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de Merisiers, BP48, 91192 Gif-sur-Yvette, France, and cUniversité d’Orléans, Chateau de la Source, Avenue du Parc
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A coarse-grained geometrical model for protein secondary-structure description
and analysis is presented which uses only the positions of the C! atoms. A space
curve connecting these positions by piecewise polynomial interpolation is
constructed and the folding of the protein backbone is described by a succession
of screw motions linking the Frenet frames at consecutive C! positions. Using
the ASTRAL subset of the SCOPe database of protein structures, thresholds
are derived for the screw parameters of secondary-structure elements and
demonstrate that the latter can be reliably assigned on the basis of a C! model.
For this purpose, a comparative study with the widely used DSSP (Define
Secondary Structure of Proteins) algorithm was performed and it was shown that
the parameter distribution corresponding to the ensemble of all pure C!

structures in the RCSB Protein Data Bank matches that of the ASTRAL
database. It is expected that this approach will be useful in the development of
structure-refinement techniques for low-resolution data.

1. Introduction

Protein secondary-structure elements (PSSEs) are the basic
building blocks of proteins and their form and arrangement is
of fundamental importance for protein folding and function.
They were first predicted by Pauling and Corey on the basis of
hydrogen bonding (Pauling & Corey, 1951; Pauling et al., 1951)
and were later confirmed by X-ray diffraction experiments.
The localization of PSSEs in protein structure databases is one
of the most basic tasks in bioinformatics and various methods
have been developed for this purpose. We mention here DSSP
(Define Secondary Structure of Proteins; Kabsch & Sander,
1983) and STRIDE (STRuctural IDEntification; Frishman &
Argos, 1995), which assign PSSEs on the basis of geometrical,
energetic and statistical criteria and which are the most widely
used approaches. This results in contiguous domains along
the amino-acid sequence of the protein, which are labelled
‘!-helix’, ‘"-strand’ etc. There is no precise and universally
accepted definition for PSSEs, and therefore each method
produces slightly different results. The geometrical variability
of these PSSEs, which depends on the global protein fold, is
not explicitly considered by these approaches. In order to
account for structural variability owing to protein flexibility,
an extension of the DSSP method has been proposed which
uses a continuous assignment of PSSEs on the basis of DSSP
analyses with different thresholds for the hydrogen-bond
geometry (Andersen et al., 2002). The more recently published
ScrewFit method (Kneller & Calligari, 2006; Calligari &
Kneller, 2012) allows by construction both assignment and
geometrical description of PSSEs. It describes the geometry of
the whole protein backbone by a succession of screw motions
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linking successive C—O—N groups in the peptide bonds, from
which PSSEs can be assigned on the basis of statistically
established thresholds for the local helix parameters. The
latter have been derived by screening the ASTRAL database
(Chandonia et al., 2004), which provides representative
protein structure sets containing essentially one secondary-
structure motif. The ScrewFit description is intuitive and bears
some resemblance to the P-Curve approach proposed by
Sklenar et al. (1989), in the sense that both methods lead to a
sequence of local helix axes, the ensemble of which defines an
overall axis of the protein under consideration. ScrewFit,
however, uses a minimal set of parameters and was originally
developed to pinpoint changes in protein structure owing to
external stress.

The experimental basis for the automated assignment of
PSSEs in proteins is X-ray crystallography, which yields
information about the positions of the heavy atoms in a
protein. Although the number of resolved protein structures
has increased almost exponentially during the last two
decades, the fraction of proteins for which the atomic structure
is known is still very small. Among the approximately 100 000
protein structures in the RCSB Protein Data Bank (Kirchmair
et al., 2008), there are about 600 structures for which only the
C! positions on the protein backbone are given. Such struc-
tures cannot be analyzed with the widely used DSSP method,
and the description of the global protein fold as well as the
assignment of PSSEs require methods which use only the C!

positions. To our knowledge, Levitt and coworkers were the
first to publish a method of secondary-structure assignment on
the basis of the C! positions (Levitt & Greer, 1977), and
different approaches for this purpose have been published
since then (Dupuis et al., 2004; Labesse et al., 1997; Park et al.,
2011). Like DSSP and STRIDE, these methods aim at
assigning PSSEs on a true/false basis, and the underlying
models for this decision are not exploited or not exploitable
for a more detailed description of protein folds.

A recent tendency in structural biology is the exploitation
of low-resolution images, often from electron microscopy
(Grimes et al., 1999; Marabini et al., 2013). Such data sets do
not permit structure refinement with all-atom models, but
require coarse-grained models for interpretation. Since the
vast majority of coarse-grained models for proteins that have
been proposed use the C! positions among their variables
(Tozzini, 2005), a description of secondary structure based on
these positions is likely to become more important in the
future. Moreover, such descriptions can be integrated into the
structure-refinement method itself, using the regularity of
PSSEs as model constraints in much the same way as known
constraints on the chemical bond structure are exploited in
structure refinements with all-atom models.

The motivation of this paper was to develop an extension of
the ScrewFit method which works only with the C! positions,
maintaining the capability of ScrewFit (i) to describe the
global fold of a protein by a minimalistic model, (ii) to assign
PSSEs and (iii) to characterize variations in PSSEs. In the
context of low-resolution modelling, we expect this approach
to be most useful as part of a structure-refinement procedure,
rather than as an a posteriori analysis of a structure refined by
other means. Our method is described in x2 and illustrations
are presented and discussed in x3. These illustrations have
the main goal of showing that our description of protein
secondary structure is reasonable. A short résumé with an
outlook concludes the paper.

2. A coarse-grained model for the fold of a protein

2.1. Ca space curve and Frenet frames

We consider the ensemble of the C! positions, {R1, . . . , RN},
as a discrete representation of a space curve,
rð#Þ ¼

P3
k¼1 rkð#ÞeðkÞ, where # 2 [#a, #b] and e(k) (k = x, y, z)

are the basis vectors of a space-fixed Euclidean coordinate
system. Imposing that

rð#jÞ ¼ Rj; j ¼ 1; . . . ;N; ð1Þ

at equidistantly sampled values of #,

#j ¼ #a þ ðj % 1Þ!#; !# ¼ ð#b % #aÞ=N; ð2Þ

we define a continuous space curve by a piecewise polynomial
interpolation of the C! positions. The values for #a and #b are
arbitrary and one may in particular choose #a = 0 and #b = N,
such that !# = 1. At each C! position, we construct the local
Frenet basis (Fig. 1) from the interpolated space curve,

tð#Þ ¼ _rrð#Þ
j_rrð#Þj

; ð3Þ

nð#Þ ¼
_ttð#Þ
j_ttð#Þj

; ð4Þ

bð#Þ ¼ tð#Þ ^ nð#Þ; ð5Þ

where t, n and b are the tangent vector, the normal vector and
the binormal vector to the curve, respectively. The dot denotes
a derivative with respect to #. Interpolating the space curve
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Figure 1
Frenet frame {t, n, b} at one point of the helicoidal curve defined in (33)
(red solid line). Setting R = 1 and h = 0.3, the latter is shown for one turn,
together with N = 11 equidistantly spaced sampling points (red points).
The blue line is the helix axis and the blue points correspond to the
rotation centres sj

(c) (j = 1, . . . , N % 1). The figure was produced with the
Mathematica software (Wolfram Research, 2014).
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around each C! position with a second-order polynomial
involving the respective left and right neighbours, we obtain

_rrð#jÞ ¼
Rjþ1 % Rj%1

2!#
; ð6Þ

€rrð#jÞ ¼
Rjþ1 % 2Rj þ Rj%1

!#2
ð7Þ

for j = 2, . . . , N % 1. At the end points of the chain one can
only use forward and backward differences, respectively, and
a second-order interpolation of the C! space would lead to
identical {t, n} planes at the first and last two C! positions,
which is not compatible with a helicoidal curve. In this case we
resort to third-order interpolation, such that

_rrð#1Þ ¼
%11R1 þ 18R2 % 9R3 þ 2R4

6!#
; ð8Þ

€rrð#1Þ ¼
2R1 % 5R2 þ 4R3 % R4

!#2
; ð9Þ

_rrð#NÞ ¼
%2RN%3 þ 9RN%2 % 18RN%1 þ 11RN

6!#
; ð10Þ

€rrð#NÞ ¼
%RN%3 þ 4RN%2 % 5RN%1 þ 2RN

!#2
: ð11Þ

We note here that the Frenet frames constructed at the C!

positions 2–N are identical to the so-called ‘discrete Frenet
frames’ introduced in Hu et al. (2011).

2.2. Relating Frenet frames by screw motions

Having constructed the Frenet frames, the next step consists
of constructing the screw motions which link consecutive
frames along the protein main chain. For this purpose, the
basis vectors {t(#j), n(#j), b(#j)} ' {tj, nj, bj} must be referred to
their respective anchor points Rj. Defining

"""ð1Þj ¼ tj; """ð2Þj ¼ nj; """ð3Þj ¼ bj; ð12Þ

the ‘tips’ of the Frenet basis vectors are located at

xðkÞ
j ¼ Rj þ """

ðkÞ
j ðk ¼ 1; 2; 3Þ; ð13Þ

and the mathematical problem consists of finding the screw
parameters for the mappings {x(k)

j }!{x(k)
j+1} for j = 1, . . . , N % 1.

2.2.1. Screw motions. In general, a rigid-body displacement
x!y can be expressed in the form

y ¼ xðcÞ þ D ( ½x % xðcÞ* þ t; ð14Þ

where x(c) is the centre of rotation, D is a rotation matrix and t
is a translation vector. By construction,

t ¼ yðcÞ % xðcÞ: ð15Þ

The elements of the rotation matrix can be expressed in terms
of three independent real parameters. One possible choice is
to use the rotation angle ’ and the unit vector n pointing in the
direction of the rotation axis. For this parametrization, D has
the form (Altmann, 1986)

Dðn; ’Þ ¼ cos ’1 þ ð1 % cos ’ÞP þ sin ’N; ð16Þ

where P = (ninj) (i, j = 1, 2, 3) is the projector on n and N is a
skew-symmetric 3 + 3 matrix which is defined by the relation
N ( v = n ^ v for an arbitrary vector v. The elements of N are
Nij ¼ %

P
k "ijknk, where "ijk (i, j, k = 1, 2, 3) are the compo-

nents of the totally antisymmetric Levi–Civita tensor. We
recall that "ijk = ,1 for an even and odd permutation of 123,
respectively, and "ijk = 0 otherwise. The parameters of the
rigid-body displacement (14) depend on the choice of the
rotation centre, xc, and there is a special choice, xc = s, for
which the translation vector t points in the direction of the
rotation axis n, such that t ( n > 0. This is known as Chasles’
theorem (Chasles, 1830) and the corresponding rigid-body
displacement describes a screw motion,

y ¼ s þ Dðn; ’Þ ( ðx % sÞ þ !n: ð17Þ

Using that D(n, ’) ( n = n, one can easily show that ! is the
projection of the translation vector on the rotation axis,

! ¼ t ( n: ð18Þ

The position s is not uniquely defined, but stands for all points
on the screw axis. Defining sc to be the point for which the
distance |s % xc| is a minimum, the screw axis is defined
through

s ¼ sðcÞ þ $n; %1<$< þ1; ð19Þ

where

sðcÞ ¼ xðcÞ þ 1

2
½t? þ cosð’=2Þn ^ t*; ð20Þ

and t? = t % (n ( t)n is the component of t which is perpen-
dicular to the rotation axis. We note that [s(c) % x(c)] ( t = 0. The
radius of the screw motion is defined through % = |x(c) % s(c)|
and it follows from (20) that

% ¼ jt
?j
2

½1 þ cotð’=2Þ2*1=2: ð21Þ

2.2.2. Determining the screw parameters. Assuming that
the Frenet frames at the C! positions have been constructed,
the fold of a protein is defined by the sequence of screw
motions x(k)

j !x(k)
j+1, where

xðkÞ
jþ1 ¼ sðcÞj þ Dðnj; ’jÞ ( ½x

ðkÞ
j % sðcÞj * þ !jnj; ð22Þ

for j = 1, . . . , n % 1 and k = 1, 2, 3. The corresponding
parameters are computed as follows.

(i) Determine the translation vectors

tj ¼ Rjþ1 % Rj: ð23Þ

(ii) Perform a rotational least-squares fit (Kneller, 1991)
{"""(k)

j }!{"""(k)
j+1} by minimizing the target function

mðQjÞ ¼
P3

k¼1

"""ðkÞjþ1 % DðQjÞ ( """
ðkÞ
j

!!!
!!!

2

ð24Þ

with respect to four quaternion parameters, Q = {q0, q1, q2, q3},
which parametrize the rotation matrix according to
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DðQÞ ¼
q2

0 þ q2
1 % q2

2 % q2
3 2ðq1q2 % q0q3Þ 2ðq0q2 þ q1q3Þ

2ðq1q2 þ q0q3Þ q2
0 % q2

1 þ q2
2 % q2

3 %2ðq0q1 % q2q3Þ
%2ðq0q2 % q1q3Þ 2ðq0q1 þ q2q3Þ q2

0 % q2
1 % q2

2 þ q2
3

2

4

3

5:

ð25Þ

The quaternion parameters are normalized such that q0
2, q1

2, q2
2,

q3
2 = 1, which leaves three free parameters describing the

rotation. We note here only that the minimization of (24) leads
to an eigenvector problem for the optimal quaternion, which
can be efficiently solved by standard linear algebra routines,
and that the corresponding eigenvalue is the squared super-
position error (Kneller, 1991). The latter is zero for super-
position of Frenet frames, since two orthonormal and equally
oriented vector sets can be perfectly superposed. It is also
worthwhile noting that the upper limit in the sum in (24) can
be changed from 3 to 2, since two linearly independent vectors
with the same origin, here tj and nj, suffice to define a rigid
body.

(iii) Extract nj and ’j from the quaternion parameters Qj.
This can easily be achieved by expoiting the relations

q0 ¼ cosð’=2Þ
q1 ¼ sinð’=2Þnx

q2 ¼ sinð’=2Þny

q3 ¼ sinð’=2Þnz

9
>>=

>>;
: ð26Þ

Here and in the following the index j is dropped. Several cases
have to be considered. If (q1

2, q2
2, q3

2)1/2 > ", where " depends
on the machine precision of the computer being used, we
compute a ‘tentative rotation axis’

nt ¼
1

ðq2
1 þ q2

2 þ q2
3Þ

1=2

q1

q2

q3

0

@

1

A: ð27Þ

Then we check whether t ( nt - 0. If this is the case, we set

n ¼ nt; ð28Þ

’ ¼ 2 arccosðq0Þ: ð29Þ

In the case that t ( nt < 0, we set

n ¼ %nt; ð30Þ

’ ¼ 2 arccosð%q0Þ: ð31Þ

This corresponds to replacing Q!%Q before evaluating n
and ’ according to (28) and (29). Such a replacement is
possible since the elements of D(Q) are homogeneous func-
tions of order two in the quaternion parameters, such that
D(Q) = %D(Q).

For the sake of completeness, we finally mention the case
that (q1

2, q2
2, q3

2)1/2 . ", which corresponds to a pure translation
and cannot occur in our application to protein backbones. In
this case, one would set ’ = 0 and n = t/|t|.

(iv) Using the parameters {nj, ’j} and defining the positions
Rj to be the rotation centres, x(c) = Rj, compute for j = 1, . . . ,
N % 1 the positions sðcÞj on the local screw axes according to
relation (20) and the local helix radii according to relation
(21).

2.2.3. Regularity of PSSEs. To quantify the regularity of
PSSEs, we introduce the distance measure

&ðjÞ ¼ sðcÞj þ tkj % sðcÞjþ1

!!!
!!!; j ¼ 1; . . . ;N % 2; ð32Þ

where tkj = (nj ( tj)nj. For an ideal PSSE, where all consecutive
Frenet frames are related by the same screw motion, &(j) is
strictly zero. This measure of non-ideality deviates from the
‘straightness’ parameter in the ScrewFit algorithm (Kneller &
Calligari, 2006), which is defined as 'j = lj+1 ( lj /(|lj+1||lj|), with
lj = s(c)

j+1 % s(c)
j , and which defines the ideality of PSSEs through

the cosine of the angle between subsequent local screw axes.

2.3. Numerical test

To test the numerical construction of Frenet frames, we
consider a perfect helicoidal curve and compare the exact
Frenet frames with the corresponding numerical approxima-
tions. The parametric representation of the curve is

rð#Þ ¼ % cosð#ÞeðxÞ þ % sinð#ÞeðyÞ þ h#eðzÞ; ð33Þ

where % > 0 is the radius of the helix and its pitch is p = h/2(.
Fig. 4 shows the form of the curve (33) for one complete turn
(red line), setting R = 1 and h = 0.3 in arbitrary length units.
Defining the matrix F(#) = [t(#), n(#), b(#)], it follows from
(33) that

Fð#Þ ¼

% R sinð#Þ
ðh2 þ R2Þ1=2 % cosð#Þ h sinð#Þ

ðh2 þ R2Þ1=2

R cosð#Þ
ðh2 þ R2Þ1=2 % sinð#Þ % h cosð#Þ

ðh2 þ R2Þ1=2

h

ðh2 þ R2Þ1=2 0
R

ðh2 þ R2Þ1=2

2

6666664

3

7777775
: ð34Þ

Using the method described in x2.1, we construct numerical
approximations ~FFð#jÞ of the Frenet bases (34) at N = 11
equidistant sampling points, Rj, which are shown as red dots in
Fig. 4. From these Frenet bases we construct the axis points s(c)

j

(blue dots), which are shown together with the exact screw
axis (blue line). For the first and the last axis point one notices
a visible offset from the latter. We quantify the error of the
numerically computed Frenet bases, ~FFð#jÞ, as
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Figure 2
Overlap error (35) for the bases ~FFð#jÞ and F(#j) at the red points in Fig. 8.
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"ðjÞ ¼ ftr½DðjÞT ( DðjÞ*g1=2; ð35Þ

where

DðjÞ ¼ ~FFð#jÞ
T ( Fð#jÞ % 1: ð36Þ

For a perfect overlap of ~FFð#jÞ and F(#j) one should have
~FFð#jÞ

T ( Fð#jÞ ¼ 1, such that "(j) = 0. We note that "(j) is the
Frobenius norm (Golub & van Loan, 1996) of D(j). Fig. 2
shows "(j) corresponding to the Frenet basis in Fig. 4 and
confirms the slight offset of the first and last axis points from
the ideal screw axis.

3. Applications

We will now consider four applications of the coarse-grained
protein model described above, which will be referred to as
ScrewFrame in the following.

(i) The first application concerns the construction of a tube
model for two proteins whose secondary-structure elements
are, respectively, essentially !-helices and "-strands.

(ii) In the second application, we explore the stability of
the most important ScrewFrame parameters, % and &, under
perturbations of the protein structure.

(iii) The third application is a comparative study of
ScrewFrame and DSSP for secondary-structure assignment.
We provide a comparison with the de facto standard DSSP as a
proof of the validity of our approach.

(iv) The fourth application is devoted to a secondary-
structure analysis of all protein structures in the RSCB Protein
Data Bank for which only the positions of the C! atoms are
known.

3.1. Tube representation of a protein

As a first application, we present ScrewFrame analyses of
myoglobin, an oxygen-binding globular protein in muscular
tissues which contains essentially !-helices (PDB entry 1a6g;
Vojtechovsky et al., 1999), and of the integral human
membrane protein VDAC-1, in which the predominant PSSEs
are "-strands (PDB entry 2k4t; Hiller et al., 2008). Figs. 3(a)
and 3(b) show tube models of the respective proteins which
have been constructed from the ScrewFrame parameters. The
tube is a succession of cylinders whose radii are defined by the
ScrewFrame parameter % (see equation 21), which describes
the radius of the screw motion linking consecutive Frenet
frames. The axis of each cylinder is the local screw axis and its
height is the distance between two consecutive screw-motion
centres s(c)

j and s(c)
j+1 (see equation 20) on that axis. By defini-

tion, the C! atoms are on the surface of the tube. As in the
original ScrewFit algorithm, the screw radius allows the
discrimination of different types of PSSEs (see Table 1) and
the tube is coloured red to indicate !-helices and green for
"-strands. The protein main axis is the concatenation of all
local screw axes and it plays the same role as the ‘overall
protein axis’ in the P-Curve algorithm (Sklenar et al., 1989),
although its construction is different. We provide the tube
models for these two proteins as Supporting Information in
the form of BILD files for the molecular-visualization program
Chimera (Pettersen et al., 2004).
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Figure 3
(a) C! trace (cyan) of myoglobin (PDB entry 1a6g, essentially !-helices)
and the tube representation computed from the ScrewFrame parameters.
The details are described in the text. (b) The corresponding figure for
human VDAC-1 (PDB entry 2k4t, essentially "-strands). The colouring
scheme for the tubes is green for "-strands and red for !-helices.

Table 1
Screw radii (nm) for standard model structures generated with Chimera
(Pettersen et al., 2004). Since ScrewFit uses the C atoms in the peptide
planes as reference points for the (pure) rotations, whereas ScrewFrame
uses the C! atoms, the radii determined by ScrewFit are systematically
smaller than those obtained from ScrewFrame.

!-Helix
Parallel
"-strand

Antiparallel
"-strand 310-Helix (-Helix

ScrewFit 0.165 0.061 0.051 0.122 0.165
ScrewFrame 0.227 0.098 0.080 0.187 0.227
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Figs. 4(a) and 4(b) display the parameter % for myoglobin
and VDAC-1, respectively, as a function of the residue index
(blue line). For comparison we also show the !-helices found
by DSSP, which are indicated by the vertical stripes in dark
grey. The horizontal stripes in light grey indicate the tolerance
interval for the % parameter for !-helices and "-strands,
respectively, the definition of which will be described in the
following section. Fig. 5 shows the corresponding regularity
measure & (see equation 32) for myoglobin (Fig. 5a) and
VDAC-1 (Fig. 5b), which plays an important role in the
attribution of secondary-structure elements that will be
discussed in the following section.

3.2. Perturbation analysis

In view of the application of our approach to low-resolution
data, it is interesting to explore the influence of perturbations

in the C! positions on the resulting ScrewFrame parameters.
We limit ourselves to the parameters % and &, which are the
most important parameters for characterizing the secondary
structure of a protein. As examples, we consider the PDB
structures 1a6g for myoglobin and 2k4t for the VDAC-1
protein, which were treated in the previous section. The
Cartesian coordinates of all C! atoms are shifted by random
numbers which are drawn from a normal distribution with
zero mean and a prescribed width ". For the latter we chose
ten values, increasing from 0.01 to 0.1 nm in steps of 0.01 nm,
and for each value of " we generate 1000 random configura-
tions. Fig. 6 displays the results of the perturbation analysis for
myoglobin (Fig. 6a) and VDAC-1 (Fig. 6b). In both cases we
show

research papers

1416 Kneller & Hinsen & Protein secondary-structure description Acta Cryst. (2015). D71, 1411–1422

Figure 4
(a) The ScrewFrame parameter % (blue line) for myoglobin (PDB entry
1a6g) as a function of the residue number. The vertical dark grey stripes
indicate the !-helices found by DSSP and the horizontal light grey stripe
indicates the tolerance for the % parameter in the case of an !-helix (see
equation 37). (b) The same representation for human VDAC-1 (PDB
entry 2k4t), where the horizontal grey stripe indicates the tolerance for
the % parameter in the case of a "-strand (see equation 40).

Figure 5
(a) The ScrewFrame parameter & (blue line) for myoglobin (PDB entry
1a6g) as a function of the residue number. The vertical dark grey stripes
indicate the !-helices found by DSSP and the horizontal light grey stripe
indicates the tolerance for the & parameter in the case of an !-helix (see
equation 37). (b) The same representation for human VDAC-1 (PDB
entry 2k4t), where the horizontal grey stripe indicates the tolerance for
the & parameter in the case of a "-strand (see equation 40).

electronic reprint



(i) the mean value for the helix radius % averaged over all
residues belonging to the respective dominant motif (!-helices
in the case of myoglobin and "-strands in the case of VDAC-1)
and all random configurations (dashed line), together with the
corresponding standard deviation (vertical bars), and

(ii) the corresponding analysis for the regularity parameter &.
The results show that % is a robust parameter, which increases
slowly with increasing noise, whereas & reacts much more
strongly. It is indeed important for % to be robust, because we
use it to distinguish between different types of secondary-

structure elements. The role of & is
quite different: it is a quality para-
meter that measures the regularity of
the protein fold and is used to distin-
guish ‘good’ from ‘bad’ secondary-
structure elements. It is thus to be
expected that & should increase for
less well defined input structures. We
expect this dependence to become
useful in structure-refinement appli-
cations, where a restraint on & can be
used to enforce well defined
secondary-structure elements.

3.3. Analysis of the ASTRAL database

In order to compare our C!-based
helicoidal analysis with the original
ScrewFit method based on peptide
planes (Kneller & Calligari, 2006;
Calligari & Kneller, 2012), we applied
both methods to the ‘all-!’ and ‘all-"’
categories of the ASTRAL subset of
the SCOPe database (Fox et al., 2013)
using the ASTRAL SCOPe 2.04
subset with less than 40% sequence
identity. In order to be able to work
efficiently with such a large collection
of protein structures, we constructed
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Figure 6
Sensitivity of the ScrewFrame parameters to perturbations in the input structure. (a) Myoglobin: the upper panel shows the mean value for the helix
radius % averaged over the residues belonging to !-helices and all random configurations (dashed line), together with the standard deviation (vertical
bars). The lower panel shows the corresponding analysis for the regularity parameter &. (b) VADC-1: the upper panel shows the mean value for the helix
radius % averaged over the residues belonging to "-strands and all random configurations (dashed line), together with the corresponding standard
deviation (vertical bars). The lower panel shows the corresponding analysis for the regularity parameter &.

Figure 7
The helix radius % for the all-! (top) and all-" (bottom) structures using the ScrewFit (left) and
ScrewFrame (right) methods. Note that the ScrewFit radius is based on the C atoms, whereas the
ScrewFrame radius corresponds to the C! atoms, which explains the different values. The vertical lines
indicate the values for ideal secondary-structure elements. For "-strands there are two ideal values,
one for parallel (red) and one for antiparallel (orange, dashed) strands.
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an ActivePaper (Hinsen, 2014a)
containing the structures of the
ASTRAL entries in MOSAIC format
(Hinsen, 2014c). This file is available
for download (Hinsen, 2014b). In
addition to the ASTRAL database of
real protein structures, we use ideal
secondary-structure elements (!-helix,
(-helix, 310-helix, parallel and anti-
parallel "-strands) for polyalanine,
which were constructed using the
program Chimera (Pettersen et al.,
2004).

We also make comparisons with
DSSP secondary-structure assign-
ments for this database, using our own
implementation of the DSSP algo-
rithm which follows the description in
the original publication (Kabsch &
Sander, 1983) but, like the current
version 2 of the DSSP software
(Hekkelman, 2013), computes an ideal
position for the backbone hydrogen
positions instead of using experi-
mental values, even if the latter are
available.

As a first step, we compute ScrewFit
and ScrewFrame parameters for all
structures in the all-! and all-" subsets
of the ASTRAL database. In order to
avoid inaccuracies introduced by the
third-order approximations given by
(8)–(11), we do not compute Frenet
frames for the first and last residue of
each chain. For structures with missing
residues, we compute the parameters
for each continuous chain segment
separately. Since the input structures
are dominated by !-helices and
"-strands, respectively, we expect the
distribution of our parameters to show
clear peaks that correspond to these
secondary-structure elements.

The most important helix para-
meter for secondary-structure
description is the helix radius %, the
distribution of which in the ASTRAL
database is shown in Fig. 7. The
vertical lines show, for comparison, the
values for ideal !-helices and
"-strands. For the "-strands, the red
lines represent parallel strands and the
orange dashed lines represent anti-
parallel strands. A more detailed view
is given in Fig. 8, which shows only the
region around the dominant peak
for each histogram, together with
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Figure 9
The number of amino-acid residues per full turn, ), for the all-! (top) and all-" (bottom) structures
using the ScrewFit (left) and ScrewFrame (right) methods. The theoretical minimal value of ) = 2 is
very close to the observed value for "-sheets.

Figure 8
The helix radius % around the ideal ! value for the all-! structure (top) and around the ideal " value
for the the all-" structure (bottom) using the ScrewFit (left) and ScrewFrame (right) methods. The
vertical lines indicate values for ideal secondary-structure elements, as in Fig. 5. The Gaussian
distributions fitted to the peaks are drawn in black; their parameters are given in Table 2. The "
distribution for ScrewFrame can be described well as a superposition of two Gaussian distributions
corresponding to parallel and antiparallel strands. The ScrewFit method cannot resolve this
difference.
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Gaussian distributions fitted to the peaks. The peaks are
rather well described by a Gaussian, and the ScrewFrame
method even allows the difference between parallel and
antiparallel "-strands to be resolved.

Whereas the average % value for !-helices is close to the
value for an ideal helix, this is not the case at all for "-strands.
This can be understood by looking at the distribution of the
number of amino acids per full turn, ), shown in Fig. 9. Since
the rotation angle is by definition in the interval (%( . . .(),
the minimal value of ) is 2. This is also the value that describes
an ideal "-strand, which is a flat structure. Any deviation from
the ideal "-strand has a larger ), and because % and ) are not
independent (the length of the curve arc linking two neigh-
bouring C! atoms is nearly constant), the deviation in % from
the ideal value is also asymmetric.

The regularity measure &, defined in (32), is shown in Fig. 10.
It shows that the ScrewFrame secondary-structure elements
are more regular than those identified by ScrewFit, in parti-
cular for structures dominated by !-helices. We do not show
the distributions of the other parameters defined in the initial
ScrewFit publication here (Kneller & Calligari, 2006), but they

are included in the Supporting Information. We note that the
parameter distributions are in general narrower and thus
better defined for ScrewFrame than for ScrewFit. We attribute
this fact to fluctuations in the orientations of the peptide
planes that have no impact on the C! geometry.

We use the Gaussian distributions shown in Fig. 8 as the
basis for defining secondary-structure elements. We define an
!-helix as a sequence of at least four consecutive C! atoms
whose screw transformations satisfy

j%% $%j
'%

< 3; ð37Þ

&< 0:02 nm; ð38Þ

where $% and '% are the mean value and standard deviation of
the Gaussian distribution for the ! peak in Fig. 8. The
numerical values of these parameters are shown in Table 2. We
define a "-strand as a segment of consecutive C! atoms whose
screw transformations satisfy

min
j%% $ð1Þ

% j
'ð1Þ
%

;
j%% $ð2Þ

% j
'ð2Þ
%

 !

< 1; ð39Þ

&< 0:08 nm; ð40Þ

where $%
(1/2) and '%

(1/2) are the mean values and standard
deviations of the Gaussian distributions for the parallel and
antiparallel " peaks in Fig. 8. The numerical parameters in
these definitions were chosen to make our definitions match

the secondary-structure assign-
ments made by the DSSP
method.

There is a fundamental differ-
ence between our approach and
the DSSP method for defining
"-strands. The ScrewFrame
approach looks for a regular
structure along the peptide chain,
whereas the DSSP method iden-
tifies hydrogen bonds between
the strands that make up a
"-sheet. ScrewFrame thus finds
individual strands, which can be
paired up to identify sheets in a
separate step. A strand must
consist of at least three consecu-
tive residues in order to be
considered regular; in fact, the
regularity measure & is defined in
terms of the difference of two
consecutive screw transforma-
tions, each of which connects two
residues. DSSP needs to look at
two strands simultaneously in
order to identify " structures, but
has no minimal length condition
and in fact admits "-sheets as
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Table 2
The parameters of the Gaussians fitted to the peaks in the distributions of
the ScrewFrame parameter % (see Fig. 5).

!-Helix Parallel "-strand Antiparallel "-strand

$% (nm) 0.230 0.116 0.095
'% (nm) 0.007 0.014 0.015

Figure 10
The regularity measure & defined in (32) for the all-! and all-" subsets of the ASTRAL database (top and
bottom, respectively).
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small as a single hydrogen-bonded residue pair. For practically
relevant "-sheets in real protein structures, these differences
are however not important, but they must be understood in
order to interpret the following comparison between the two
methods.

A one-to-one comparison of secondary-structure elements
from two different assignment methods is not of particular
interest, because an exact match is the exception rather than
the rule. The inherent fuzziness of secondary-structure defi-
nitions leads to arbitrary choices and thus inevitable differ-
ences. The most frequent deviation between two assignments
is at the end points of secondary-structure elements, where a
difference of one or two residues is common and acceptable.

Another frequent deviation concerns deformed secondary-
structure elements, which one method may identify as single
elements whereas another method may recognize them as
multiple distinct elements.

We therefore chose a statistical comparison to compare the
ScrewFrame results with those from DSSP, which is shown in
Fig. 11 for !-helices and Fig. 12 for "-strands. We consider two
quantities: (i) the total number of residues of a given structure
which are inside a recognized secondary-structure element
and (ii) the length of each individual secondary-structure
element. We computed the first quantity for both methods and
show their joint distribution (Figs. 11a and 12a). For the vast
majority of structures the two residue counts are close to
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Figure 11
(a) A two-dimensional histogram comparing the total number of residues
inside !-helices as identified by ScrewFrame and DSSP. The strong
localization of the distribution around the diagonal shows the similarity
between these two assignments. (b) The distribution of the lengths of
identified !-helices; left, DSSP; right, ScrewFrame. The fatter tail for
DSSP and the larger number of short helices for ScrewFrame are owing to
the fact that ScrewFrame breaks up strongly deformed helices into several
pieces, whereas DSSP considers them to be a single helix.

Figure 12
(a) A two-dimensional histogram comparing the total number of residues
inside "-strands as identified by ScrewFrame and DSSP. The strong
localization of the distribution around the diagonal shows the similarity
between these two assignments. (b) The distribution of the lengths of
identified "-helices; left, DSSP; right, ScrewFrame. The peak at very short
strands in the DSSP distribution is absent from the ScrewFrame results
because ScrewFrame needs at least three consecutive residues to
recognize a regular structure.
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equal, which means that neither method yields systematically
more or longer secondary-structure elements than the other.
Figs. 11(b) and 12(b) show the distributions of the lengths of
individual secondary-structure elements. For !-helices, DSSP
has a fatter tail (helices of length 20 or more), whereas
ScrewFrame identifies a larger number of short helices. The
reason for these differences is that ScrewFrame tends to split
up kinked helices that DSSP identifies as single units. For
"-strands, we notice that DSSP identifies many more very
short elements. This is owing to the different definitions: a
single "-type hydrogen bond is sufficient to define a "-sheet in
DSSP, but ScrewFrame requires at least three consecutive
residues to identify any regular structure.

3.4. Analysis of Ca structures in the PDB

The Protein Data Bank contains at this time 595 entries
marked as ‘CA ATOMS ONLY’, which correspond to low-
resolution X-ray crystallographic or electron-microscopic
data. Secondary-structure assignment methods such as DSSP,
which are based on an analysis of hydrogen-bond networks,
cannot be applied to these entries. The low resolution of the
experimental data underlying these structures raises the
question whether our approach can still identify secondary
structures reliably. The C! positions could be less precise,
leading to an increased uncertainty in the ScrewFrame para-
meters that we compute from them.

To investigate this question, we have computed histograms
for the ScrewFrame parameters for this set of structures in the
same way as described above for the ASTRAL database.
These histograms are shown in Fig. 13. The red lines show the
distributions for the ASTRAL database for comparison. Since
the latter are for predominantly !- or "-containing structures,
whereas the C!-only PDB entries contain a mixture of all
kinds of structures, we must compare with a weighted sum of
the histograms of the two ASTRAL categories. The relative
weights have been determined empirically: the red lines in the
figure correspond to the sum of 0.0067 times the ! histogram
(upper right plots in Figs. 7 and 10) and 0.01 times the "
histogram (lower right plots in Figs. 7 and 10).

The excellent agreement of the histograms suggests that
there is no difference in the uncertainty of the ScrewFrame
parameters between PDB entries for low-resolution data and
PDB entries in general. A possible explanation is that there is
already no increased uncertainty in the C! positions. Many of
the C!-only structures in the PDB have at least partly been
obtained by rigid fitting of all-atom protein structures
obtained from higher resolution experiments. The relative
positions of the C! atoms are therefore no less precise than
in an all-atom structure. Unfortunately, the information
provided in the PDB entries (and even in the accompanying
articles) is not sufficient to identify those parts of any given
structure that were constructed with less precise methods,
making a more detailed investigation of this question impos-
sible.

4. Conclusions and outlook

We have presented a generalization of the ScrewFit method
for protein structure assignment and description which uses
only the positions of the C! atoms along the protein backbone.
As in the ScrewFit approach, the global protein fold is
described as a succession of screw motions relating consecu-
tive recurrent motifs along the protein backbone, but here the
‘motifs’ are the tripods (planes) formed by the three (two)
orthonormal vectors of the local Frenet bases to the C! space
curve. Despite the fact that ScrewFrame uses less information
than ScrewFit, all standard PSSEs are recognized on the basis
of thresholds for the local screw radii and a suitably defined
regularity measure. ScrewFrame even permits parallel and
antiparallel "-strands to be distinguished, which the classical
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Figure 13
(a) Histogram for the % parameters corresponding to all pure C!

structures in the RCSB Protein Data Bank (blue bars) and the combined
histogram for all-! and all-" structures corresponding to the ASTRAL
database (red line). Details are given in the text. (b) The corresponding
figures for the regularity parameter &. The histograms do not suggest a
lower precision for the C! structures compared with all-atom structures.
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ScrewFit method fails to do. A thorough comparison with the
commonly used DSSP method in the assignment of PSSEs in
the ASTRAL database shows that both methods yield very
similar results for the total amount of PSSEs. ScrewFrame
tends, however, to break long helices into smaller pieces, such
that the length distribution of PSSEs is different. Owing to the
minimalistic character of the geometrical model for protein
folds, the evaluation of the ScrewFrame model parameters is
very efficient. This allows work with protein structure data-
bases and analysis of simulated molecular-dynamics trajec-
tories of proteins. We have also shown that ScrewFrame is
robust with respect to perturbations of the input structures.
The local helix radius varies only little, whereas the regularity
parameter & increases visibly. This is exactly what is needed in
structure refinement of low-resolution data, where thresholds
on & may be used to enforce more or less ideal PSSEs.
ScrewFrame may also be used a starting point for the devel-
opment of minimalistic models for protein structure and
dynamics, similar to the worm-like chain model (Doi &
Edwards, 1986), which has been successfully applied to DNA
(Marko & Siggia, 1995). Our method may also be used to
analyze dynamic processes such as the folding and unfolding
of peptides (Spampinato & Maccari, 2014) and it can describe
the fold of intrinsically disordered proteins.

An ActivePaper (Hinsen, 2014a) containing all of the
software, input data sets and results from this study is available
as Supporting Information. The data sets can be inspected
with any HDF5-compatible software, e.g. the free HDFView
(The HDF Group, 2013). Running the programs on different
input data requires the ActivePaper software (Hinsen, 2014a).
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