Quasielastic neutron scattering from soft matter Adapted from HERCULES lectures 2003/4

Gerald R. Kneller

Centre de Biophysique Moléculaire, CNRS Orléans and Synchrotron SOLEIL

September 18, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Contents

- Motivation
- Principles of neutron scattering
- Analytical models for protein dynamics
- Application of computer simulations
- Simulation-based models for protein dynamics

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivation

- Flexibility and motion at the atomic level is important for protein function. Many proteins do not function below a transition temperature of $T \approx 200 K$.
- At the transition temperature an onset of diffusive motions on the *ps*-timescale is observed by *quasielastic neutron scattering*.
- The onset of diffusive motions entails an increase of conformational disorder (entropy) and enables intramolecular transport processes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Understand relaxation and transport processes in proteins

Protein energy landscape

- Few principal minima and a large number of sub-minima ("conformational substates").

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Properties of neutrons

Property	Symbol	Value				
Mass Energy	m E	1.008 a.m.u. $\approx 1.6 10^{-27} kg$ $\approx 25 meV = k_B T (T = 300 K)$				
Charge	Q	0				
Neutrons can be produced by						

- controlled nuclear fission (reactors).
- by "evaporation" from heavy target atoms upon collision with energetic protons (spallation sources).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Particles and waves

• Energy-momentum relation:

$$E = \frac{\mathbf{p}^2}{2m}$$
 (non-relativistic particle).

Wave properties: (free particle = plane wave)

$$E = \hbar \omega$$

 $\mathbf{p} = \hbar \mathbf{k}$, where $\mathbf{k} = \frac{2\pi}{\lambda} \mathbf{n}$. (wave vector)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Here $\hbar = h/2\pi$, and $h = 6.626176 \cdot 10^{-34}$ Js.

 $\lambda = 1.8 \text{ Å}$ for $E = k_B T$ and T = 300 K. Neutrons probe structure and dynamics of condensed matter on the atomic scale.

Neutron scattering experiment

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Differential scattering X-section

$$\frac{d^2\sigma}{d\Omega d\omega} = \frac{|\mathbf{k}|}{|\mathbf{k}_0|} \mathcal{S}(\mathbf{q},\omega)$$

Here

$$\mathbf{q} = \mathbf{k}_0 - \mathbf{k}, \quad \omega = rac{E_0 - E}{\hbar}$$

are the momentum transfer and energy transfer, respectively, and $S(\mathbf{q}, \omega)$ is the dynamic structure factor.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Experimental hall at ILL

The IN5 spectrometer at ILL

Fermi potential

$$V = \sum_lpha rac{2\pi\hbar^2}{\mu_lpha} \, b_lpha \delta({f r} - {f R}_lpha)$$

Neutrons see the nuclei. Here μ_{α} is the (reduced) mass of the target atom.

$$\sigma_{\alpha}^{tot} = 4\pi b_{\alpha}^2, \qquad M_{\alpha} \gg m.$$

is the total scattering cross section. The scattering lengths b_{α} are of the order of fm $(10^{-15}m)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Dynamic structure factor

$$\begin{aligned} \mathcal{S}(\mathbf{q},\omega) &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} dt \, \exp(-i\omega t) \mathcal{I}(\mathbf{q},t), \\ \mathcal{I}(\mathbf{q},t) &= \sum_{\alpha,\beta} \overline{b_{\alpha} b_{\beta}} \left\langle e^{i\mathbf{q}^{T}\cdot\mathbf{R}_{\beta}(t)} e^{-i\mathbf{q}^{T}\cdot\mathbf{R}_{\alpha}(0)} \right\rangle. \end{aligned}$$

 $\overline{b_{\alpha}b_{\beta}}$ = average over isotopes and relative spin orientations of neutron and nucleus. $\mathcal{I}(\mathbf{q}, t)$ is called the *intermediate scattering function*.

 $S(\mathbf{q},\omega)$ is sensitive to structural and dynamical correlations of atomic positions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Classical description

Intermediate scattering function

$$\mathcal{I}(\mathbf{q},t) = \sum_{lpha,eta} \overline{b_{lpha} b_{eta}} \left\langle e^{i \mathbf{q}^T \cdot [\mathbf{R}_{eta}(t) - \mathbf{R}_{lpha}(0)]} \right\rangle$$

Here $\mathbf{R}_{\alpha}(t) \in \mathbb{R}^3$ are real-numbered vectors.

• The dynamics of the scattering system must evolve according to the laws of classical mechanics.

• The energy transfers must be small: $\frac{\hbar^2 \mathbf{q}^2}{2M} \ll k_B T$.

Accessible $(|\mathbf{q}|, \omega)$ -range:

Compute $q = \sqrt{(\mathbf{k}_0 - \mathbf{k})^2}$ and use that $E_0 = \hbar^2 |\mathbf{k}_0|^2 / 2m_n$ and $E = E_0 - \hbar \omega = \hbar^2 |\mathbf{k}|^2 / 2m_n$.

$$|\mathbf{q}| = k_0 \sqrt{2 - \frac{\hbar\omega}{E_0} - 2\sqrt{1 - \frac{\hbar\omega}{E_0}\cos\theta}}$$

Splitting $I(\mathbf{q}, t)$

Coherent and incoherent scattering:

$$\mathcal{I}(\mathbf{q},t) = \mathcal{I}_{coh}(\mathbf{q},t) + \mathcal{I}_{inc}(\mathbf{q},t)$$

where

$$\mathcal{I}_{coh}(\mathbf{q},t) = \sum_{\alpha,\beta} b_{\alpha,coh} b_{\beta,coh} \left\langle e^{(i\mathbf{q}^{T} \cdot [\mathbf{R}_{\beta}(t) - \mathbf{R}_{\alpha}(0)]} \right\rangle,$$
$$\mathcal{I}_{inc}(\mathbf{q},t) = \sum_{\alpha} b_{\alpha,inc}^{2} \left\langle e^{i\mathbf{q}^{T} \cdot [\mathbf{R}_{\alpha}(t) - \mathbf{R}_{\alpha}(0)]} \right\rangle.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Here
$$b_{lpha, coh} = \overline{b_{lpha}}$$
 and $b_{lpha, inc} = \sqrt{\overline{b_{lpha}^2} - \overline{b_{lpha}}^2}$

Distinct-scattering

A plane wave corresponding to an incident neutron hits the sample. The Huygens spherical waves emitted from *different* moving atoms at different times can interfere, giving rise to *distinct-scattering*.

Self-scattering

A plane wave corresponding to an incident neutron hits the sample. The Huygens spherical waves emitted from *the same* moving atom at different times can interfere, giving rise to *self-scattering*.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Hydrogen-rich samples

Incoherent scattering from hydrogen atoms dominates

Element	Н	D	С	0	Ν	S
b _{coh}	-3.741	6.674	6.648	5.805	9.300	2.847
b _{inc}	25.217	4.022	0.285	0.000	2.241	0.188

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Scattering lengths of some elements in $fm (10^{-15} m)$.

Approximation for $\mathcal{I}(\mathbf{q}, t)$

$$\begin{aligned} \mathcal{I}(\mathbf{q},t) &\approx N \, b_{H,inc}^2 \, I_H(\mathbf{q},t), \\ I_H(\mathbf{q},t) &= \frac{1}{N} \sum_{\alpha \in \{H\}} \left\langle \exp \left(i \mathbf{q}^T \cdot \left[\mathbf{R}_\alpha(t) - \mathbf{R}_\alpha(0) \right] \right) \right\rangle. \end{aligned}$$

Biomolecules or solvent can be masked by substituting $H \rightarrow D$.

Neutron scattering spectrum

 $S(q,\omega)$

Van Hove correlation functions

$$G_{H}(\mathbf{r},t) = \frac{1}{(2\pi)^{3}} \int d^{3}q \, \exp(i\mathbf{q}^{T} \cdot \mathbf{r}) I_{H}(\mathbf{q},t)$$

In the classical limit one has

$$G_{H}^{cl}(\mathbf{r},t) = rac{1}{N} \sum_{lpha \in \{H\}} \langle \delta\left(\mathbf{r} - \left[\mathbf{R}_{lpha}(t) - \mathbf{R}_{lpha}(0)
ight]
ight)
angle$$

Probability for a displacement \mathbf{r} of a hydrogen atom within time t.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

EISF

• Definition:

$$\textit{EISF}(\mathbf{q}) = \lim_{t \to \infty} I_{H}(\mathbf{q},t)$$

• Elastic line and the "rest":

$$S_H(\mathbf{q},\omega) = EISF(\mathbf{q})\delta(\omega) + S'_H(\mathbf{q},\omega)$$

• Sum rule

$$\boxed{\textit{EISF}(\mathbf{q}) + \int_{-\infty}^{+\infty} d\omega \, S'_{H}(\mathbf{q},\omega) = 1}$$

◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ● ● ●

Information in the EISF

$$EISF(\mathbf{q}) = \int d^3q \exp(-i\mathbf{q}^T \cdot \mathbf{r}) \ G_H(\mathbf{r},\infty)$$

- The EISF gives information about the configurational space explored by the hydrogen atoms.
- Any dynamical process leads to a drop-off of the EISF (⇒ "sum rule"). Processes which are too slow to be detected by a given instrument count as "elastic".

A quasielastic spectrum

Temperature dependence of $S(q, \omega)$ for D_2 0-hydrated myoglobin powders (Cusack & Doster, *Biophys. J.*, 1990).

Elastic scattering

Normalized elastic intensity of D_2O -deuterated myoglobin. The data are re-plotted from Doster *et al.*, *Nature*, 1989.

Probabilistic description

• *l*(**q**, *t*) in terms of a joint probability density

$$I(\mathbf{q},t) = \int \int d\Omega d\Omega' \, P(\Omega,t;\Omega',t') e^{i\mathbf{q}\cdot[\mathbf{R}(\Omega)-\mathbf{R}(\Omega')]}$$

• $G(\mathbf{r}, t)$ in terms of a joint probability density

$$G(\mathbf{r},t) = \int \int d\Omega d\Omega' \, \boldsymbol{P}(\Omega,t;\Omega',t') \delta(\mathbf{r} - [\mathbf{R}(\Omega) - \mathbf{R}(\Omega')])$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Ω and Ω' specify the state of the system at time t and t' < t, respectively.

Introducing models

• Bayes's rule:

$$P(\Omega, t; \Omega', t') = P(\Omega, t | \Omega', t') P(\Omega', t')$$

 $P(\Omega, t|\Omega', t')$ is a conditional probability density. Models are introduced for $P(\Omega, t|\Omega', t')$.

- Initial condition: $P(\Omega, t'|\Omega', t') = \delta(\Omega \Omega')$
- Equilibrium:

$$egin{aligned} & P(\Omega,t|\Omega',t') &= & P(\Omega,t-t'|\Omega',0), \ & P(\Omega',t') &= & P_{eq}(\Omega') = \lim_{t o \infty} P(\Omega,t|\Omega',t'). \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motion types

Three motion types are considered

- molecular translations
- molecular rotations
- intramolecular motions

Correspondingly, the positions are decomposed as

$$\mathbf{R}_{\alpha} = \mathbf{R}_{CM} + \mathbf{r}_{\alpha} + \mathbf{u}_{\alpha}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Here α denotes a "representative" atom and $C\!M$ the center of mass.

Decomposing $I(\mathbf{q}, t)$ and $S(\mathbf{q}, \omega)$

• Assumption of uncorrelated motions:

$$I(\mathbf{q},t) = I_{CM}(\mathbf{q},t)I_{rot}(\mathbf{q},t)I_{int}(\mathbf{q},t)$$

• Convolution product for $S_H(\mathbf{q}, \omega)$:

$$S(\mathbf{q},\omega) = (S_{CM} * S_{rot} * S_{int})(\mathbf{q},\omega)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Translational diffusion

Here
$$\Omega \equiv \{x, y, z\}$$
 and $\mathbf{R}(\Omega) = (x, y, z)^T$.

• Diffusion equation

$$\partial_t P = D\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) P$$

D is the diffusion constant ([D] = m^2/s).

• Gaussian solution

$$P(\mathbf{R}, t | \mathbf{R}', 0) = \frac{1}{\sqrt{4\pi Dt}^3} \exp\left(-\frac{|\mathbf{R} - \mathbf{R}'|^2}{4Dt}\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Translational diffusion (cont.)

• Intermediate scattering function

$$I(\mathbf{q},t) = \exp(-D\mathbf{q}^2 t)$$

• Dynamic structure factor

$$S(\mathbf{q},\omega)=rac{1}{\pi}rac{D\mathbf{q}^2}{\left(D\mathbf{q}^2
ight)^2+\omega^2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lorentzian quasielastic line.

Lorentz profile

Form of $S(\mathbf{q}, \omega)$ for translational diffusion. The widths of the the two Lorentzian profiles (on the ω -scale) are $\Gamma = 1$ (narrow line) and $\Gamma = 2$.

Translational diffusion (cont.)

• van Hove correlation function

$$G(\mathbf{r},t) = rac{1}{\sqrt{4\pi Dt}^3} \exp\left(-rac{\mathbf{r}^2}{4Dt}
ight)$$

Since $\lim_{t\to\infty} G(\mathbf{r}, t) = 0$, the EISF vanishes!

• Mean square displacement

$$\langle \mathbf{r}^2 \rangle(t) := \int_V d^3 r \, \mathbf{r}^2 G(\mathbf{r}, t) = 6Dt$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Stokes-Einstein relation:

$$D = \frac{k_B T}{6\pi \eta a}$$

Here η is the viscosity of the solvent, and *a* is the hydrodynamic radius of the molecule.

- The diffusion coefficient for lysozyme is found to be $D \approx 7.2 \cdot 10^{-7} \ cm^2/s$ by QENS¹ and $D \approx 14 \cdot 10^{-7} \ cm^2/s$ by DLS²
- The diffusion coefficient of water is $2.5 \cdot 10^{-5} cm^2/s$.

D_{CM} from MD and DLS

 D_{CM} of lysozyme from dynamic light scattering (Nystrom & Roots, 1984) and MD (Véronique Hamon, thesis Univ. Orléans 2004).

イロト 不得 トイヨト イヨト

э

Rotational diffusion

We consider first rotational diffusion on a sphere. Here $\Omega = (\alpha, \beta, \gamma)$ are the Euler angles describing the orientation of the molecule.

The intermediate scattering function is found to be³

$$I(\mathbf{q},t) = \sum_{l=0}^{\infty} (2l+1)j_l^2(|\mathbf{q}|a) \exp(-l(l+1)D_r t)$$

Here D_r is the rotational Diffusion constant $([D_r] = 1/s)$, a is the radius of the molecule, and $j_l(z)$ are the spherical Bessel functions.

³See lecture notes for the solution of the rotational diffusion equation for $P(\Omega, t | \Omega', 0)$.
Euler angles

Rotational diffusion (cont.)

Average over spheres of a spherical molecule, assuming a *homogenous distribution of hydrogen atoms*,

$$I(\mathbf{q},t) = \sum_{l=0}^{\infty} (2l+1)A_l(qa) \exp\left(-l(l+1)D_r t\right)$$

Here

$$A_{I}(qa) = \frac{3}{a^{3}} \int_{0}^{a} dR R^{2} j_{I}^{2}(qR)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Rotational diffusion (cont.)

• EISF:

$$EISF(\mathbf{q}) = A_0(qa) = \frac{3[2qa - \sin(2qa)]}{4q^3a^3}$$

• Dynamic structure factor:

$$S_{rot}(\mathbf{q},\omega) = A_0(qa)\delta(\omega) + rac{1}{\pi}\sum_{l=1}^{\infty}(2l+1)A_l(qa)rac{\Gamma_l}{\Gamma_l^2+\omega^2}$$

where

$$\Gamma_l = l(l+1)D_r.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Rotational EISF

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Stokes-Einstein relation:

For rotational motion (B. Cichocki et al., 1988)

$$\gamma_{\rm r} = \frac{k_B T}{4\pi \eta a^3}$$

• Rotational diffusion of whole proteins is *slow* : For a = 1.45 nm one obtains

$$au_{
m r} pprox$$
 10 ns

• Comparison for translational diffusion :

$$au_{CM} pprox 70 \ ps$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Damped vibrations (1-dim.)

Here
$$\Omega = (x, v)$$
, where $v = \dot{x}$.

• Harmonic force:

$$F(x) = -M\omega_0^2 x$$

• Langevin equation:

$$\frac{d^2x}{dt^2} + \gamma_0 \frac{dx}{dt} + \omega_0^2 x = \frac{1}{M} F_s$$

Here F_s is white noise with zero mean. Underdamped motion for $\omega_0 > \frac{\gamma_0}{2}$ overdamped motion for $\omega_0 \le \frac{\gamma_0}{2}$.

Damped vibrations (cont.)

• Intermediate scattering function:⁴

$$I(q,t) = \exp\left(-\frac{q^2}{2}W(t)\right)$$

• Mean square displacement:

$$W(t) = \langle [x(t) - x(0)]^2 \rangle$$

⁴See lecture notes for the solution of the Fokker-Planck equation for $P(\Omega, t | \Omega', 0)$.

Damped vibrations (cont.)

• Analytical form for MSD:

$$W(t) = \begin{cases} \frac{2k_B T}{M\omega_0^2} \left(1 - \exp\left(-\frac{\gamma_0 t}{2}\right) \left\{\cos\Omega t + \frac{\gamma_0}{2\Omega}\sin\Omega t\right\}\right) \\ \frac{2k_B T}{M\omega_0^2} \left(1 - \exp\left(-\frac{\gamma_0 t}{2}\right) \left\{\cosh|\Omega|t + \frac{\gamma_0}{2|\Omega}|\sinh|\Omega|t\right\}\right) \end{cases}$$

for underdamped and overdamped motion, respectively.

• Plateau value:

$$\lim_{t\to\infty} W(t) = \frac{2k_BT}{M\omega_0^2} = 2\langle x^2 \rangle$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Mean square displacement

MSD for the Langevin oscillator in the underdamped regime (dashed line) and in the overdamped regime (solid line).

Intermediate scattering function

I(q, t) for the Langevin oscillator in the underdamped regime (dashed line) and in the overdamped regime (solid line).

EISF

The EISF of a Langevin oscillator is given by

$$EISF(q) = \exp\left(-q^2\langle x^2\rangle\right)$$

where

$$\langle x^2 \rangle = \frac{k_B T}{M \omega_0^2}$$

is the *position fluctuation* of the oscillator. Within the harmonic model, the EISF allows to measure force constants. 5

⁵Zaccai, G., *Science*, 288:1604-1607, 2000.

Example #1:

Position fluctuations of *H*-atoms in D_2O -hydrated Myoglobin as a function of temperature (W. Doster *et al.*, *Nature*, 1989).

Example #2:

Position fluctuations of *H*-atoms in bacteriorhodopsin (BR) in purple membranes (PM). A) Dry PM (circles) and B) D_2O -hydrated PM (full squares) (M Ferrand et al., *PNAS*, 1993). Below 220K BR cannot perform a complete photocycle.

Dynamic structure factor

Numerical calculation of $S'(q, \omega)$ for the Langevin oscillator in the underdamped regime (dashed line) and in the overdamped regime (solid line).

Brownian motion

For strongly overdamped motion, $\gamma\gg\omega_{\rm 0},$ and observation times $t\gg 1/\gamma_{\rm 0},$

$$I(q,t) = \exp\left[-q^2 \frac{k_B T}{M\omega_0^2} \left(1 - \exp\left(-\gamma_0^{-1} \omega_0^2 t\right)\right)\right]$$

Approximation for small q

$$I'(q,t) \propto \exp\left(-\gamma_0^{-1}\omega_0^2 t
ight), \qquad q^2 \langle x^2
angle \ll 1.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $S'(q,\omega)$ is a Lorentzian.

QES from lysozyme

Fitted quasielastic spectrum (Lorentzian) of lysozyme in aqueous solution at 300 K (Véronique Hamon, thesis Univ. Orléans 2004) – see lecture notes.

MD simulations

• Numerical Integration of Newton's equation of motion,

$$m_{\alpha}\ddot{\mathbf{R}}_{\alpha}=-\frac{\partial U}{\partial \mathbf{R}_{\alpha}}$$

• Compute time correlations functions

$$\langle A(0)B(m)\rangle = rac{1}{N_t-m}\sum_{k=0}^{N_t-m-1}A(k)B(k+m)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Analyse MD trajectories to extract details not accessible to experiments.

MD force field

$$U = \sum_{\text{bonds } ij} k_{ij} \left(r_{ij} - r_{ij}^{(0)} \right)^{2} + \sum_{\text{angles } ijk} k_{ijk} \left(\phi_{ijk} - \phi_{ijk}^{(0)} \right)^{2} + \sum_{\text{dihedrals } ijkl} k_{ijkl} \cos\left(n_{ijkl} \theta_{ijkl} - \delta_{ijkl} \right) + \sum_{\text{all pairs } ij} 4\epsilon_{ij} \left(\left[\frac{\sigma_{ij}}{r} \right]^{12} - \left[\frac{\sigma_{ij}}{r} \right]^{6} \right) + \sum_{\text{all pairs } ij} \frac{q_{i}q_{j}}{4\pi\epsilon_{0}r_{ij}}.$$

Two groups of terms: bonded and non-bonded interactions.

Myoglobin

Left: Backbone of myoglobione. Right: 31 selected side-chains.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Motions seen by QENS

• Question:

What are the internal motions in proteins seen by QENS? (Jump diffusion, small-step diffusion,...)

• Hypothesis:

QENS is produced by "liquid-like" rigid-body motions of the protein side-chains.

• Verification:

Use MD simulations and the possibility to "filter" the trajectories: Remove internal side-chain motions *a posteriori* by rigid-body fits.

QENS from myogobin:

Neutron QES from myoglobin from MD simulation (Kneller & Smith, 1994) and experiment (Doster *et al.*, *Nature*, 1989).

(日)

э

EISF for myogobin:

EISF of myoglobin from MD simulation (Kneller & Smith, 1994) and experiment (Doster *et al.*, *Nature*, 1989).

Gaussian approximation

• Definition (here one atom, 1-d):

$$I(q,t) \approx \exp\left(-rac{q^2}{2}W(t)
ight)$$

• MSD and VACF:

$$W(t) = \langle [x(t) - x(0)]^2 \rangle = 2 \int_0^t d\tau (t - \tau) c_{vv}(\tau)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The GA represents a considerable simplification – it is always valid for small q.

EISF and GA

• Plateau for the MSD:

$$\lim_{t\to\infty}W(t)=2\langle x^2\rangle$$

• EISF:

$$EISF(q) = \lim_{t \to \infty} I(q, t) = \exp\left(-q^2 \langle x^2 \rangle\right)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Lysozyme

Left: The lysozyme molecule. Each atom is represented by a van der Waals sphere. **Right:** Protein backbone.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The GA for the *H*-atoms

I(q, t) for the *H*-atoms in lysozyme by direct calculation and GA.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

The GA for the C_{α} -atoms

I(q, t) for the C_{α} -atoms in lysozyme by direct calculation and GA.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Decomposing the EISF

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Decomposition of the EISF of lysozyme.

Motional heterogeneity

Non-linear behaviour of ln(EISF) as a function of q^2 can be due to

- Truly non-gaussian behavior (rotation of the side-chains)
- Motional heterogeneity of the atoms: Averaging Gaussians with different widths leads to a non-gaussian function.

Coarse-grained harmonic model

EISF:67

$$EISF(\mathbf{q}) = \sum_{\alpha=1}^{N} w_{\alpha} \exp\left(-k_{B}T\sum_{k=1}^{3N}\frac{1}{\tilde{\omega}_{j}^{2}}(\mathbf{q}^{T}\cdot\mathbf{d}_{j\alpha})^{2}\right)$$

Normal modes:⁸

$$\mathbf{K} \cdot \mathbf{d}_j = \omega_j^2 \mathbf{d}_j \qquad \mathbf{K} = \mathbf{M}^{-1/2} \cdot \left(\frac{\partial^2 U}{\partial x_i \partial x_j}\right) \Big|_{\min.} \cdot \mathbf{M}^{-1/2}$$

Scaled frequencies: $\tilde{\omega}_j = \eta \omega_j$ (0 < η < 1).

⁶Kneller, *Chem. Phys.* (2000); Hinsen *et al.*, *Chem. Phys.* (2000). ⁷The w_{α} are effective scattering lengths with $\sum_{\alpha} w_{\alpha} = 1$. ⁸M is the mass matrix of "point-like" residues.

Lysozyme at the residue level

Coarse-grained harmonic model for lysozyme. Each residue is represented by an "effective C_{α} -atom".

Harmonic EISF and MD

EISF for the C_{α} -atoms in lysozyme compared to an (effective) harmonic model with motional heterogeneity.

Multiscale relaxation

• Memory function equation (Zwanzig, 1961)

$$\partial_t I(\mathbf{q},t) = -\int_0^t d au\,\xi(\mathbf{q},t- au) I(\mathbf{q}, au)$$

Here $\xi(\mathbf{q}, t)$ is the memory function.

• Short-time memory $(q = |\mathbf{q}|)$

$$\xi(\mathbf{q},t) = Dq^2\delta(t) \implies I(\mathbf{q},t) = \exp(-Dq^2t)$$

Short-time memory corresponds to free Brownian motion, characterized by an exponential correlation function.

Relaxation in proteins

• Proteins have an enormous range of characteristic time scales (sub-picosecond to seconds).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Correlation functions are *multiexponential* with a broad distribution of relaxation time. There is no "characteristic time scale".
- Memory functions are long-ranged.

Non-Lorentzian spectrum

Incoherent $S(q, \omega)$ for the internal dynamics of lysozyme from simulation and fit of a Lorentzian.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Fractional Brownian Dynamics

• Spectrum

$$S_{\text{fBD}}(\omega) = \frac{2\tau \sin(\beta \pi/2)}{|\omega \tau| (|\omega \tau|^{\beta} + 2\cos(\beta \pi/2) + |\omega \tau|^{-\beta})}$$

for $0 < \beta \leq 1$.

• Memory function

$$\xi(t) \propto (eta-1) \left(rac{t}{ au}
ight)^{eta-2}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Long-ranged memory function with $\int_0^\infty dt \,\xi(t) = 0$.
Model and simulation

Dynamic structure factor and memory function for lysozyme at $q = 10 nm^{-1}$ from MD and fBD model.

Different scattering laws

Solid line = fBD model with $\beta = 1/2$, **dashed line** = Lorentzian, **dot-dashed line** = and stretched exponential with $\beta = 1/2$.

イロト 不得 トイヨト イヨト

э

Simulation / Experiment

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣��

EISF and global diffusion

• CM diffusion and internal motions

$$S(\mathbf{q},\omega) = (S_{CM} * S_{int})(\mathbf{q},\omega).$$

Internal motions

$$S_{int}(\mathbf{q},\omega) = EISF(\mathbf{q})\delta(\omega) + S'_{int}(\mathbf{q},\omega).$$

• Resulting scattering law

$$S(\mathbf{q},\omega) = \frac{EISF(\mathbf{q})S_{CM}(\mathbf{q},\omega)}{EISF(\mathbf{q})S_{CM}(\mathbf{q},\omega)} + (S_{CM} * S')(\mathbf{q},\omega)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Summary

- MD simulation is a reliable tool for complementary numerical experiments to neutron scattering.
- Simulation-based modeling of protein dynamics is a powerful method to develop simple, but realistic models:
 - The Gaussian approximation is very reasonable. Rotational motions account only for a small fraction of the EISF.
 - Due to long-time memory effects, quasielastic spectra cannot be modeled with one or a few Lorentzians.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00