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Motivation

• Flexibility and motion at the atomic level is important for protein
function. Many proteins do not function below a transition
temperature of T ≈ 200K .

• At the transition temperature an onset of diffusive motions on the
ps-timescale is observed by quasielastic neutron scattering.

• The onset of diffusive motions entails an increase of conformational
disorder (entropy) and enables intramolecular transport processes.

• Understand relaxation and transport processes in proteins



Protein energy landscape

potential energy surface in proteins

substates

• Few principal minima and a large number of sub-minima
(“conformational substates”).

• Thermally activated hopping between subminima may be described
as a diffusion process =⇒ quasielastic neutron scattering.



Properties of neutrons

Property Symbol Value

Mass m 1.008 a.m.u. ≈ 1.6 10−27kg
Energy E ≈ 25meV = kBT (T = 300K )
Charge Q 0

Neutrons can be produced by

• controlled nuclear fission (reactors).

• by “evaporation” from heavy target atoms upon collision with
energetic protons (spallation sources).



Particles and waves

• Energy-momentum relation:

E =
p2

2m
(non-relativistic particle).

• Wave properties: (free particle = plane wave)

E = ~ω

p = ~k, where k =
2π

λ
n. (wave vector)

Here ~ = h/2π, and h = 6.626176 · 10−34 Js.

λ = 1.8 Å for E = kBT and T = 300K . Neutrons probe structure and

dynamics of condensed matter on the atomic scale.



Neutron scattering experiment
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Differential scattering X-section

d2σ

dΩdω
=
|k|
|k0|
S(q, ω)

Here

q = k0 − k, ω =
E0 − E

~
are the momentum transfer and energy transfer, respectively, and
S(q, ω) is the dynamic structure factor.



Experimental hall at ILL



The IN5 spectrometer at ILL



Fermi potential

V =
∑
α

2π~2

µα
bαδ(r − Rα)

Neutrons see the nuclei. Here µα is the (reduced) mass of the
target atom.

σtotα = 4πb2
α, Mα � m.

is the total scattering cross section. The scattering lengths bα are
of the order of fm (10−15m).



Dynamic structure factor

S(q, ω) =
1

2π

∫ +∞

−∞
dt exp(−iωt)I(q, t),

I(q, t) =
∑
α,β

bαbβ

〈
e iq

T ·Rβ(t)e−iq
T ·Rα(0)

〉
.

bαbβ = average over isotopes and relative spin orientations of
neutron and nucleus. I(q, t) is called the intermediate scattering
function.

S(q, ω) is sensitive to structural and dynamical correlations of
atomic positions.



Classical description

Intermediate scattering function

I(q, t) =
∑
α,β

bαbβ

〈
e iq

T ·[Rβ(t)−Rα(0)]
〉

Here Rα(t) ∈ R3 are real-numbered vectors.

• The dynamics of the scattering system must evolve according
to the laws of classical mechanics.

• The energy transfers must be small: ~2q2

2M � kBT .



Accessible (|q|, ω)-range:

Compute q =
√

(k0 − k)2 and use that E0 = ~2|k0|2/2mn and
E = E0 − ~ω = ~2|k|2/2mn.

|q| = k0

√
2− ~ω

E0
− 2

√
1− ~ω

E0
cos θ



Splitting I (q, t)

Coherent and incoherent scattering:

I(q, t) = Icoh(q, t) + Iinc(q, t)

where

Icoh(q, t) =
∑
α,β

bα,cohbβ,coh

〈
e(iqT ·[Rβ(t)−Rα(0)]

〉
,

Iinc(q, t) =
∑
α

b2
α,inc

〈
e iq

T ·[Rα(t)−Rα(0)]
〉
.

Here bα,coh = bα and bα,inc =

√
b2
α − bα

2



Distinct-scattering

α

β

at time τ

at time τ

at time τ + t

β

α

at time τ

A plane wave corresponding to an incident neutron hits the sample. The

Huygens spherical waves emitted from different moving atoms at

different times can interfere, giving rise to distinct-scattering.



Self-scattering

at time τ

α

at time τ+t

A plane wave corresponding to an incident neutron hits the sample. The

Huygens spherical waves emitted from the same moving atom at different

times can interfere, giving rise to self-scattering.



Hydrogen-rich samples

Incoherent scattering from hydrogen atoms dominates

Element H D C O N S

bcoh −3.741 6.674 6.648 5.805 9.300 2.847
binc 25.217 4.022 0.285 0.000 2.241 0.188

Scattering lengths of some elements in fm (10−15 m).



Approximation for I(q, t)

I(q, t) ≈ N b2
H,inc IH(q, t),

IH(q, t) =
1

N

∑
α∈{H}

〈
exp
(
iqT · [Rα(t)− Rα(0)]

)〉
.

Biomolecules or solvent can be masked by substituting H → D.



Neutron scattering spectrum
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Van Hove correlation functions

GH(r, t) =
1

(2π)3

∫
d3q exp(iqT · r)IH(q, t)

In the classical limit one has

G cl
H (r, t) =

1

N

∑
α∈{H}

〈δ (r − [Rα(t)− Rα(0)])〉

Probability for a displacement r of a hydrogen atom within time t.



EISF

• Definition:
EISF (q) = lim

t→∞
IH(q, t)

• Elastic line and the “rest”:

SH(q, ω) = EISF (q)δ(ω) + S ′H(q, ω)

• Sum rule

EISF (q) +

∫ +∞

−∞
dω S ′H(q, ω) = 1



Information in the EISF

EISF (q) =

∫
d3q exp(−iqT · r)GH(r,∞)

• The EISF gives information about the configurational space
explored by the hydrogen atoms.

• Any dynamical process leads to a drop-off of the EISF (=⇒
“sum rule”). Processes which are too slow to be detected by
a given instrument count as “elastic”.



A quasielastic spectrum
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Temperature dependence of S(q, ω) for D20-hydrated myoglobin powders

(Cusack & Doster, Biophys. J., 1990).



Elastic scattering
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Normalized elastic intensity of D2O-deuterated myoglobin. The data are

re-plotted from Doster et al., Nature, 1989.



Probabilistic description

• I (q, t) in terms of a joint probability density

I (q, t) =

∫ ∫
dΩdΩ′ P(Ω, t; Ω′, t ′)e iq·[R(Ω)−R(Ω′)]

• G (r, t) in terms of a joint probability density

G (r, t) =

∫ ∫
dΩdΩ′ P(Ω, t; Ω′, t ′)δ(r − [R(Ω)− R(Ω′)])

Ω and Ω′ specify the state of the system at time t and
t ′ < t, respectively.



Introducing models

• Bayes’s rule:

P(Ω, t; Ω′, t ′) = P(Ω, t|Ω′, t ′)P(Ω′, t ′)

P(Ω, t|Ω′, t ′) is a conditional probability density. Models are
introduced for P(Ω, t|Ω′, t ′).

• Initial condition: P(Ω, t ′|Ω′, t ′) = δ(Ω− Ω′)

• Equilibrium:

P(Ω, t|Ω′, t ′) = P(Ω, t − t ′|Ω′, 0),

P(Ω′, t ′) = Peq(Ω′) = lim
t→∞

P(Ω, t|Ω′, t ′).



Motion types

Three motion types are considered

• molecular translations

• molecular rotations

• intramolecular motions

Correspondingly, the positions are decomposed as

Rα = RCM + rα + uα

Here α denotes a “representative” atom and CM the center of
mass.



Decomposing I (q, t) and S(q, ω)

• Assumption of uncorrelated motions:

I (q, t) = ICM(q, t)Irot(q, t)Iint(q, t)

• Convolution product for SH(q, ω):

S(q, ω) = (SCM ∗ Srot ∗ Sint)(q, ω)



Translational diffusion

Here Ω ≡ {x , y , z} and R(Ω) = (x , y , z)T .

• Diffusion equation

∂tP = D

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
P

D is the diffusion constant ([D] = m2/s).

• Gaussian solution

P(R, t|R′, 0) =
1

√
4πDt

3 exp

(
−|R− R′|2

4Dt

)



Translational diffusion (cont.)

• Intermediate scattering function

I (q, t) = exp(−Dq2t)

• Dynamic structure factor

S(q, ω) =
1

π

Dq2

(Dq2)2 + ω2

Lorentzian quasielastic line.



Lorentz profile
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Form of S(q, ω) for translational diffusion. The widths of the the two

Lorentzian profiles (on the ω-scale) are Γ = 1 (narrow line) and Γ = 2.



Translational diffusion (cont.)

• van Hove correlation function

G (r, t) =
1

√
4πDt

3
exp

(
− r2

4Dt

)

Since limt→∞ G (r, t) = 0, the EISF vanishes!

• Mean square displacement

〈r2〉(t) :=

∫
V
d3r r2G (r, t) = 6Dt



Stokes-Einstein relation:

D =
kBT

6πηa

Here η is the viscosity of the solvent, and a is the hydrodynamic
radius of the molecule.

• The diffusion coefficient for lysozyme is found to be
D ≈ 7.2 · 10−7 cm2/s by QENS1 and D ≈ 14 · 10−7 cm2/s by
DLS2

• The diffusion coefficient of water is 2.5 · 10−5cm2/s.

1J. Perez, J.M. Zanotti, D. Durand, Biophys. J. 77, 454-469 (1999)
2Nystrom & Roots, Makromol. Chem. 185, 1441-1447 (1984)



DCM from MD and DLS
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DCM of lysozyme from dynamic light scattering (Nystrom & Roots, 1984)

and MD (Véronique Hamon, thesis Univ. Orléans 2004).



Rotational diffusion

We consider first rotational diffusion on a sphere. Here
Ω = (α, β, γ) are the Euler angles describing the orientation of the
molecule.

The intermediate scattering function is found to be3

I (q, t) =
∞∑
l=0

(2l + 1)j2
l (|q|a) exp

(
−l(l + 1)Dr t

)
Here Dr is the rotational Diffusion constant ([Dr ] = 1/s), a is the
radius of the molecule, and jl(z) are the spherical Bessel functions.

3See lecture notes for the solution of the rotational diffusion equation for
P(Ω, t|Ω′, 0).
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Rotational diffusion (cont.)

Average over spheres of a spherical molecule, assuming a
homogenous distribution of hydrogen atoms,

I (q, t) =
∞∑
l=0

(2l + 1)Al(qa) exp
(
−l(l + 1)Dr t

)
Here

Al(qa) =
3

a3

∫ a

0
dR R2j2

l (qR)



Rotational diffusion (cont.)

• EISF:

EISF (q) = A0(qa) =
3[2qa− sin(2qa)]

4q3a3

• Dynamic structure factor:

Srot(q, ω) = A0(qa)δ(ω) +
1

π

∞∑
l=1

(2l + 1)Al(qa)
Γl

Γ2
l + ω2

where
Γl = l(l + 1)Dr .



Rotational EISF
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Stokes-Einstein relation:

For rotational motion (B. Cichocki et al., 1988)

γr =
kBT

4πηa3

• Rotational diffusion of whole proteins is slow : For
a = 1.45 nm one obtains

τr ≈ 10 ns

• Comparison for translational diffusion :

τCM ≈ 70 ps



Damped vibrations (1-dim.)

Here Ω = (x , v), where v = ẋ .

• Harmonic force:
F (x) = −Mω2

0x

• Langevin equation:

d2x

dt2
+ γ0

dx

dt
+ ω2

0x =
1

M
Fs

Here Fs is white noise with zero mean. Underdamped motion for

ω0 >
γ0

2 overdamped motion for ω0 ≤ γ0

2 .



Damped vibrations (cont.)

• Intermediate scattering function:4

I (q, t) = exp

(
−q2

2
W (t)

)

• Mean square displacement:

W (t) = 〈[x(t)− x(0)]2〉

4See lecture notes for the solution of the Fokker-Planck equation for
P(Ω, t|Ω′, 0).



Damped vibrations (cont.)

• Analytical form for MSD:

W (t) =


2kBT
Mω2

0

(
1− exp

(
−γ0t

2

) {
cos Ωt + γ0

2Ω sin Ωt
})

2kBT
Mω2

0

(
1− exp

(
−γ0t

2

){
cosh |Ω|t + γ0

2|Ω | sinh |Ω|t
})

for underdamped and overdamped motion, respectively.

• Plateau value:

lim
t→∞

W (t) =
2kBT

Mω2
0

= 2〈x2〉



Mean square displacement
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Intermediate scattering function
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EISF

The EISF of a Langevin oscillator is given by

EISF (q) = exp
(
−q2〈x2〉

)
where

〈x2〉 =
kBT

Mω2
0

is the position fluctuation of the oscillator.
Within the harmonic model, the EISF allows to measure force
constants.5

5Zaccai, G., Science, 288:1604-1607, 2000.



Example #1:
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Position fluctuations of H-atoms in D2O-hydrated Myoglobin as a

function of temperature (W. Doster et al., Nature,1989).



Example #2:
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Position fluctuations of H-atoms in bacteriorhodopsin (BR) in purple

membranes (PM). A) Dry PM (circles) and B) D2O-hydrated PM (full

squares) (M Ferrand et al., PNAS, 1993). Below 220K BR cannnot

perform a complete photocycle.



Dynamic structure factor
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Numerical calculation of S ′(q, ω) for the Langevin oscillator in the

underdamped regime (dashed line) and in the overdamped regime (solid

line).



Brownian motion

For strongly overdamped motion, γ � ω0, and observation times
t � 1/γ0,

I (q, t) = exp

[
−q2 kBT

Mω2
0

(
1− exp

(
−γ−1

0 ω2
0t
))]

Approximation for small q

I ′(q, t) ∝ exp
(
−γ−1

0 ω2
0t
)
, q2〈x2〉 � 1.

S ′(q, ω) is a Lorentzian.



QES from lysozyme
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Fitted quasielastic spectrum (Lorentzian) of lysozyme in aqueous solution

at 300 K (Véronique Hamon, thesis Univ. Orléans 2004) – see lecture

notes.



MD simulations

• Numerical Integration of Newton’s equation of motion,

mαR̈α = − ∂U

∂Rα

• Compute time correlations functions

〈A(0)B(m)〉 =
1

Nt −m

Nt−m−1∑
k=0

A(k)B(k + m)

• Analyse MD trajectories to extract details not accessible to
experiments.



MD force field

U =
∑

bonds ij

kij
(
rij − r

(0)
ij

)2

+
∑

angles ijk

kijk
(
φijk − φ(0)

ijk

)2

+
∑

dihedrals ijkl

kijkl cos (nijklθijkl − δijkl)

+
∑

all pairs ij

4εij

([σij
r

]12

−
[σij
r

]6
)

+
∑

all pairs ij

qiqj
4πε0rij

.

Two groups of terms: bonded and non-bonded interactions.



Myoglobin

Left: Backbone of myoglobione. Right: 31 selected side-chains.



Motions seen by QENS

• Question:
What are the internal motions in proteins seen by QENS?
(Jump diffusion, small-step diffusion,...)

• Hypothesis:
QENS is produced by “liquid-like” rigid-body motions of the
protein side-chains.

• Verification:
Use MD simulations and the possibility to “filter” the
trajectories: Remove internal side-chain motions a posteriori
by rigid-body fits.



QENS from myogobin:
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Neutron QES from myoglobin from MD simulation (Kneller & Smith,

1994) and experiment (Doster et al., Nature, 1989).



EISF for myogobin:
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EISF of myoglobin from MD simulation (Kneller & Smith, 1994) and

experiment (Doster et al., Nature, 1989).



Gaussian approximation

• Definition (here one atom, 1-d):

I (q, t) ≈ exp

(
−q2

2
W (t)

)

• MSD and VACF:

W (t) = 〈[x(t)− x(0)]2〉 = 2

∫ t

0
dτ (t − τ)cvv (τ)

The GA represents a considerable simplification – it is always valid
for small q.



EISF and GA

• Plateau for the MSD:

lim
t→∞

W (t) = 2 〈x2〉

• EISF:

EISF (q) = lim
t→∞

I (q, t) = exp
(
−q2〈x2〉

)



Lysozyme

Left: The lysozyme molecule. Each atom is represented by a van der

Waals sphere. Right: Protein backbone.



The GA for the H-atoms
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The GA for the Cα-atoms
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Decomposing the EISF
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Decomposition of the EISF of lysozyme.



Motional heterogeneity

Non-linear behaviour of ln(EISF ) as a function of q2 can be due to

• Truly non-gaussian behavior (rotation of the side-chains)

• Motional heterogeneity of the atoms: Averaging Gaussians
with different widths leads to a non-gaussian function.



Coarse-grained harmonic model

EISF:67

EISF (q) =
N∑
α=1

wα exp

(
−kBT

3N∑
k=1

1

ω̃2
j

(qT · djα)2

)

Normal modes:8

K · dj = ω2
j dj K = M−1/2 ·

(
∂2U

∂xi∂xj

)∣∣∣∣
min.

·M−1/2

Scaled frequencies: ω̃j = ηωj (0 < η < 1).

6Kneller, Chem. Phys. (2000); Hinsen et al., Chem. Phys. (2000).
7The wα are effective scattering lengths with

∑
α wα = 1.

8M is the mass matrix of “point-like” residues.



Lysozyme at the residue level

Coarse-grained harmonic model for lysozyme. Each residue is represented

by an “effective Cα-atom”.



Harmonic EISF and MD
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Multiscale relaxation

• Memory function equation (Zwanzig, 1961)

∂t I (q, t) = −
∫ t

0
dτ ξ(q, t − τ)I (q, τ)

Here ξ(q, t) is the memory function.

• Short-time memory (q = |q|)

ξ(q, t) = Dq2δ(t) =⇒ I (q, t) = exp(−Dq2t)

Short-time memory corresponds to free Brownian motion,
characterized by an exponential correlation function.



Relaxation in proteins

• Proteins have an enormous range of characteristic time scales
(sub-picosecond to seconds).

• Correlation functions are multiexponential – with a broad
distribution of relaxation time. There is no “characteristic
time scale”.

• Memory functions are long-ranged.



Non-Lorentzian spectrum
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Incoherent S(q, ω) for the internal dynamics of lysozyme from simulation

and fit of a Lorentzian.



Fractional Brownian Dynamics

• Spectrum

SfBD(ω) =
2τ sin(βπ/2)

|ωτ | (|ωτ |β + 2 cos(βπ/2) + |ωτ |−β)

for 0 < β ≤ 1.

• Memory function

ξ(t) ∝ (β − 1)
( t
τ

)β−2

Long-ranged memory function with
∫∞

0 dt ξ(t) = 0.



Model and simulation
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Different scattering laws

-2 -1.5 -1 -0.5 0 0.5 1
log

10
(ωτ)

-2

-1

0

1

2

lo
g

1
0
(S

(ω
τ
))

Solid line = fBD model with β = 1/2, dashed line = Lorentzian,

dot-dashed line = and stretched exponential with β = 1/2.



Simulation / Experiment
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EISF and global diffusion

• CM diffusion and internal motions

S(q, ω) = (SCM ∗ Sint)(q, ω).

• Internal motions

Sint(q, ω) = EISF (q)δ(ω) + S ′int(q, ω).

• Resulting scattering law

S(q, ω) = EISF (q)SCM(q, ω) + (SCM ∗ S ′)(q, ω)



Summary

• MD simulation is a reliable tool for complementary numerical
experiments to neutron scattering.

• Simulation-based modeling of protein dynamics is a powerful
method to develop simple, but realistic models:

- The Gaussian approximation is very reasonable. Rotational
motions account only for a small fraction of the EISF.

- Due to long-time memory effects, quasielastic spectra cannot
be modeled with one or a few Lorentzians.


