to other proteins. Moreover, a

model for the friction constants can help to gain
a better understanding of the origin of friction in
macromolecular systems. A suitable model can be
constructed based on the observation that the
friction constants inside the protein are larger
than those at the surface. This is in contradiction
to a frequently used model in which the friction
constants are assumed to be proportional to the
solvent-exposed surface of each atom [9]. This
model was developed for liquid alkanes in which
practically all atoms have exposed surfaces, and
whose physical properties di�er fundamentally
from densely packed viscoelastic systems such as
proteins. There is no reason why such a model
should work well for proteins, and to our know-
ledge, it has never been validated by experiment
or simulation for this application. Since a friction
constant can be interpreted as the number of
collisions per time unit with other particles, it
seems reasonable that there are more collisions
inside the very dense protein than between
the protein surface and the comparatively dilute
solvent.

A possible objection to our ®ndings is the small
amount of water that was used in the simulation; a
standard water box with well-de®ned thermody-
namic parameters, which would be appropriate to
model a protein in solution, might result in higher
collision frequencies for the solvent-exposed at-
oms. However, preliminary results from a simu-
lation of lysozyme in a periodic water box at
constant pressure indicate that in such a more re-
alistic system, the friction constants are also
highest inside the protein. Clearly, this subject re-
quires more detailed study.

We found empirically that the friction constants
show a strong correlation with the quantity

da � 3

4pR3

X
b�1

NmbH�Rÿ jRb ÿ Raj�; �21�

i.e. the average density of the protein atoms inside
a sphere of radius R around atom a. The solvent
atoms are ignored in the calculation of da. We
found that R � 1:5 nm yields a su�ciently good
correlation to permit substituting the original
friction constants by the simple linear relation

ca � a� bda; �22�
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with a � ÿ2160 amu psÿ1 and b � 38:2 nm3 psÿ1.
This linear relation and the original ®tted friction
constants are shown in Fig. 4.

As mentioned above, ®tting the friction con-
stants in a di�erent time interval yields somewhat
di�erent values, but there is always a strong linear
correlation with the densities da. For comparison,
we will use the values ®tted in the interval
0 < t < 100 ps, which lead to a linear relation with
the parameter a � ÿ500 amu psÿ1 and b � 20:4
nm3 psÿ1. The friction constants are thus system-
atically lower and grow less with increasing den-
sity. It will be shown in Section 4.5 that the
in¯uence on the incoherent intermediate scattering
function is nevertheless small.

4.4. Short-time vibrational contributions

We have mentioned before that our model
consists of two contributions, di�usive motion on
long-time scales, and vibrational motion on short-
times scales de®ned by the frequency of jumps
between di�erent local minima. We assume these
two contributions to be independent, such that the
total incoherent intermediate scattering function is
given by the product

Finc�q; t� � Finc;bm�q; t�Finc;vib�q; t�; �23�

with Finc;bm�q; t� given by Eq. (3). We describe the
short-time vibrational motion by a standard nor-
mal mode calculation for the Ca atoms, using the
potential energy function described in Section 4.2
but without the scaling factor s, which was intro-
duced speci®cally for describing the amplitudes of
slow large-scale motions. The result of the normal
mode analysis is a set of eigenfrequencies xk,
k � 1; . . . ; 3N , with corresponding eigenvectors vk.
As for the Brownian modes, we eliminate the six
modes with xk � 0 that describe global translation
and rotation of the protein.

The incoherent intermediate scattering factor
for an harmonic oscillator is given by

Finc;vib�q; t� �
XN

a�1

b2
a;incfaa;vib�q; t� �24�

with

faa;vib�q; t�

� exp
X3Nÿ6

k�1

�qT � v�a�k �2�1
 

ÿ w�t� cos xkt�
!
;

�25�
where we have added a windowing function w�t�.
Without this function (i.e. w�t� � 1), the scattering
function shows an oscillatory behavior after an
initial decay. This oscillatory behavior re¯ects the
existence of nonzero correlations over long-time
scales, as is to be expected for a purely oscillatory
system. However, in our model, the position cor-
relations should vanish on a time scale corre-
sponding to jumps between local minima. This can
be achieved by introducing a Gaussian windowing
function

w�t� � exp

�
ÿ t2

s2

�
: �26�

We do not know the relaxation time s, of course,
but its value is not critical; the only reason for
introducing the windowing function is to obtain a
smooth function at long times that converges to
the EISF. We use a value of s � 20 ps in the re-
sults shown and discussed below.

A straightforward calculation of Finc�q; t� from
Eq. (23) would result in a wrong long-time limit
(the EISF) because the potential energy for the

Fig. 4. The friction constants ca ®tted from the MD trajectory

vs. the average protein density around atom a (see Eq. (21)),

and the linear ®t to this relation given by Eq. (22).
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Brownian modes term alone was already scaled to
reproduce the EISF. We thus have to replace the
scaling coe�cient s (Section 4.2) by a factor s0

which takes into account the contribution of the
vibrational term to the total atomic ¯uctuations.
Since the ¯uctuations are proportional to 1=s, and
the vibrational potential energy has s � 1, we ®nd
s0 � 1=�1=sÿ 1� � 0:13.

4.5. Results

We have calculated the incoherent intermediate
scattering function using the potential energy
function and friction constant model described
above, both with pure Brownian modes (Eq. (3))
and with a combined Brownian modes/vibration
approach (Eq. (23)). As for the MD calculations,
we calculate an isotropic average over the direc-
tions of q by repeating the calculation for several
randomly chosen vectors of length q � jqj; 10
vectors per q value proved to be su�cient to obtain
a converged average.

Fig. 5 shows the incoherent intermediate scat-
tering function for q � 5 nmÿ1. It is clear from this
picture that Brownian modes alone cannot repro-
duce the MD data; the convergence to the as-
ymptotic value is much too slow, even for low

values of the friction constants. It is worth point-
ing out again that all the functions in Fig. 5 have
the same asymptotic value, de®ned by the EISF.
The MD results seem to be systematically lower at
long times, but this is due to insu�cient statistics
in calculating the averages; the incoherent inter-
mediate scattering function in fact reaches values
that are far below its asymptotic limit, the EISF.
This apparent contradiction is caused by di�erent
calculation procedures for Finc and the EISF: the
EISF is calculated as a static average over all
con®gurations in the trajectory, whereas Finc is
calculated as a correlation function, with much
poorer statistics for long times than for short ones.

The di�erent Brownian mode results show that
it is clearly not su�cient to get the asymptotic
value and the initial slope (i.e. the friction con-
stant) correct in order to reproduce the complete
time correlation function. The very good agree-
ment between MD and our Brownian modes ap-
proach with a vibrational contribution is therefore
far from evident, and the vibrational contribution
is essential for obtaining good results. Fig. 6
demonstrates that this very good agreement ex-
tends to much higher values of q, i.e. more local-
ized motions. The highest q value shown in Fig. 6
corresponds to a wavelength of 0.25 nm, i.e. less
than the nearest-neighbour Ca distance of about

Fig. 5. The incoherent intermediate scattering function Finc�q; t�
for q � 5 nmÿ1. The Brownian modes alone cannot reproduce

the MD curve, even for the lower friction constants. The larger

friction constants together with the vibrational contribution

yield a very good agreement with the MD result.

Fig. 6. The incoherent intermediate scattering function Finc�q; t�
for three values of q. The Brownian mode results were obtained

with the friction constants labelled ``®rst set'' in Fig. 5.
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0.4 nm; an agreement beyond this value is thus not
to be expected.

We thus ®nd that the Ca dynamics of a globular
protein can be reproduced with a simple harmonic
model that contains only six parameters of which
three were ®tted to the MD trajectory and three to
the AMBER 94AMBER 94 force ®eld.

5. Conclusions

We have shown that the dynamics of a globu-
lar protein, as measured by the incoherent in-
termediate scattering function Finc�q; t�, can be
described by two approximately independent
contributions: whole-residue motion, described by
the Ca trajectories, and rotational sidechain di�u-
sion. Furthermore, we have shown that the ®rst
contribution can be reproduced extremely well
from a model that consists of vibration in local
energy minima plus jumps between minima that
lead to an e�ective di�usive motion in a smooth
harmonic potential well.

An obvious question is how general our model
is, i.e. if it can be transferred to other proteins. The
three parameters ®tted to the AMBER 94AMBER 94 force ®eld
were determined for crambin and thus have al-
ready been transferred to another protein. More-
over, previous experience with normal mode
calculations on simpli®ed protein models [27]
suggests that the pair interaction term should not
di�er among proteins. Obtaining an e�ective po-
tential well for long-time di�usion from the de-
scription of a local minimum by scaling is expected
to work for all proteins with a single stable con-
formation, but the scaling factor s might depend
on the size of the protein or even on its structure.
As for the friction constants, our current under-
standing of the origin of friction in proteins is too
incomplete to permit any statement about the
generality of our ®ndings. More studies on di�er-
ent proteins will be required before a de®nite an-
swer can be given.

The question of generality also arises for the
rotational sidechain di�usion term in the incoher-
ent intermediate scattering function. Since the
sidechains and their packing density is the same in
all proteins, we would expect this term to have a

universal shape and a magnitude proportional to
the size of the protein. Again, only further studies
on di�erent proteins can clarify this point.

Our main conclusion is that, in spite of the
apparent complexity of proteins, many of their
properties can be described by very simple models,
which can be treated by computationally cheap
operations. This has been shown earlier for atomic
¯uctuations [26] and domain motions [27,28], but
none of these are dynamic, i.e. time-dependent,
quantities. The results presented in this paper ex-
tend the applicability of simple models to dynamic
quantities that are observed by neutron scattering,
and thereby opens new possibilities for the simu-
lation-aided interpretation of experimental results
on large proteins.
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