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Abstract

The present article describes the theory of neutron scattering from harmonically vibrating molecules in the frame-

work of classical Langevin and Smoluchowski dynamics. For both levels of description, the input quantities are a

positive de®nite matrix of force constants and a positive de®nite friction matrix. Starting from the Fokker±Planck

equation of the Ornstein±Uhlenbeck process, the intermediate scattering functions for coherent and incoherent scat-

tering as well as related static correlation functions are derived. It is demonstrated that the Langevin description on a

coarse-grained time scale is identical with the Smoluchowski description if friction dominates. Inelastic neutron spectra

are discussed in terms of the coherent and incoherent dynamic structure factors and the vibrational density of states. It

is shown that incorporating friction on the atomic level is not equivalent to broadening the lines of the corresponding

normal mode spectrum. The theory is applicable to low frequency and large amplitude motions of macromolecules as

proteins and DNA. Vibrations at higher frequencies can be treated as long as they can be described in the classical

approximation. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Inelastic and quasielastic scattering of thermal neutrons are well established and powerful techniques to
study the dynamics of molecular liquids, solids, and disordered systems on the atomic scale [1,2]. The
theoretical foundations of neutron scattering from condensed matter have been developed in the 1950s. In
1954 van Hove published a famous article on the theory of inelastic neutron scattering from a system of
interacting particles in which the di�erential scattering cross-section is expressed in terms of time corre-
lation functions of the particle density [3]. If quantum properties of the scattering system can be neglected,
the van Hove correlation functions can be interpreted as time-dependent pair correlation functions and
thus have a direct physical meaning. Whereas van Hove aimed at interpreting thermal neutron scattering
from essentially classical liquids, Glauber and Zemach developed the theory of neutron vibrational spec-
troscopy for solids and diluted molecular gases [4,5]. The dynamics of these systems has to be described by
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quantum mechanics, and the van Hove correlation functions have no longer a convenient interpretation.
However, in contrast to liquids, vibrating systems are often well described by a harmonic potential energy
surface. Therefore, normal mode techniques can be applied to compute the scattering law of solids and
vibrating molecules.

In the course of time inelastic neutron scattering has been applied to more and more complex systems,
such as polymers [6] and proteins [7,8]. Most proteins fold into very compact and extremely stable struc-
tures making them reliable for their various biological tasks. From a biological point of view the large-
amplitude modes at low frequencies are the most important ones. Therefore it is not surprising that the
harmonic model has been widely used as a ®rst approximation to describe in particular protein dynamics
around a stable native structure, although protein dynamics also exhibits di�usive motions [9±11]. The
reviews of Smith and Martel [7,8] show applications of the harmonic model to protein dynamics and
corresponding neutron scattering experiments. A recent example related to M�ossbauer and Raman spec-
troscopy from myoglobin is presented in Ref. [12]. Formally, the theory of Glauber and Zemach can be
applied to molecules of any size, i.e. also to large macromolecules such as proteins composed of several tens
or hundreds of amino acids. A straightforward application to bovine pancreatic trypsin inhibitor (BPTI), a
small protein consisting of 58 amino acids, can be found in Ref. [13]. In contrast to the energy surface of
small molecules, proteins are expected to have a ``rugged'' energy surface with many minima (``confor-
mational substates''), separated by small barriers [14±16]. The roughness of the energy surface may be
characterized by a fractal dimension [17]. It is not obvious that the motion in a local minimum, as it is
considered by normal mode analysis, is in some way representative for the delocalized large amplitude
modes since the local potential does not necessarily re¯ect the global features of the energy surface.
Nevertheless, it seems reasonable to approximate the latter by a quadratic potential, ensuring that the
protein keeps a ®xed average structure [16]. The simplest method to take into account the roughness of the
e�ective potential, as well as coupling to the environment, is to introduce friction into the model.

The purpose of this paper is to derive the dynamic structure factor for inelastic neutron scattering from
harmonically vibrating molecules in the presence of friction, using the concept of Langevin modes intro-
duced by Lamm and Szabo [18]. Since the important modes at large amplitudes and low frequencies are
strongly over-damped, the essential dynamics is described by purely di�usive Brownian dynamics in con-
®guration space, which greatly simpli®es the calculations. The corresponding Fokker±Planck equation is
then the Smoluchowski equation instead of the Kramers equation, and I call the corresponding modes
``Brownian modes''. To study the in¯uence of atomic friction on the dynamic structure factor in a sys-
tematic way, an analytical form for the dynamic structure factor and the density of states is derived. The
paper is organized as follows: Section 2 contains a brief description of the dynamical model for the scat-
tering system ± the Ornstein±Uhlenbeck process, and a compilation of the essential quantities measured in
inelastic neutron scattering. In Section 3 the intermediate scattering function is derived for the regimes of
Langevin and Smoluchowski dynamics, respectively. The analytical form of the corresponding dynamic
structure factors as well as the vibrational density of states are discussed in Section 4, and Section 5
contains the ®nal discussion and the conclusions.

2. Theoretical background and de®nitions

2.1. Inelastic neutron scattering

The fundamental quantity measured by inelastic scattering of thermal neutrons is the dynamic structure
factor, S�q;x�. Its arguments are the momentum and energy transfer in units of �h. The dynamic structure
factor can be expressed as the time Fourier transform of the so-called intermediate scattering function,
F�q; t�, which describes time correlations between the positions of the atoms in the sample,
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S�q;x� � 1

2p

Z �1

ÿ1
dt exp�ÿixt�F�q; t�: �1�

The intermediate scattering function splits into a coherent and an incoherent part,

F�q; t� �Fcoh�q; t� �Finc�q; t�; �2�
which read explicitly

Fcoh�q; t� �
X
a;b

ba;cohbb;coh exp iqT � Rb�t�
ÿ �

exp
ÿ
 ÿ iqT � Ra�0�

��
; �3�

Finc�q; t� �
X

a

b2
a;inc exp iqT � Ra�t�

ÿ �
exp

ÿ
 ÿ iqT � Ra�0�
��
: �4�

Here and in the following Greek indices label atoms, ba;coh is the coherent scattering length of atom a, ba;inc

its incoherent scattering length, and Ra�t� its position operator in the Heisenberg representation. Values for
the scattering lengths can be found in standard books on neutron scattering [1,2]. The brackets in Eqs. (3)
and (4) denote quantum statistical averages, and the superscript T of a vector indicates a transposition. It
should be noted that Fcoh�q; t� probes collective motions, whereas Finc�q; t� probes only single-particle
motions. The quantum correlation functions can be replaced by their classical counterparts if the scattering
system can be described by classical mechanics and if recoil e�ects can be neglected [19]. The framework of
classical mechanics is appropriate for an harmonic system if the spacing of the energy levels is small
compared to kBT ,

�hxn � kBT : �5�
Here, kB denotes the Boltzmann constant and T, the temperature in Kelvin. Recoil e�ects depend in general
on the mass of the scattering atom and the potential energy function of the system. For harmonically bound
scatterers one obtains a global correction factor exp��hx=2kBT � for the dynamic structure factor [19].
Therefore the recoil correction can be neglected for harmonic systems if one considers energy transfers of
the order of the characteristic frequencies ful®lling (5).

From Eqs. (3) and (4) one obtains two static correlation functions which are frequently considered in
neutron scattering experiments: the static structure factor, S�q� �Fcoh�q; 0�, and the elastic incoherent
structure factor, EISF�q� � limt!1Finc�q; t�. They read explicitly

S�q� �
X
a;b

ba;cohbb;coh exp
ÿ
 ÿ iqT � �Ra ÿ Rb�

��
; �6�

EISF�q� �
X

a

b2
inc;a exp

ÿ
�� ÿ iqT � Ra

����2: �7�

Assuming thermal equilibrium for the scattering system, the time arguments of the positions can be
omitted, such that all time correlation functions depend only on time di�erences. To obtain the expression
for the EISF one uses that the positions become decorrelated for t!1. The EISF probes the accessible
con®guration space of the scattering atoms [2]. It vanishes if the atomic motion in the scattering system is
unbounded, as in liquids. Writing Finc�q; t� � EISF�q� �F0

inc�q; t�, one ®nds that

Sinc�q;x� � EISF�q�d�x� �S0
inc�q;x�; �8�

where d denotes the Dirac distribution. This relation shows that the EISF describes indeed elastic inco-
herent scattering. S0

inc�q;x� contains all the remaining information about inelastic and quasi-elastic pro-
cesses, describing vibrational and di�usive motion, respectively.
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For systems undergoing vibrational dynamics it is convenient to introduce the dynamic form factors,
fab�q; t�, describing correlations between the atomic displacements ua and ub. Writing

Ra�t� � Req
a � ua�t�; �9�

where Req
a is the equilibrium position of atom a, one de®nes

fab�q; t� � exp
ÿ
 ÿ iqT � �ua�0� ÿ ub�t��

��
: �10�

The intermediate scattering functions are then linear combinations of the fab,

Fcoh�q; t� �
X
a;b

ba;cohbb;coh exp
�
ÿ iqT � �Req

a ÿ Req
b �
�

fab�q; t�; �11�

Finc�q; t� �
X

a

b2
a;incfaa�q; t�: �12�

According to Eqs. (11) and (12) the static correlation functions S�q� �Fcoh�q; 0� and EISF�q� �
limt!1Finc�q; t� take the form

S�q� �
X
a;b

ba;cohbb;coh exp
�
ÿ iqT � �Req

a ÿ Req
b �
�

fab�q; 0�; �13�

EISF�q� �
X

a

b2
a;incfaa�q;1�: �14�

Note that faa�q; 0� � 1. The form factors express all static and dynamic correlations relevant to neutron
scattering. The case fab � 1 corresponds to a situation where all atomic displacements are frozen. In such a
static model the coherent part of F�q; t� describes neutron di�raction from molecules without internal
motion and the incoherent part gives simply a constant background.

2.2. Macromolecular dynamics as Ornstein±Uhlenbeck process

In the following we will be concerned with the dynamics of macromolecules about their equilibrium
structure. The con®guration of the molecular system is described by N atomic positions, R1; . . . ;RN . In the
case of Langevin dynamics (LD) the dynamical variables are the atomic displacements, ua � Ra ÿ Req

a

(a � 1; . . . ;N ), and the corresponding velocities. The regime of Smoluchowski dynamics (SD) applies to
strongly over-damped motions on a coarse-grained time scale. It describes motions in con®guration space
only, i.e. one considers only 3N and not 6N dynamical variables. Throughout this paper mass-weighted
coordinates and velocities are used, e.g.

Ra �
����
m
p

a
eRa; �15�

where ma is the mass of atom a, and the tilde denotes the usual, non-weighted coordinates.
On both the Langevin and the Smoluchowski level of description the time evolution of an harmonic

system is described by an Ornstein±Uhlenbeck process which has been extensively discussed in the literature
[20±22]. The stochastic di�erential equation describing the Ornstein±Uhlenbeck process reads for n vari-
ables, x1; . . . ; xn,

xi�t0 � Dt� � xi�t0� ÿ Aijxj�t0�Dt � ni�t0�: �16�
The ni (i � 1; . . . ; n) are stochastic variables with
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hni�t�i � 0; �17�

hni�t�nj�t0�i � 2BijDtd�t ÿ t0�: �18�
The vector ÿAijxj describes the drift of the system and the n2 coe�cients Bij de®ne the ¯uctuations of the
dynamical variables. For both LD and SD the ®rst 3N variables are x1 � u1;x; . . . ; x3N � uN ;z and for LD one
de®nes in addition x3N�1 � _u1;x; . . . ; x6N � _uN ;z. The whole set of dynamical variables is denoted by x. Both
A � �Aij� and B � �Bij� can be expressed in terms of a positive de®nite friction matrix, c, and a positive
de®nite matrix of force constants, K, with elements

Kij � o2V
oRioRj

����
Req

: �19�

Here V � V �R� denotes the potential function and the index `Req' indicates that K is to be evaluated at a
stable equilibrium position. The vector R � �RT

1 ; . . . ;RT
N�T comprises all particle positions. Since K is

supposed to positive de®nite the molecules are assumed not to perform global rotations and translations.
Such a situation is e.g. encountered in neutron scattering from hydrated protein powders as they are often
used to study internal protein dynamics. The relations between the mass-weighted and the standard form of
K and c are K �Mÿ1=2 eKMÿ1=2 and c �Mÿ1=2ecMÿ1=2, respectively. The tilde labels again non-weighted
quantities.

In the case of LD A and B are 6N � 6N matrices with the following block structure:

ALD � 0 ÿ1

K c

� �
; BLD � 0 0

0 kBT c

� �
: �20�

For SD c and K are given by the 3N � 3N matrices

ASD � cÿ1 � K; BSD � kBT cÿ1: �21�
The Fokker±Planck equation corresponding to Eq. (16) reads

oP
ot
� Aij

o
oxi
�xjP � � Bij

o2P
oxioxj

: �22�

Summation over pairwise like indices is implicitly assumed. In Eq. (22) P � P �x; tjx0; t0� denotes the con-
ditional probability to ®nd the system in position x at time t, given it was in position x0 at time t0 < t. The
initial condition reads therefore P�x; t0jx0; t0� � d�xÿ x0�, with d�xÿ x0� � Qn

i�1 d�xi ÿ x0i�.

2.2.1. The transition probability
The solution of Eq. (22) is known to be a stationary Gaussian with P �x; tjx0; t0� � P �x; t ÿ t0jx0; 0�. Setting

t0 � 0, one has [21]

P �x; tjx0; 0� � �2p�ÿn=2
det r�t�� �ÿ1=2

exp
�
ÿ 1

2
�xi ÿ Gil�t�x0l��rÿ1�t��ij�xj ÿ Gjm�t�x0m�

�
; �23�

where n is the number of degrees of freedom (n � 3N for SD and n � 6N for LD) and the matrix G � �Gij� is
de®ned as

G�t� � exp�ÿAt�: �24�
The mean positions

Mi�t� � hxi�t�i � Gil�t�x0l �25�
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de®ne the center of the Gaussian for a given initial con®guration, x0, and r�t� � �rij�t�� is the corresponding
variance,

rij�t� � xi�t��
 ÿ hxi�t�i� xj�t�
� ÿ hxj�t�i

��
: �26�

Note that Mi�t� and rij�t� are averages over x for a given x0. The rij can be expressed in terms of the
propagator G and the ¯uctuation (di�usion) matrix B and do not depend on x0,

rij�t� � 2

Z t

0

dsGik�s�BklGjl�s�: �27�

The dynamics of Mi and rij is determined by the equations of motion

_Mi � ÿAijMj; �28�

_rij � ÿAikrkj ÿ Ajkrki � 2Bij; �29�

which are obtained by inserting Eq. (23) as an ansatz into the Fokker±Planck equation (22) [21]. The above
di�erential equations are to be solved with the initial conditions Mi�0� � x0i and rij�0� � 0. This yields the
solutions (25) and (27).

From Eq. (23) the equilibrium distribution Peq�x� is found by taking the limit t!1,

Peq�x� � �2p�ÿn=2
det r�1�� �ÿ1=2

exp
�
ÿ 1

2
xi�rÿ1�1��ijxj

�
: �30�

Here one supposes that the real parts of the eigenvalues of A are positive. Therefore G�t� vanishes in the
limit t!1 and one obtains from Eqs. (25) and (26)

rij�1� � hxixji: �31�

Using Eq. (29) together with _rij�1� � 0 � ÿAikrkj�1� ÿ Ajkrki�1� � 2Bij, one ®nds that

rLD�1� � kBT Kÿ1 0
0 1

� �
; rSD�1� � kBT Kÿ1: �32�

Finally, for ®nite t, r may be written in the useful form

rij�t� � rij�1� ÿ Gik�t�rkl�1�Gjl�t�: �33�

3. Intermediate scattering function and dynamic form factors

According to Eqs. (11) and (12) the intermediate scattering functions are linear combinations of the
dynamic form factors, fab, which contain the relevant information about the molecular system under
consideration. In this section the fab will be derived for an Ornstein±Uhlenbeck process of the atomic
displacements. Their basic form is the same for LD and SD and the transition between the two regimes
becomes clear if one uses the spectral representation of the matrices r�1� and A, entering the distribution
function P �x; tjx0; t0�. The resulting spectral representation of the form factors allows also to derive con-
venient expressions for numerical calculations.
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3.1. Deriving the fab for an Ornstein±Uhlenbeck process

To obtain the fab de®ned in Eq. (10) for the Ornstein±Uhlenbeck process, it is convenient to introduce
the vectors Q�a� which have the components

Q�a�i � mÿ1=2
a df3�aÿ1��j;ig qj; i � 1; . . . ; 3�6�N ; j � 1; 2; 3: �34�

They contain the momentum transfer vector, q, and are constructed such that xT �Q�a� � mÿ1=2
a uT

a � q �euT
a � q is dimensionless, where x � �x1; . . . ; xn�T and ma is the mass of atom a. De®nition (34) says that the

length of the Q�a� depends on the context and is ``automatically'' adapted to the size of the vector or the
matrix with which it is multiplied. This avoids the introduction of a third Q-vector of length 3N to be used
in the context of LD where Q�a�i � 0 for i � 3N � 1; . . . ; 6N .

Using de®nition (34), the form factors can be cast into the same form for both LD and SD,

fab�q; t� �
Z Z

dxdx0 P �x; t; x0; t0� exp iQ�b�k xk

� �
exp

�
ÿ iQ�a�l x0l

�
: �35�

P �x; t; x0; t0� is the joint two-point probability describing the stochastic dynamics of the displacements. It is
assumed that the time arguments are ordered such that t P t0. Applying Bayes' rule, the joint probability
can be decomposed as P �x; t; x0; t0� � P �x; tjx0; t0�P �x0; t0�. One assumes now that the scattering system is in
equilibrium. Therefore P �x0; t0� � Peq�x0�, and P �x; tjx0; t0� depends only on time di�erences, P �x; tjx0; t0� �
P �x; t ÿ t0jx0; 0�. The time origin, t0, can always be chosen to be zero and needs not be explicitly indicated in
expression (35). The integrals in the above expression for fab can now be rearranged to give

fab�q; t� �
Z

dx0 exp
�
ÿ iQ�a�l x0l

�
Peq�x0�

Z
dx exp iQ�b�k xk

� �
P �x; tjx0; 0�:

De®ning eg�Q� � R dx exp�ÿiQlxl�g�x� as the Fourier transform of a function g�x�, the second integral is
recognized to be the Fourier transform of P�x; tjx0; 0� with respect to x, where Q � ÿQ�b�. Since P�x; tjx0; 0�
is a Gaussian, its Fourier transform has again Gaussian shape,eP �Q; tjx0; 0� � exp�ÿiQkGkl�t�x0l� exp

ÿÿ 1
2
Qkrkl�t�Ql

�
;

and one ®nds the intermediate result

fab�q; t� � exp
�
ÿ 1

2
Q�b�k rkl�t�Q�b�l

�Z
dx0 exp

�
ÿ i Q�a�l

h
ÿ Gkl�t�Q�b�k

i
x0l
�

Peq�x0�:

The remaining integral over x0 is the Fourier transform of Peq�x0� for Q � Q�a� ÿGT�t� �Q�b�. From Eq. (30)
one ®ndsePeq�Q� � exp

ÿÿ 1
2
Qkrkl�1�Ql

�
;

and fab�q; t� takes the form

fab�q; t� � exp
�
ÿ 1

2
Q�b�k rkl�t�Q�b�l

�
exp

�
ÿ 1

2
Q�a�k

�
ÿ Gmk�t�Q�b�m

�
rkl�1� Q�a�l

�
ÿ Gnl�t�Q�b�n

��
:

A more convenient form is obtained by inserting the decomposition (33) of r�t� into the above expression.
In addition one may use that the correlation functions of the dynamical variables is given by (see Refs.
[20,21] and Appendix A)

cij�t� � hxi�t�xj�0�i � Gim�t�rmj�1�: �36�
This allows to cast fab�q; t� into the form
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fab�q; t� � exp
�
ÿ 1

2
Q�a�k rkl�1�Q�a�l

h
� Q�b�k rkl�1�Q�b�l

i�
exp Q�b�k ckl�t�Q�a�l

� �
: �37�

The diagonal terms, faa, take a particularly simple form if they are expressed in terms of the mean-square
displacements

Wij�t� � �xi�t�

 ÿ xi�0���xj�t� ÿ xj�0��

� � 2rij�1� ÿ cij�t� ÿ cji�t�: �38�
Using Eq. (37) with a � b and the above de®nition of the coe�cients Wij�t�, one obtains

faa�q; t� � exp
�
ÿ 1

2
Q�a�k Wkl�t�Q�a�l

�
: �39�

It should be noted that the expressions for the dynamic form factors derived above are valid for positive
time arguments. The case of negative time arguments can be handled by using the symmetry relation

fab�q; t� � fba�ÿq;ÿt�: �40�
This relation is obtained from expression (35), exchanging �x; t� ! �x0; t0�, a! b, and q! ÿq.

Since limt!1 Glm�t� � limt!1 clm�t� � 0, we ®nd from Eq. (37) that each fab is a product of a time-
independent and a time-dependent factor,

fab�q; t� � fab�q;1�f 0ab�q; t�: �41�
Introducing the Debye±Waller factors

wa�q� � 1
2
Q�a�k rkl�1�Q�a�l ; �42�

fab�q;1� may be written in the form

fab�q;1� � exp
ÿÿ �wa�q� � wb�q��

�
: �43�

The time dependent functions f 0ab�q; t� describe the dynamical correlations,

f 0ab�q; t� � exp Q�b�k ckl�t�Q�a�l

� �
: �44�

Using that Gij�0� � dij and therefore limt!0 ckl�t� � rkl�1�, one ®nds for t � 0

fab�q; 0� � exp
�
ÿ 1

2
Q�a�k

h
ÿ Q�b�k

i
rkl�1� Q�a�l

h
ÿ Q�b�l

i�
: �45�

3.2. Spectral decomposition of the fab

It has been shown above that each dynamic form factor can be written as a product of a static factor
fab�q;1�, involving the matrix r�1�, and a time dependent factor f 0ab�q; t�, involving the correlation matrix
C�t� of the dynamical variables. The static factors fab�q;1� are the same for LD and SD. According to Eqs.
(42), (43), and (33), they can be expressed in terms of the force constant matrix K only. In contrast, the
spectral decomposition for the time dependent factors f 0ab�q; t� depends on the dynamical model involved
and will be discussed separately.

3.2.1. Static limits fab�q;1� and fab�q; 0�
To compute the static limits of the fab, the spectral representation of kBT Kÿ1 is needed. Since the force

constant matrix K is by de®nition positive de®nite, it can be diagonalized by an orthogonal transformation,

K � D �X2 �DT; �46�
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X � diag�x1; . . . ;x3N �: �47�
The columns of D � �d1; . . . ; d3N� are the orthonormal eigenvectors (``normal modes'') of K, with
dT

j � dk � djk, and the xj (xj > 0) are the corresponding ``normal frequencies''. Using the normal modes and
frequencies one can express any function of the matrix K as f �K� �P3N

j�1 f �x2
j �dj � dT

j , in particular

r�1� � kBT
X3N

j�1

xÿ2
j dj � dT

j : �48�

According to Eqs. (42), (43), and (45), the static limits of the dynamic form factors are then given by

fab�q;1� � exp

 
ÿ kBT

2

X3N

j�1

xÿ2
j �dT

j �Q�a��2
h

� �dT
j �Q�b��2

i!
; �49�

fab�q; 0� � exp

 
ÿ kBT

2

X3N

j�1

xÿ2
j dT

j � �Q�a�
h

ÿQ�b��
i2

!
: �50�

3.2.2. The f 0ab�q; t� for Langevin dynamics
The spectral decomposition of the time-dependent factors f 0ab is obtained from expression (44), which

reads in matrix form

f 0ab�q; t� � exp Q�b�T � C�t� �Q�a�ÿ �
: �51�

According to relation (36) the correlation matrix of the dynamic variables is given by the product
C�t� � G�t� � r�1�, where G�t� � exp�ÿAt� is the propagator of the mean values of the dynamical vari-
ables. In the following it will be assumed that all eigenvalues of A are di�erent. In this case A can be di-
agonalized [23],

A � U � K �Uÿ1; �52�

K � diag�k1; . . . ; k6N�: �53�
Since A is real, all complex eigenvalues must occur in complex conjugate pairs and eigenvectors corre-
sponding to complex conjugate eigenvalues are also complex conjugate. The columns of U � �u1; . . . ; u6N�
are the (right) eigenvectors of A and the rows of Uÿ1 are the corresponding left eigenvectors, vl

(l � 1; . . . ; 6N ). The right and left eigenvectors form two sets of bi-orthonormal basis vectors of R6N ,
uT

k � vl � dkl. Any function of A has therefore the spectral representation f �A� �P6N
k�1 f �kk�uk � vT

k , and one
obtains in particular

G�t� �
X

k

exp�ÿkkt� uk � vT
k : �54�

Using formula (32) for r�1� and partitioning the eigenvectors in upper and lower parts, uT � �uT
a ; u

T
b � and

vT � �vT
a ; v

T
b �, yields

C�t� � Cuu�t� Cuv�t�
Cvu�t� Cvv�t�

� �
� kBT

X6N

k�1

exp�ÿkkt� uk;a � vT
k;a � Kÿ1 uk;a � vT

k;b

uk;b � vT
k;a � Kÿ1 uk;b � vT

k;b

 !
: �55�

Since the components Q�a�j of Q�a� are zero for j � 3N � 1; . . . ; 6N , only the upper left blocks are needed to
compute f 0ab�q; t�. To keep a compact form for the expressions to be derived in the following, the quantities:
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y�k�ab �q� � kBT vT
k;a � Kÿ1 �Q�a�

� �
� uT

k;a �Q�b�
� �

; k � 1; . . . ; 6N ; �56�

are introduced. It should be noted that here Q�a� and Q�b� have the length 3N . Using this de®nition, f 0ab takes
the form

f 0ab�q; t� � exp
X6N

k�1

y�k�ab �q� exp�
 

ÿ kkt�
!
: �57�

Eq. (56) suggests that the left and right eigenvectors of A are needed to compute the expressions y�k�ab �q�. By
exploiting the block structure of A one can derive a more convenient expression, which involves the upper
half eigenvectors, uk;a, only. Writing A � uk � kkuk and AT � vk � kkvk, with A given by de®nition (20), it
follows that (the mode index k is dropped)

ub � ÿkua; �58�

vb � kKÿ1 � va: �59�
These relations allow to derive decoupled equations for each of the upper and lower half eigenvectors:

k2ua;b ÿ kc � ua;b � K � ua;b � 0; �60�

k2va ÿ kK � c � Kÿ1 � va � K � va � 0; �61�

k2vb ÿ kc � vb � K � vb � 0: �62�
Eq. (59) shows that the vector Kÿ1 � va appearing in the argument of y�k�ab �q� may be replaced by
Kÿ1 � va � kÿ1vb. Since vb ful®lls the same equation as ua ± see Eqs. (60) and (62) ± the two vectors must be
proportional and one can write

Kÿ1 � va � 1

k
vb � c

k
ua; �63�

where c is a constant yet to be determined. This can be achieved by using the normalization conditions
uT

k � vl � dkl. Multiplying the equation for the kth right eigenvector, A � uk � kk � uk, from the left by the
corresponding left eigenvector, vk, and making use of the block structure of A, yields (the mode index k is
dropped again)

ÿvT
a � ub � vT

b � K � ua � vT
b � c � ub � k: �64�

With Eqs. (58) and (59) one can derive a normalization condition for any pair �ua;b; va;b�. Using vb � cua

with the above normalization condition for ua and vb allows to ®x the normalization constant as
c � 1=�uT

a � �cÿ 2k1� � ua�. With Eq. (60) one may also write c � k=�uT
a � �Kÿ k21� � ua�. From Eqs. (63) and

(56) one obtains then two equivalent expressions for y�k�ab �q� in which va does not appear anymore

y�k�ab �q� � kBT
uT

k;a �Q�a�
� �

uT
k;a �Q�b�

� �
uT

k;a � �Kÿ k2
k1� � uk;a

; �65�

y�k�ab �q� � kBT
uT

k;a �Q�a�
� �

uT
k;a �Q�b�

� �
kkuT

k;a � �cÿ 2kk1� � uk;a
: �66�
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If all modes are under-damped the knowledge of 3N eigenvalues, kj (j � 1; . . . ; 3N ), and the corre-
sponding half-eigenvectors, uj;a, su�ces to compute f 0ab�q; t�. Ordering the eigenvalues of A as follows
(gj P 0, Xj real)

kj � gj � iXj;
k3N�j � gj ÿ iXj;

�
; j � 1; . . . ; 3N ; �67�

we have ua;3N�j � u�a;j, and therefore

y�3N�j�
ab �q� � y�j��ab �q�: �68�

In case of over-damped modes, where Xj becomes imaginary, there is no longer a simple relation between
ua;3N�j and ua;j that could be exploited on a purely numerical basis.

The denominators in Eqs. (65) and (66) cannot become zero if all eigenvalues are di�erent, as postulated.
To see that one may look at Eqs. (60)±(62) which show that ua;b, vb, and Kÿ1va are all solutions of the same
eigenvalue problem. Multiplying Eq. (60) for given eigenvalue kj from the left by uH

j;a, where the superscript
H denotes the Hermitian transposed, and setting uH

j;a � uj;a � 1 for convenience, yields a quadratic equation
for kj,

k2
j ÿ ajkj � bj � 0: �69�

Here aj � uH
j;a � c � uj;a � a3N�j and bj � uH

j;a � K � uj;a � b3N�j are real and positive since K and c are positive
de®nite. Excluding ua � 0, the denominators of the two equivalent expressions (65) and (66) can vanish
only if Eq. (69) has a twofold degenerate solution, i.e. in the aperiodic limit where a2

j=4 � bj and k3N�j � kj.
This situation is, however, excluded since A is by de®nition non-degenerate.

3.2.3. The f 0ab�q; t� in the low friction limit
In the limit of vanishing friction the classical limit of the intermediate scattering functions derived by

Glauber and Zemach for coupled harmonic oscillators must be retrieved. This is indeed the case. One ®nds
from Eq. (60) that

K � ua � ÿk2ua: �70�
If ua is chosen to be a unit vector, uT

a � ua � 1, (the norm of ua is arbitrary), one can identify ua;j � dj and
kj � ixj for j � 1; . . . ; 3N . Here dj and xj are the normal modes and frequencies corresponding to the force
constant matrix K. The remaining 3N eigenvalues and eigenvectors are k3N�j � ÿixj and ua;3N�j � ua;j. The
last relation holds since ua;j � dj are real vectors. It then follows from Eq. (65) that

y�j�ab �q� �
kBT
2x2

j
dT

j �Q�a�
� �

dT
j �Q�b�

� �
; �71�

y�3N�j�
ab �q� � y�j�ab �q�; �72�

and the time-dependent parts of the dynamic form factors take the form

f 0ab�q; t� � exp
X3N

j�1

2y�j�ab �q� cos xjt

 !
: �73�

Writing fab�q; t� � fab�q;1�f 0ab�q; t�, the dynamic form factors derived by Glauber and Zemach [5] are
retrieved, replacing quantum thermal averages by classical ones. Since here �hxk � kBT , the f 0ab are even in
time.
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3.2.4. The f 0ab�q; t� for Smoluchowski dynamics
In the Smoluchowski description the f 0ab are calculated through

f 0ab�q; t� � exp Q�b�T � CSD�t� �Q�a�
ÿ �

; �74�

where CSD�t� is given by (see Eqs. (36), (32), (24), and (21))

CSD�t� � kBT
X3N

j�1

exp�ÿkjt��uj � vT
j �Kÿ1: �75�

Here the spectral decomposition

ASD �
X3N

j�1

kjuj � vT
j �76�

is used, where A � cÿ1 � K and uj and vj are the right and left eigenvectors of A, respectively,

ASD � uj � kjuj; �77�

AT
SD � vj � kjvj: �78�

As for LD, the right and left eigenvectors are bi-orthonormal, i.e. uT
j � vk � djk. The matrix ASD can always

be diagonalized since it is the product of two positive de®nite matrices [23]. The functions f 0ab�q; t� take the
same form as for LD, except that only one branch of real positive eigenvalues exists,

f 0ab�q; t� � exp
X3N

j�1

y�j�ab �q� exp�
 

ÿ kjt�
!
: �79�

To derive expressions for the y�j�ab �q� one starts from the de®nition y�j�ab �q� � kBT �vT
j � Kÿ1 �Q�a�� � �uT

j �Q�b��,
which is the analogue of de®nition (56). Here Kÿ1 � vj can be expressed by a vector which is proportional to
the corresponding right eigenvector uj. One can easily verify that Kÿ1 � vj ful®lls Eq. (77), and therefore
Kÿ1 � vj � cuj. The constant c is determined from the normalization condition uT

j � vj � 1. One obtains
c � �uT

j � K � uj�ÿ1
, and the functions y�j�ab �q� take the equivalent forms

y�j�ab �q� � kBT
uT

j �Q�a�
� �

uT
j �Q�b�

� �
uT

j � K � uj
; �80�

y�j�ab �q� � kBT
uT

j �Q�a�
� �

uT
j �Q�b�

� �
kju

T
j � c � uj

: �81�

In the last equation it was used that K � uj � c � ASD � uj � kjc � uj.

3.2.5. Transition from Langevin to Smoluchowski dynamics
The dynamic form factors for SD can also be obtained within the Langevin description, considering a

situation where friction is dominating. All vibrational modes are then strongly over-damped and both roots
of Eq. (69) are real. Using the ordering scheme (67) one has kj � gj ÿ eXj and k3N�j � gj � eXj

(j � 1; . . . ; 3N ), where gj � aj=2 and eXj � �a2
j=4ÿ bj�1=2

. Here is again aj � uH
j;a � c � uj;a � a3N�j and

bj � uH
j;a � K � uj;a � b3N�j. For kck � kKk (k � � � k denotes a suitable matrix norm) bj is much smaller than aj

12 G.R. Kneller / Chemical Physics 261 (2000) 1±24



and kj is close to zero, whereas k3N�j is close to 2gj. On a coarse-grained time scale with observation in-
tervals Dt� 1=gj (j � 1; . . . ; 3N ) the correlation matrix de®ned in Eq. (55) can be approximated by

C�t� � kBT
X3N

j�1

exp�ÿkjt�
�uj;a � vT

j;a� � Kÿ1 �uj;a � vT
j;b�

�uj;b � vT
j;a� � Kÿ1 �vj;b � vT

j;b�

0BB@
1CCA: �82�

Only the upper left block of C�t� is needed to compute f 0ab, and one gets

f 0ab�q; t� � exp
X3N

j�1

y�j�ab �q� exp�
 

ÿ kjt�
!
: �83�

Since kj is small for j � 1; . . . ; 3N , the quadratic term in the denominators of expressions (65) and (66) may
be neglected, i.e.

y�j�ab �q� � kBT
uT

j;a �Q�a�
� �

uT
j;a �Q�b�

� �
uT

j;a � K � uj;a
; �84�

y�j�ab �q� � kBT
uT

j;a �Q�a�
� �

uT
j;a �Q�b�

� �
kju

T
j;a � c � uj;a

; �85�

where j � 1; . . . ; 3N . It is easy to see that for high friction the uj;a tend to the right eigenvectors of ASD and
the vj;a to the corresponding left eigenvectors. Setting k2 � 0 in Eq. (60) and multiplying with cÿ1 from the
left yields (the mode indices are dropped)

cÿ1 � K|���{z���}
ASD

�ua � kua: �86�

Similarly one ®nds from Eq. (61) by multiplication with K � cÿ1 � Kÿ1 that

K � cÿ1|���{z���}
AT

SD

�va � kva: �87�

Comparing now expressions (80) and (81) for the y-functions of SD with Eqs. (84) and (85), respectively,
shows that SD and strongly over-damped LD on a coarse-grained time scale yield the same dynamic form
factors.

4. Dynamic structure factor

According to Eq. (1) the dynamic structure factor, S�q;x�, is obtained from the intermediate scattering
function by a Fourier transform in time. The straightforward approach is to perform the Fourier transform
numerically, e.g. by using the fast fourier transform technique [24]. From a practical point of view this is,
indeed, the best way [25]. The analytical approach is, however, important to discuss theoretical aspects of
Langevin and Brownian modes, as compared to conventional normal mode analysis.
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4.1. Partial dynamic structure factors

As the intermediate scattering function splits into a coherent and an incoherent part, Scoh�q;x� and
Sinc�q;x� are de®ned as the corresponding Fourier transforms. With Eqs. (11) and (12) one obtains

Scoh�q;x� �
X
a;b

ba;cohbb;coh exp
�
ÿ iqT � �Req

a ÿ R
eq
b �
�

sab�q;x�; �88�

Sinc�q; t� �
X

a

b2
a;incsaa�q;x�; �89�

where the functions sab�q;x� are the Fourier cosine transforms of the dynamic form factors, fab�q;x�,
sab�q;x� � fab�q;1�s0ab�q;x�; �90�

s0ab�q;x� � lim
�!0

1

p

Z 1

0

dt exp�ÿ�t� cos xtf 0ab�q; t�: �91�

Here it was used that the dynamic form factors are even functions in time. This follows from the symmetry
relation (40) and from the additional symmetries fab�ÿq; t� � fab�q; t� and fba�q; t� � fab�q; t�. The factor
exp�ÿ�t� (�! 0�) ensures the existence of the cosine transforms in case of vanishing friction.

According to Eqs. (57) and (79), the functions f 0ab�q; t� can be written as a product over contributions
from single modes. As it will be shown in Section 4.2.1, it is useful to treat under-damped Langevin modes
in terms of complex conjugate pairs. In this case one writes

f 0ab�q; t� �
YNcc

j�1

f 0�j;cc�
ab �q; t�

YNs

k�1

f 0�k�ab �q; t�: �92�

Here Ncc is the number of conjugate complex pairs and Ns the number of single modes, with 2Ncc�
Ns � 6N . For over-damped Brownian dynamics one has

f 0ab�q; t� �
Y3N

k�1

f 0�k�ab �q; t�: �93�

It follows from Eq. (92) that the partial dynamic structure factors for LD are convolution products of the
form

s0ab�q;x� / s0�1;cc�
ab �q;x� � � � � � s0�Ncc;cc�

ab �q;x� � s0�1�ab �q;x� � � � � � s0�Ns�
ab �q;x�; �94�

and for SD one has with Eq. (93)

s0ab�q;x� / s0�1�ab �q;x� � � � � � s0�3N�
ab �q;x�: �95�

The functions s0�j;cc�
ab �q;x� and s0�k�ab �q;x� are de®ned through

s0�K�ab �q;x� � lim
�!0

1

p

Z 1

0

dt exp�ÿ�t� cos xtf 0�K�ab �q; t�; �96�

where K stands either for a pair of complex conjugate modes or for a single mode.
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4.2. Partial dynamic structure factors for single modes

4.2.1. Under-damped Langevin modes
Here it is convenient to consider a pair of complex conjugate modes, and one de®nes

f 0�j;cc�
ab �q; t� � exp y�j�ab �q� exp�

�
ÿ kjt� � y�j��ab �q� exp� ÿ k�j t�

�
: �97�

To obtain a tractable expression for f 0�j;cc�
ab �q; t� one can use that [26]

exp�z cos h� � I0�z� � 2
X1
n�1

In�z� cos�nh�; �98�

where z is complex. The functions In�z� are the modi®ed Bessel functions of the ®rst kind. For integer n,
In�z� � Iÿn�z�. If we set z � 2jyj exp�ÿgt� and h � Xt ÿ / (indices are dropped), where y � jyj exp�i/� and
k � g� iX, expression (97) can be cast into the form

f 0�j;cc�
ab �q; t� � I0 2 y�j�ab �q�

��� ��� exp�
�

ÿ gjt�
�
� 2

X1
n�1

In 2 y�j�ab �q�
��� ��� exp�

�
ÿ gjt�

�
cos n�Xjt
�

ÿ /�j�ab�q��
�
: �99�

According to Eqs. (96) and (99), s0�j;cc��q;x� can be interpreted as the Laplace transform h�t� ! H��� of a
function h�t� � In 2y exp�ÿgt�� � (dropping indices), multiplied by a product of cosine functions. The La-
place variable, �, is passed to 0 after the transformation. As described in Appendix B, the Laplace transform
of In 2y exp�ÿgt�� � can be cast into the form

Wn�s; y; g� �
Z 1

0

dt exp�ÿst�In 2y exp�� ÿ gt��; �100�

Wn�s; y; g� �
X1
k�0

�ÿ2g�kIn�k�2y�yk

�s� gn��s� �n� 2�g� � � � �s� �n� 2k�g� : �101�

Here R�s� > 0 and n P 0. Since In�z� � Iÿn�z�, it follows that

Wn�s; y; g� � Wÿn�s; y; g�; n < 0: �102�
Writing the cosines appearing in the Fourier±Laplace transform of f 0�j;cc�

ab �q; t� in exponential form one ®nds
that

s0�j;cc�
ab �q;x� �

X�1
n�ÿ1

lim
�!0

1

p
R exp in/�j�ab�q�

� �
Wn��

h
ÿ i�xÿ nXj�; jy�j�ab �q�j; gj�

i
: �103�

For vanishing friction, i.e. for classical normal modes where Xj � xj, it follows that:

Wn�s; y; g � 0� � In�2y�
s

; �104�

and y > 0. Inserting the above expression for W�s; y; g� into Eq. (103) and using the identity

d�x� � lim
�!0

1

p
�

�2 � x2
;

we retrieve the expressions
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s0�j;cc�
ab �q;x� �

X�1
n�ÿ1

In 2y�j�ab �q�
� �

d�xÿ nxj� �105�

for harmonically vibrating molecules in the classical limit [5].
In the case of very small but non-vanishing friction one needs still only the k � 0 term in series (101),

keeping, however, g ®nite. This yields

Wn�s; y; g! 0� � In�2y�
s� jnjg : �106�

Approximating I�y� � 0, one obtains

s0�j;cc�
ab �q;x� � I0 2y�j�ab �q�

� �
d�x� �

X�1
n�ÿ1

0
In 2y�j�ab �q�
� � 1

p

jnjgj

n2g2
j � �xÿ nxj�2

: �107�

The prime indicates that the term n � 0 is to be excluded. Comparison with expression (105) shows that
each peak for each normal frequency xj is broadened with a width (HWHM) of jnjgj. It should be noted
that Eq. (107) is only valid in the low-friction limit.

4.2.2. Over-damped Langevin modes and Brownian modes
It follows from Eq. (67) that for over-damped modes the eigenvalues have the form kj � gj ÿ eXj and

k3N�j � gj � eXj where j � 1; . . . ; 3N and eXj � jXjj. In contrast to under-damped modes, there is not a
simple relation that would allow to obtain the eigenvectors corresponding to k3N�j from those corre-
sponding to kj. In this case one considers a single mode, k, and f 0�k�ab has the form

f 0�k�ab �q; t� � lim
x�!0

exp y�k�ab �q� exp�
�n

ÿ kkt� cos�x�t�
�o
: �108�

To use relation (98), one sets (dropping indices) z � y exp�ÿkt�, h � x�t, where x� is passed to 0 after
application of theorem (98). This yields

f 0�k�ab �q; t� � I0 y�k�ab �q� exp�
�

ÿ kkt�
�
� 2

X1
n�1

In y�k�ab �q� exp�
�

ÿ kkt�
�
: �109�

For over-damped modes the y-functions are always real and moreover positive. This follows from Eqs. (65)
and (66) for real vectors ua;k. One obtains from Eq. (103) for purely real eigenvalues, kk,

s0�k�ab �q;x� � lim
�!0

1

p
R W0 �

 "
ÿ ix;

y�k�ab �q�
2

; kk

!
� 2

X1
n�1

Wn �

 
ÿ ix;

y�k�ab �q�
2

; kk

!#
: �110�

Note that the y-function in the argument of Wn is divided by two.
All results in this paragraph can be used to treat Brownian modes, the only di�erence being that there are

only 3N Brownian modes which correspond to the ®rst 3N over-damped Langevin modes in case of
strongly over-damped motion. The corresponding y-functions are given by Eq. (80) or Eq. (81).

4.2.3. Small momentum transfers
Consider now the case in which the y-functions tend to zero. Since y / q2 and y / kBT , the above

mathematical assumption corresponds to the experimental situations of small momentum transfers and/or
low temperatures. In general the temperature is not a parameter that can be varied arbitrarily and therefore
the small argument approximation will be referred to as an approximation for small momentum transfers
(small q approximation). Using that for n P 0 and jzj � 1 [26]
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In�z� � z=2� �n
n!

; �111�

and In�z� � Iÿn�z� for n < 0, one can approximate In�2y� � 0 if jnj > 1. Therefore

Wn�s; y; g� �
yjnj

s�jnjg ; jnj � 0; 1

0; jnj > 1

( )
; �112�

and one obtains

s0�j;cc�
ab �q;x� � d�x� � R y�j�ab �q�

h i 1

p

gj

g2
j � �xÿ Xj�2

(
� gj

g2
j � �x� Xj�2

)

� I y�j�ab �q�
h i 1

p
Xj ÿ x

g2
j � �xÿ Xj�2

(
� Xj � x

g2
j � �x� Xj�2

)
�113�

for a pair of under-damped Langevin modes and

s0�k�ab �q;x� � d�x� � y�k�ab �q�
1

p
kk

k2
k � x2

�114�

for a single over-damped Langevin or Brownian mode. The corresponding approximations for the dynamic
form factors follow from Eqs. (99) and (109) or from developing Eqs. (97) and (108) up to linear terms in y

f 0�j;cc�
ab �q; t� � 1� 2 y�j�ab �q�

��� ��� exp�ÿgjt� cos Xjt
�

ÿ /�j�ab�q�
�
; �115�

f 0�k�ab �q; t� � 1� y�k�ab �q� exp�ÿkkt�: �116�

4.3. Density of states

The density of vibrational states (DOS) for an harmonically vibrating system is de®ned as

g�x� � 1

3N

X3N

j�1

d�xÿ xj�: �117�

By construction, the DOS is normalized to one and integration over a ®nite frequency interval gives the
fraction of normal frequencies (vibrational states) contained in that interval. To generalize the DOS to a
system with complex eigenfrequencies we de®ne

g�x� � 1
nTr g�x�f g; �118�

where Tr denotes the trace, n � 6N (LD) or n � 3N (SD), and g�x� is the Fourier cosine transform of
G�t� � exp�ÿAt�,

g�x� � lim
�!0

1

p

Z 1

0

dt exp�ÿ�t� cos xt G�t� � lim
�!0

1

p
R Ĝ��
h

ÿ ix�
i
: �119�

Ĝ�s� is the Laplace transform of G�t� and the factor exp�ÿ�t� ensures again the existence of the Fourier
cosine transform in case of vanishing friction. Ĝ�s� has a particularly simple form since all eigenvalues of A

are di�erent,
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Ĝ�s� �
X

k

uk � vT
k

s� kk
: �120�

Each eigenmode gives a simple pole in the s-plane. To obtain the DOS we insert Eq. (120) into Eq. (119)
and take the trace of the resulting expression. Observing that Trfuk � vT

k g � vT
k � uk � 1, yields

g�x� � 1

n

X
k

lim
�!0

1

p
R

1

�ÿ ix� kk

� �
: �121�

In the limit of LD without friction, where kj � ixj for j � 1; . . . ; 3N , and k3N�j � ÿixj, one obtains

g�x� � 1

6N

X3N

j�1

d�x� ÿ xj� � d�x� xj�
	
: �122�

This is exactly Eq. (117), except that here two branches of complex conjugate eigenvalues are considered.
Assuming Ncc complex conjugate under-damped Langevin modes with kj � gj � iXj and kNcc�j � gj ÿ iXj

(j � 1; . . . ;Ncc), and Ns over-damped modes with eigenvalues kk, one ®nds that

g�x� � 1

6N

XNcc

j�1

1

p

gj

�xÿ Xj�2 � g2
j

 (
� 1

p

gj

�x� Xj�2 � g2
j

!
�
XNs

k�1

1

p
kk

x2 � k2
k

)
: �123�

In case of Brownian dynamics all modes are over-damped and therefore

g�x� � 1

3N

X3N

k�1

1

p
kk

x2 � k2
k

: �124�

It is easy to see that g�x� given by either Eq. (123) or Eq. (124) is normalized,Z �1

ÿ1
dxg�x� � 1; �125�

since each eigenvalue in the spectrum of A yields a normalized Lorentzian. In contrast to the dynamic
structure factor, the DOS for a damped harmonic system is obtained by mode-wise broadening of the
normal mode spectrum.

4.4. Neutron-weighted density of states for Langevin dynamics

In neutron scattering experiments one often considers the quantity [2]

gn�x� � lim
q!0

x2

q2
Sinc�q;x�; �126�

which is called the neutron-weighted density of states. Since the dynamic structure factor is the Fourier
cosine transformed intermediate scattering function, it follows that

gn�x� � ÿ 1

p
lim
q!0

1

q2

o
ot
Finc�q; t�

����
t�0�
ÿ 1

p
lim
q!0

1

q2
lim
�!0

Z 1

0

dt exp�ÿ�t� cos xt
o2

ot2
Finc�q; t�

� �
: �127�

The ®rst term is zero if the intermediate scattering function is even in time and di�erentiable at t � 0. This is
true if the underlying dynamical model for F�q; t� is based on classical Hamiltonian dynamics. For models
with friction, where the equations of motion are not time reversible, the intermediate scattering function
is of the form exp�ÿjtj� and hence not di�erentiable at t � 0. In this case the time derivative is to be
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understood as the right-hand derivative and the ®rst term in Eq. (127) must be kept. Since the limit q! 0
is considered, it follows from Eq. (39) that the form factors faa can be approximated as

faa�q; t� � 1ÿ 1
2
Q�a�k Wkl�t�Q�a�l :

According to Eq. (38) the mean-square displacements are related to the correlation functions through
Wij�t� � 2rij�1� ÿ cij�t� ÿ cji�t�. Taking the Q-vectors as vectors of length 3N , i.e. omitting the zero
components for j > 3N , the correlation matrix can be replaced by the 3N � 3N correlation matrix of the
positions. Therefore one can write (k > 0)

lim
q!0

1

q2

ok

otk
Finc�q; t� �

X
a

b2
a;incn

�a�T
Q � o

k

otk
Cuu�t� � n�a�Q ;

where n
�a�
Q is the unit vector along Q�a� and Cuu�t� reads according to Eq. (55)

Cuu�t� � kBT
X6N

k�1

exp�ÿkkt� uk;a � vT
k;a � Kÿ1:

Using that the upper and lower components of the eigenvectors of A are related by ub � ÿkua and
vb � kKÿ1 � va, one ®nds that

o
ot

Cuu�t� � kBT
X6N

k�1

exp�ÿkkt� uk;b � vT
k;a � Kÿ1 � Cvu�t�; �128�

o2

ot2
Cuu�t� � ÿkBT

X6N

k�1

exp�ÿkkt� uk;b � vT
k;b � ÿCvv�t�: �129�

With Eq. (128) one obtains

lim
q!0

1

q2

o
ot
Finc�q; t�

����
t�0�
�
X

a

b2
a;incn

�a�T
Q � Cvu�0� � n�a�Q � 0;

since the cross-correlation matrix Cvu�t� vanishes for t � 0. To see this, write C�0� � G�0� � r�1� � r�1�.
The matrix Cvu�0� is given by the lower left block matrix of r�1� which is zero according to Eq. (32). The
neutron-weighted DOS takes thus the form

gn�x� �
X

a

b2
a;inc lim

�!0

1

p

Z 1

0

dt exp�ÿ�t� cos xt n
�a�T
Q � Cvv�t� � n�a�Q

n o
; �130�

gn�x� �
X

a

b2
a;inc lim

�!0

1

p
R n

�a�T
Q � Ĉvv��

h
ÿ ix� � n�a�Q

i
: �131�

According to Eq. (130) gn�x� is the Fourier transform of the averaged velocity autocorrelation function.
The average is taken over all atoms, each atom contributing with a weight of b2

a;inc. If one assumes that there
is only one type of atoms, gn�x� is simply proportional to the Fourier transform of the velocity autocor-
relation function of the atoms. This is a well-known result for liquids and solids, assuming a classical or a
quantum mechanical model without friction for the scattering system [27].

We consider now the relation between gn�x� and g�x�. It follows from Eq. (129) that gn�x� can be cast
into the form of a weighted average over contributions from each mode
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gn�x� �
X6N

k�1

lim
�!0

1

p
R

wk

�ÿ ix� kk

� �
: �132�

The weights wk have the form

wk � kBT
X

a

b2
a;inc uT

k;b � n�a�Q

� �
vT

k;b � n�a�Q

� �
� ÿk2

k

X
a

b2
a;inc y�k�aa �nq�; �133�

where y�k�aa �q� is de®ned by Eq. (65) or Eq. (66), and nq is the unit vector along q. It should be noted that the
wk are in general complex, i.e. no positive weights in a classical sense. For an isotropic scattering system,
e.g. proteins in hydrated powders or a polymer melt, the scattering law will not depend on the direction of
q, and wk can be replaced by its spherical average. With expression (65) for the y-functions one ®nds that

wk � k2
k

X
a

b2
a;inc

kBT
3

Trf�uk;a � uT
k;a� � P�a�g

uT
k;a � �k2

k1ÿ K� � uk;a

; �134�

where P�a� is the projector on the con®gurational subspace of atom a. It has the obvious properties

P�a� �Q�a� � Q�a�; �135�

X
a

P�a� � 1: �136�

We now make the assumption that all atoms are of the same type, i.e. ba;inc � binc. A more realistic
situation is that one sort of atoms scatters predominantly and scattering from all other atoms can be ne-
glected. This is the case for systems containing a large amount of hydrogen atoms, such as proteins and
DNA molecules. Incoherent scattering from hydrogen dominates by far all other scattering processes.
Using Eq. (136) and normalizing uk;a to 1, Eq. (134) simpli®es to

wk � kBT
3

b2
inc k

2
k

uT
k;a � �k2

k1ÿ K� � uk;a

: �137�

In the limit of vanishing friction one obtains with Eq. (70)

wk � b2
inc

kBT
6
: �138�

Since the weights do not depend on the modes the neutron-weighted DOS is directly proportional to g�x�

lim
c!0

gn�x� � b2
inc NkBTg�x�: �139�

In case of non-vanishing friction gn�x� is, however, not proportional to g�x� since the weights wk are mode-
dependent.

A ®nal remark concerns the regime of SD. In contrast to LD, the ®rst term in Eq. (127) here does not
vanish and gn�x� cannot be proportional to g�x�, even if all weights wk were mode-independent. (Using
de®nition (133) with the y-functions for SD shows that the wk are, in fact, always mode-dependent.) In the
regime of SD the neutron-weighted DOS is therefore only a formally de®ned quantity.
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5. Conclusions

Using the Ornstein±Uhlenbeck process in phase or con®guration space as a dynamical model for
macromolecular dynamics around a stable equilibrium structure, the intermediate scattering function, the
dynamic structure factor, and the vibrational density of states for inelastic neutron scattering have been
derived for the regimes of LD and SD. The input parameters are the force constant matrix, K, and the drift
matrix, A, determining the equilibrium properties and the dynamics, respectively. The latter is constructed
from K and a positive de®nite friction matrix, c. Using the spectral decomposition of K and A, one can
derive expressions for the intermediate scattering functions which are suitable for numerical calculations. In
the case of LD, it is su�cient to know the eigenvalues of A and the upper halfs of its right eigenvectors, uk.
Considering strongly over-damped LD on a coarse-grained time scale, one retrieves formally the inter-
mediate scattering function of SD. As for normal modes analysis, the intermediate scattering function
contains contributions from each pair of atoms (coherent scattering) and from each single atom (incoherent
scattering), which are in turn products of contributions for each Langevin or Brownian mode. The dynamic
structure factor can be obtained by applying essentially the same ``Bessel function trick'' known from
normal mode calculations. The contributions for the individual modes are, however, no longer delta
functions, but series of rational functions in the frequency (energy transfer) in which each term is pro-
portional to a power of the e�ective friction constant of the mode. Only in the low-friction limit higher
powers of these e�ective friction constants can be neglected, and the contribution from each mode appears
to be a broadened normal mode line. In principle, the dynamic structure factor can then be obtained by
broadening the normal mode contributions a posteriori. This method is only useful in the low-q limit and
has been used to compute inelastic neutron spectra for a small protein (BPTI) [25]. It is, however, inap-
propriate to describe the e�ect of larger atomic friction, or even over-damped motions, for larger q-values.
More precisely, the y-functions should not exceed a value of about 0.5.

Although the model of Langevin and Brownian modes appears to be closer to physical reality than the
model of broadened normal modes, the question is still open if the Ornstein±Uhlenbeck has some practical
relevance for protein dynamics and how one can obtain useful parameters for the model, especially for the
friction matrix. This question will be addressed in a subsequent paper [28]. In this context it is worthwhile
mentioning that an ``atom'' in the dynamical models used in this article might also be a group of physical
atoms. In this way a coarse-grained description of a macromolecule can be obtained in time and space.
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Appendix A. Moments of the transition probability

There is a close relation between the moments of the stochastic process described by P �x; t; x0; 0� and the
functions fab�q; t� since the latter have essentially the form of moment generating functions. Consider ®rst
the correlation functions of the positions in phase space,

cij�t� � hxi�t�xj�0�i:

The corresponding generating function, the distribution function P �x; t; x0; 0�, and the correlation functions
cij�t� are related by
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M �c��Q;Q0; t� �
Z Z

dxdx0 P �x; t; x0; 0� exp
ÿÿ i Qkxk

ÿ � Q0lx
0
l

��
;

cij�t� � ÿ o2

oQioQ0j
M �c��Q;Q0; t�

�����
Q�Q0�0

:

Comparing the de®nition of M �c��Q;Q0; t� with the one of fab�q; t� ± see Eq. (35) ± shows that the moment
generating function have exactly the same form, setting here Q0 � Q�a� and Q � ÿQ�b�. Observing that
rkl�1� � rlk�1� it follows that

M �c��Q;Q0; t� � exp
ÿÿ 1

2
Q0krkl�1�Q0l
� � Qkrkl�1�Ql

��
exp

ÿÿ QkGkm�t�rml�1�Q0l
�
;

and we obtain the relation

cij�t� � Gim�t�rmj�1�
for the correlation functions [21]. The initial values are cij�0� � hxixji � rij�1�, since Gim�0� � dim (compare
Eq. (31)).

Similarly to M �c��Q;Q0; t�, one can introduce the generating function for the mean-square displacements

Wij�t� � �xi�t�

 ÿ xi�0���xj�t� ÿ xj�0��

�
:

The generating function is here

M �d��Q; t� �
Z Z

dxdx0 P �x; t; x0; 0� exp i Qk�xk

ÿÿ ÿ x0k�
��
;

and the components of the mean-square displacement tensor are obtained from the relation

Wij�t� � ÿ o2

oQioQj
M �d��Q; t�

����
Q�0

:

The generating function Md�Q; t� has the same form as the self-terms faa�q; t�, replacing Q�a� by Q, and one
obtains

M �d��Q; t� � exp
ÿÿ 1

2
QkWkl�t�Ql

�
;

Wij�t� � 2rij�1� ÿ Gim�t�rmj�1� ÿ Gjm�t�rim�1�:
With Gim�t�rmj�1� � cij�t�, it follows that:

Wij � 2rij�1� ÿ cij�t� ÿ cji�t�;
which is an immediate consequence of the de®nition of the mean-squared displacements.

Appendix B. Laplace transform of the Bessel functions

To obtain an expression for the Laplace transform

Wn�s; y; g� �
Z 1

0

dt exp�ÿst�In 2y exp�� ÿ gt�� �B:1�

we use the scaling property of the Bessel functions [26],
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In�kz� � kn
X1
k�0

k2 ÿ 1
ÿ �k

z=2� �k
k!

In�k�z�: �B:2�

Setting z � 2y and k � exp�ÿgt� yields

In�2y exp�ÿgt�� � exp�ÿngt�
X1
k�0

yk

k!
In�k�2y� exp�� ÿ 2gt� ÿ 1�k: �B:3�

To perform the Laplace transform of the above function with respect to time one could expand each of the
terms exp�ÿ2gt� ÿ 1� �k into a sum of powers of exp�ÿ2gt�, using the binomial formula. The resulting
expression does, however, not re¯ect the fact that Eq. (B.2) is e�ectively a series which converges rapidly for
small g and is thus convenient to discuss the low friction limit. Therefore the closed form of g�s� is con-
sidered in the following:

g�s� �
Z 1

0

dt exp�ÿ�s� ng�t� exp�� ÿ 2gt� ÿ 1�k: �B:4�

Performing the substitution u � exp�ÿ2gt� yields

g�s� � �ÿ1�k
2g

Z 1

0

duu�s�ng�=�2g�ÿ1�1ÿ u�k: �B:5�

Apart from the prefactors, the above integral has the form of the de®ning equation for the Beta functions
[26]

B�z;w� �
Z 1

0

dt tzÿ1�1ÿ t�wÿ1 � C�z�C�w�
C�z� w� � B�w; z�; �B:6�

where C�z� is the generalized factorial

C�z� �
Z 1

0

dt tzÿ1 exp�ÿt�: �B:7�

Using the above de®nitions the function g�s� may be expressed as

g�s� � �ÿ1�k
2g

B
s� ng

2g
; k

�
� 1

�
: �B:8�

Using the properties

C�m� 1� � m!; �B:9�

C�z� m� � �mÿ 1� z��mÿ 2� z� � � � �1� z�C�1� z�; �B:10�
of the Gamma function, one can simplify

B�z; k � 1� � k!

�k � z��k ÿ 1� z� � � � �1� z�z �B:11�

to obtain

g�s� � k!�ÿ2g�k
�s� ng��s� �n� 2�g� � � � �s� �n� 2k�g� : �B:12�
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The Laplace transform of expression (142) yields thus

Wn�s; y; g� �
X1
k�0

�ÿ2g�kIn�k�2y�yk

�s� ng��s� �n� 2�g� � � � �s� �n� 2k�g� : �B:13�
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