Quasielastic neutron scattering from soft matter Adapted from HERCULES lectures 2003/4

Gerald R. Kneller
Centre de Biophysique Moléculaire, CNRS Orléans and
Synchrotron SOLEIL

September 18, 2022

Contents

- Motivation
- Principles of neutron scattering
- Analytical models for protein dynamics
- Application of computer simulations
- Simulation-based models for protein dynamics

Motivation

- Flexibility and motion at the atomic level is important for protein function. Many proteins do not function below a transition temperature of $T \approx 200 \mathrm{~K}$.
- At the transition temperature an onset of diffusive motions on the $p s$-timescale is observed by quasielastic neutron scattering.
- The onset of diffusive motions entails an increase of conformational disorder (entropy) and enables intramolecular transport processes.
- Understand relaxation and transport processes in proteins

Protein energy landscape

- Few principal minima and a large number of sub-minima ("conformational substates").
- Thermally activated hopping between subminima may be described as a diffusion process \Longrightarrow quasielastic neutron scattering.

Properties of neutrons

Property Symbol Value
Mass $m \quad 1.008$ a.m.u. $\approx 1.610^{-27} \mathrm{~kg}$
Energy $\quad E \quad \approx 25 \mathrm{meV}=k_{B} T(T=300 \mathrm{~K})$
Charge $Q \quad 0$
Neutrons can be produced by

- controlled nuclear fission (reactors).
- by "evaporation" from heavy target atoms upon collision with energetic protons (spallation sources).

Particles and waves

- Energy-momentum relation:

$$
E=\frac{\mathbf{p}^{2}}{2 m} \quad \text { (non-relativistic particle). }
$$

- Wave properties: (free particle = plane wave)

$$
\begin{aligned}
& E=\hbar \omega \\
& \mathbf{p}=\hbar \mathbf{k}, \quad \text { where } \quad \mathbf{k}=\frac{2 \pi}{\lambda} \mathbf{n} . \quad \text { (wave vector) }
\end{aligned}
$$

Here $\hbar=h / 2 \pi$, and $h=6.626176 \cdot 10^{-34} \mathrm{Js}$.
$\lambda=1.8 \AA$ for $E=k_{B} T$ and $T=300 \mathrm{~K}$. Neutrons probe structure and dynamics of condensed matter on the atomic scale.

Neutron scattering experiment

Differential scattering X-section

$$
\frac{d^{2} \sigma}{d \Omega d \omega}=\frac{|\mathbf{k}|}{\left|\mathbf{k}_{0}\right|} \mathcal{S}(\mathbf{q}, \omega)
$$

Here

$$
\mathbf{q}=\mathbf{k}_{0}-\mathbf{k}, \quad \omega=\frac{E_{0}-E}{\hbar}
$$

are the momentum transfer and energy transfer, respectively, and $\mathcal{S}(\mathbf{q}, \omega)$ is the dynamic structure factor.

Experimental hall at ILL

The IN5 spectrometer at ILL

[^0]
Fermi potential

$$
V=\sum_{\alpha} \frac{2 \pi \hbar^{2}}{\mu_{\alpha}} b_{\alpha} \delta\left(\mathbf{r}-\mathbf{R}_{\alpha}\right)
$$

Neutrons see the nuclei. Here μ_{α} is the (reduced) mass of the target atom.

$$
\sigma_{\alpha}^{\text {tot }}=4 \pi b_{\alpha}^{2}, \quad M_{\alpha} \gg m
$$

is the total scattering cross section. The scattering lengths b_{α} are of the order of $\mathrm{fm}\left(10^{-15} \mathrm{~m}\right)$.

Dynamic structure factor

$$
\begin{aligned}
\mathcal{S}(\mathbf{q}, \omega) & =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} d t \exp (-i \omega t) \mathcal{I}(\mathbf{q}, t) \\
\mathcal{I}(\mathbf{q}, t) & =\sum_{\alpha, \beta} \overline{b_{\alpha} b_{\beta}}\left\langle e^{i \mathbf{q}^{T} \cdot \mathbf{R}_{\beta}(t)} e^{-i \mathbf{q}^{T} \cdot \mathbf{R}_{\alpha}(0)}\right\rangle
\end{aligned}
$$

$\overline{b_{\alpha} b_{\beta}}=$ average over isotopes and relative spin orientations of neutron and nucleus. $\mathcal{I}(\mathbf{q}, t)$ is called the intermediate scattering function.
$\mathcal{S}(\mathbf{q}, \omega)$ is sensitive to structural and dynamical correlations of atomic positions.

Classical description

Intermediate scattering function

$$
\mathcal{I}(\mathbf{q}, t)=\sum_{\alpha, \beta} \overline{b_{\alpha} b_{\beta}}\left\langle e^{i \mathbf{q}^{T} \cdot\left[\mathbf{R}_{\beta}(t)-\mathbf{R}_{\alpha}(0)\right]}\right\rangle
$$

Here $\mathbf{R}_{\alpha}(t) \in \mathbb{R}^{3}$ are real-numbered vectors.

- The dynamics of the scattering system must evolve according to the laws of classical mechanics.
- The energy transfers must be small: $\frac{\hbar^{2} \mathbf{q}^{2}}{2 M} \ll k_{B} T$.

Accessible $(|\mathbf{q}|, \omega)$-range:

Compute $q=\sqrt{\left(\mathbf{k}_{0}-\mathbf{k}\right)^{2}}$ and use that $E_{0}=\hbar^{2}\left|\mathbf{k}_{0}\right|^{2} / 2 m_{n}$ and $E=E_{0}-\hbar \omega=\hbar^{2}|\mathbf{k}|^{2} / 2 m_{n}$.

$$
|\mathbf{q}|=k_{0} \sqrt{2-\frac{\hbar \omega}{E_{0}}-2 \sqrt{1-\frac{\hbar \omega}{E_{0}}} \cos \theta}
$$

Splitting $I(\mathbf{q}, t)$

Coherent and incoherent scattering:

$$
\mathcal{I}(\mathbf{q}, t)=\mathcal{I}_{\text {coh }}(\mathbf{q}, t)+\mathcal{I}_{\text {inc }}(\mathbf{q}, t)
$$

where

$$
\begin{aligned}
& \mathcal{I}_{\text {coh }}(\mathbf{q}, t)=\sum_{\alpha, \beta} b_{\alpha, c o h} b_{\beta, c o h}\left\langle e^{\left(i \mathbf{q}^{T} \cdot\left[\mathbf{R}_{\beta}(t)-\mathbf{R}_{\alpha}(0)\right]\right.}\right\rangle \\
& \mathcal{I}_{\text {inc }}(\mathbf{q}, t)=\sum_{\alpha} b_{\alpha, i n c}^{2}\left\langle e^{i \mathbf{q}^{T} \cdot\left[\mathbf{R}_{\alpha}(t)-\mathbf{R}_{\alpha}(0)\right]}\right\rangle
\end{aligned}
$$

Here $b_{\alpha, \text { coh }}=\overline{b_{\alpha}}$ and $b_{\alpha, \text { inc }}=\sqrt{\overline{b_{\alpha}^{2}}-\overline{b_{\alpha}}}{ }^{2}$

Distinct-scattering

A plane wave corresponding to an incident neutron hits the sample. The Huygens spherical waves emitted from different moving atoms at different times can interfere, giving rise to distinct-scattering.

Self-scattering

A plane wave corresponding to an incident neutron hits the sample. The Huygens spherical waves emitted from the same moving atom at different times can interfere, giving rise to self-scattering.

Hydrogen-rich samples

Incoherent scattering from hydrogen atoms dominates

Element	H	D	C	O	N	S
$b_{\text {coh }}$	-3.741	6.674	6.648	5.805	9.300	2.847
$b_{\text {inc }}$	25.217	4.022	0.285	0.000	2.241	0.188

Scattering lengths of some elements in $\mathrm{fm}\left(10^{-15} \mathrm{~m}\right)$.

Approximation for $\mathcal{I}(\mathbf{q}, t)$

$$
\begin{aligned}
\mathcal{I}(\mathbf{q}, t) & \approx N b_{H, i n c}^{2} I_{H}(\mathbf{q}, t), \\
I_{H}(\mathbf{q}, t) & =\frac{1}{N} \sum_{\alpha \in\{H\}}\left\langle\exp \left(i \mathbf{q}^{T} \cdot\left[\mathbf{R}_{\alpha}(t)-\mathbf{R}_{\alpha}(0)\right]\right)\right\rangle .
\end{aligned}
$$

Biomolecules or solvent can be masked by substituting $H \rightarrow D$.

Neutron scattering spectrum

$S(q, \omega)$

Van Hove correlation functions

$$
G_{H}(\mathbf{r}, t)=\frac{1}{(2 \pi)^{3}} \int d^{3} q \exp \left(i \mathbf{q}^{T} \cdot \mathbf{r}\right) I_{H}(\mathbf{q}, t)
$$

In the classical limit one has

$$
G_{H}^{c \prime}(\mathbf{r}, t)=\frac{1}{N} \sum_{\alpha \in\{H\}}\left\langle\delta\left(\mathbf{r}-\left[\mathbf{R}_{\alpha}(t)-\mathbf{R}_{\alpha}(0)\right]\right)\right\rangle
$$

Probability for a displacement \mathbf{r} of a hydrogen atom within time t.

- Definition:

$$
\operatorname{EISF}(\mathbf{q})=\lim _{t \rightarrow \infty} I_{H}(\mathbf{q}, t)
$$

- Elastic line and the "rest":

$$
S_{H}(\mathbf{q}, \omega)=\operatorname{EISF}(\mathbf{q}) \delta(\omega)+S_{H}^{\prime}(\mathbf{q}, \omega)
$$

- Sum rule

$$
\operatorname{EISF}(\mathbf{q})+\int_{-\infty}^{+\infty} d \omega S_{H}^{\prime}(\mathbf{q}, \omega)=1
$$

Information in the EISF

$$
\operatorname{EISF}(\mathbf{q})=\int d^{3} q \exp \left(-i \mathbf{q}^{T} \cdot \mathbf{r}\right) G_{H}(\mathbf{r}, \infty)
$$

- The EISF gives information about the configurational space explored by the hydrogen atoms.
- Any dynamical process leads to a drop-off of the EISF (\Longrightarrow "sum rule"). Processes which are too slow to be detected by a given instrument count as "elastic".

A quasielastic spectrum

Temperature dependence of $S(q, \omega)$ for $D_{2} 0$-hydrated myoglobin powders (Cusack \& Doster, Biophys. J., 1990).

Elastic scattering

Normalized elastic intensity of $\mathrm{D}_{2} \mathrm{O}$-deuterated myoglobin. The data are re-plotted from Doster et al., Nature, 1989.

Probabilistic description

- $I(\mathbf{q}, t)$ in terms of a joint probability density

$$
I(\mathbf{q}, t)=\iint d \Omega d \Omega^{\prime} P\left(\Omega, t ; \Omega^{\prime}, t^{\prime}\right) e^{i \boldsymbol{q} \cdot\left[\mathbf{R}(\Omega)-\mathbf{R}\left(\Omega^{\prime}\right)\right]}
$$

- $G(\mathbf{r}, t)$ in terms of a joint probability density

$$
G(\mathbf{r}, t)=\iint d \Omega d \Omega^{\prime} P\left(\Omega, t ; \Omega^{\prime}, t^{\prime}\right) \delta\left(\mathbf{r}-\left[\mathbf{R}(\Omega)-\mathbf{R}\left(\Omega^{\prime}\right)\right]\right)
$$

Ω and Ω^{\prime} specify the state of the system at time t and $t^{\prime}<t$, respectively.

Introducing models

- Bayes's rule:

$$
P\left(\Omega, t ; \Omega^{\prime}, t^{\prime}\right)=P\left(\Omega, t \mid \Omega^{\prime}, t^{\prime}\right) P\left(\Omega^{\prime}, t^{\prime}\right)
$$

$P\left(\Omega, t \mid \Omega^{\prime}, t^{\prime}\right)$ is a conditional probability density. Models are introduced for $P\left(\Omega, t \mid \Omega^{\prime}, t^{\prime}\right)$.

- Initial condition: $P\left(\Omega, t^{\prime} \mid \Omega^{\prime}, t^{\prime}\right)=\delta\left(\Omega-\Omega^{\prime}\right)$
- Equilibrium:

$$
\begin{aligned}
P\left(\Omega, t \mid \Omega^{\prime}, t^{\prime}\right) & =P\left(\Omega, t-t^{\prime} \mid \Omega^{\prime}, 0\right) \\
P\left(\Omega^{\prime}, t^{\prime}\right) & =P_{e q}\left(\Omega^{\prime}\right)=\lim _{t \rightarrow \infty} P\left(\Omega, t \mid \Omega^{\prime}, t^{\prime}\right)
\end{aligned}
$$

Motion types

Three motion types are considered

- molecular translations
- molecular rotations
- intramolecular motions

Correspondingly, the positions are decomposed as

$$
\mathbf{R}_{\alpha}=\mathbf{R}_{C M}+\mathbf{r}_{\alpha}+\mathbf{u}_{\alpha}
$$

Here α denotes a "representative" atom and CM the center of mass.

Decomposing $I(\mathbf{q}, t)$ and $S(\mathbf{q}, \omega)$

- Assumption of uncorrelated motions:

$$
I(\mathbf{q}, t)=I_{C M}(\mathbf{q}, t) I_{\text {rot }}(\mathbf{q}, t) I_{\text {int }}(\mathbf{q}, t)
$$

- Convolution product for $S_{H}(\mathbf{q}, \omega)$:

$$
S(\mathbf{q}, \omega)=\left(S_{C M} * S_{r o t} * S_{i n t}\right)(\mathbf{q}, \omega)
$$

Translational diffusion

Here $\Omega \equiv\{x, y, z\}$ and $\mathbf{R}(\Omega)=(x, y, z)^{T}$.

- Diffusion equation

$$
\partial_{t} P=D\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) P
$$

D is the diffusion constant $\left([D]=m^{2} / s\right)$.

- Gaussian solution

$$
P\left(\mathbf{R}, t \mid \mathbf{R}^{\prime}, 0\right)=\frac{1}{\sqrt{4 \pi D t}^{3}} \exp \left(-\frac{\left|\mathbf{R}-\mathbf{R}^{\prime}\right|^{2}}{4 D t}\right)
$$

Translational diffusion (cont.)

- Intermediate scattering function

$$
I(\mathbf{q}, t)=\exp \left(-D \mathbf{q}^{2} t\right)
$$

- Dynamic structure factor

$$
S(\mathbf{q}, \omega)=\frac{1}{\pi} \frac{D \mathbf{q}^{2}}{\left(D \mathbf{q}^{2}\right)^{2}+\omega^{2}}
$$

Lorentzian quasielastic line.

Lorentz profile

Form of $S(\mathbf{q}, \omega)$ for translational diffusion. The widths of the the two Lorentzian profiles (on the ω-scale) are $\Gamma=1$ (narrow line) and $\Gamma=2$.

Translational diffusion (cont.)

- van Hove correlation function

$$
G(\mathbf{r}, t)=\frac{1}{\sqrt{4 \pi D t}^{3}} \exp \left(-\frac{\mathbf{r}^{2}}{4 D t}\right)
$$

Since $\lim _{t \rightarrow \infty} G(\mathbf{r}, t)=0$, the EISF vanishes!

- Mean square displacement

$$
\left\langle\mathbf{r}^{2}\right\rangle(t):=\int_{V} d^{3} r \mathbf{r}^{2} G(\mathbf{r}, t)=6 D t
$$

Stokes-Einstein relation:

$$
D=\frac{k_{B} T}{6 \pi \eta a}
$$

Here η is the viscosity of the solvent, and a is the hydrodynamic radius of the molecule.

- The diffusion coefficient for lysozyme is found to be $D \approx 7.2 \cdot 10^{-7} \mathrm{~cm}^{2} / \mathrm{s}$ by QENS ${ }^{1}$ and $D \approx 14 \cdot 10^{-7} \mathrm{~cm}^{2} / \mathrm{s}$ by DLS ${ }^{2}$
- The diffusion coefficient of water is $2.5 \cdot 10^{-5} \mathrm{~cm}^{2} / \mathrm{s}$.

[^1]
$D_{C M}$ from MD and DLS

$D_{C M}$ of lysozyme from dynamic light scattering (Nystrom \& Roots, 1984) and MD (Véronique Hamon, thesis Univ. Orléans 2004).

Rotational diffusion

We consider first rotational diffusion on a sphere. Here
$\Omega=(\alpha, \beta, \gamma)$ are the Euler angles describing the orientation of the molecule.

The intermediate scattering function is found to be ${ }^{3}$

$$
I(\mathbf{q}, t)=\sum_{I=0}^{\infty}(2 I+1) j_{l}^{2}(|\mathbf{q}| a) \exp \left(-I(I+1) D_{r} t\right)
$$

Here D_{r} is the rotational Diffusion constant $\left(\left[D_{r}\right]=1 / s\right)$, a is the radius of the molecule, and $j_{l}(z)$ are the spherical Bessel functions.

[^2]
Euler angles

Rotational diffusion (cont.)

Average over spheres of a spherical molecule, assuming a homogenous distribution of hydrogen atoms,

$$
I(\mathbf{q}, t)=\sum_{l=0}^{\infty}(2 l+1) A_{l}(q a) \exp \left(-l(l+1) D_{r} t\right)
$$

Here

$$
A_{l}(q a)=\frac{3}{a^{3}} \int_{0}^{a} d R R^{2} j_{l}^{2}(q R)
$$

Rotational diffusion (cont.)

- EISF:

$$
\operatorname{EISF}(\mathbf{q})=A_{0}(q a)=\frac{3[2 q a-\sin (2 q a)]}{4 q^{3} a^{3}}
$$

- Dynamic structure factor:

$$
S_{\text {rot }}(\mathbf{q}, \omega)=A_{0}(q a) \delta(\omega)+\frac{1}{\pi} \sum_{l=1}^{\infty}(2 l+1) A_{l}(q a) \frac{\Gamma_{l}}{\Gamma_{l}^{2}+\omega^{2}}
$$

where

$$
\Gamma_{I}=I(I+1) D_{r} .
$$

Rotational EISF

Stokes-Einstein relation:

For rotational motion (B. Cichocki et al., 1988)

$$
\gamma_{r}=\frac{k_{B} T}{4 \pi \eta a^{3}}
$$

- Rotational diffusion of whole proteins is slow : For $a=1.45 \mathrm{~nm}$ one obtains

$$
\tau_{r} \approx 10 \mathrm{~ns}
$$

- Comparison for translational diffusion :

$$
\tau_{C M} \approx 70 p s
$$

Damped vibrations (1-dim.)

Here $\Omega=(x, v)$, where $v=\dot{x}$.

- Harmonic force:

$$
F(x)=-M \omega_{0}^{2} x
$$

- Langevin equation:

$$
\frac{d^{2} x}{d t^{2}}+\gamma_{0} \frac{d x}{d t}+\omega_{0}^{2} x=\frac{1}{M} F_{s}
$$

Here F_{s} is white noise with zero mean. Underdamped motion for $\omega_{0}>\frac{\gamma_{0}}{2}$ overdamped motion for $\omega_{0} \leq \frac{\gamma_{0}}{2}$.

Damped vibrations (cont.)

- Intermediate scattering function: ${ }^{4}$

$$
I(q, t)=\exp \left(-\frac{q^{2}}{2} W(t)\right)
$$

- Mean square displacement:

$$
W(t)=\left\langle[x(t)-x(0)]^{2}\right\rangle
$$

${ }^{4}$ See lecture notes for the solution of the Fokker-Planck equation for $P\left(\Omega, t \mid \Omega^{\prime}, 0\right)$.

Damped vibrations (cont.)

- Analytical form for MSD:

$$
W(t)=\left\{\begin{array}{l}
\frac{2 k_{B} T}{M \omega_{0}^{2}}\left(1-\exp \left(-\frac{\gamma_{0} t}{2}\right)\left\{\cos \Omega t+\frac{\gamma_{0}}{2 \Omega} \sin \Omega t\right\}\right) \\
\frac{2 k_{B} T}{M \omega_{0}^{2}}\left(1-\exp \left(-\frac{\gamma_{0} t}{2}\right)\left\{\left.\cosh |\Omega| t+\frac{\gamma_{0}}{2 \mid \Omega}|\sinh | \Omega \right\rvert\, t\right\}\right)
\end{array}\right.
$$

for underdamped and overdamped motion, respectively.

- Plateau value:

$$
\lim _{t \rightarrow \infty} W(t)=\frac{2 k_{B} T}{M \omega_{0}^{2}}=2\left\langle x^{2}\right\rangle
$$

Mean square displacement

MSD for the Langevin oscillator in the underdamped regime (dashed line) and in the overdamped regime (solid line).

Intermediate scattering function

$I(q, t)$ for the Langevin oscillator in the underdamped regime (dashed line) and in the overdamped regime (solid line).

EISF

The EISF of a Langevin oscillator is given by

$$
\operatorname{EISF}(q)=\exp \left(-q^{2}\left\langle x^{2}\right\rangle\right)
$$

where

$$
\left\langle x^{2}\right\rangle=\frac{k_{B} T}{M \omega_{0}^{2}}
$$

is the position fluctuation of the oscillator.
Within the harmonic model, the EISF allows to measure force constants. ${ }^{5}$

Example \#1:

Position fluctuations of H -atoms in $\mathrm{D}_{2} \mathrm{O}$-hydrated Myoglobin as a function of temperature (W. Doster et al., Nature,1989).

Example \#2:

Position fluctuations of H -atoms in bacteriorhodopsin (BR) in purple membranes (PM). A) Dry PM (circles) and B) $D_{2} O$-hydrated PM (full squares) (M Ferrand et al., PNAS, 1993). Below 220K BR cannnot perform a complete photocycle.

Dynamic structure factor

Numerical calculation of $S^{\prime}(q, \omega)$ for the Langevin oscillator in the underdamped regime (dashed line) and in the overdamped regime (solid line).

Brownian motion

For strongly overdamped motion, $\gamma \gg \omega_{0}$, and observation times $t \gg 1 / \gamma_{0}$,

$$
I(q, t)=\exp \left[-q^{2} \frac{k_{B} T}{M \omega_{0}^{2}}\left(1-\exp \left(-\gamma_{0}^{-1} \omega_{0}^{2} t\right)\right)\right]
$$

Approximation for small q

$$
I^{\prime}(q, t) \propto \exp \left(-\gamma_{0}^{-1} \omega_{0}^{2} t\right), \quad q^{2}\left\langle x^{2}\right\rangle \ll 1
$$

$S^{\prime}(q, \omega)$ is a Lorentzian.

QES from lysozyme

Fitted quasielastic spectrum (Lorentzian) of lysozyme in aqueous solution at 300 K (Véronique Hamon, thesis Univ. Orléans 2004) - see lecture notes.

MD simulations

- Numerical Integration of Newton's equation of motion,

$$
m_{\alpha} \ddot{\mathbf{R}}_{\alpha}=-\frac{\partial U}{\partial \mathbf{R}_{\alpha}}
$$

- Compute time correlations functions

$$
\langle A(0) B(m)\rangle=\frac{1}{N_{t}-m} \sum_{k=0}^{N_{t}-m-1} A(k) B(k+m)
$$

- Analyse MD trajectories to extract details not accessible to experiments.

MD force field

$$
\begin{aligned}
U= & \sum_{\text {bonds } i j} k_{i j}\left(r_{i j}-r_{i j}^{(0)}\right)^{2} \\
& +\sum_{\text {angles } i j k} k_{i j k}\left(\phi_{i j k}-\phi_{i j k}^{(0)}\right)^{2} \\
& +\sum_{\text {dihedrals } i j k l} k_{i j k l} \cos \left(n_{i j k l} \theta_{i j k l}-\delta_{i j k l}\right) \\
& +\sum_{\text {all pairs } i j} 4 \epsilon_{i j}\left(\left[\frac{\sigma_{i j}}{r}\right]^{12}-\left[\frac{\sigma_{i j}}{r}\right]^{6}\right) \\
& +\sum_{\text {all pairs } i j} \frac{q_{i} q_{j}}{4 \pi \epsilon_{0} r_{i j}}
\end{aligned}
$$

Two groups of terms: bonded and non-bonded interactions.

Myoglobin

Left: Backbone of myoglobione. Right: 31 selected side-chains.

Motions seen by QENS

- Question:

What are the internal motions in proteins seen by QENS?
(Jump diffusion, small-step diffusion,...)

- Hypothesis:

QENS is produced by "liquid-like" rigid-body motions of the protein side-chains.

- Verification:

Use MD simulations and the possibility to "filter" the trajectories: Remove internal side-chain motions a posteriori by rigid-body fits.

QENS from myogobin:

Neutron QES from myoglobin from MD simulation (Kneller \& Smith, 1994) and experiment (Doster et al., Nature, 1989).

EISF for myogobin:

EISF of myoglobin from MD simulation (Kneller \& Smith, 1994) and experiment (Doster et al., Nature, 1989).

Gaussian approximation

- Definition (here one atom, 1-d):

$$
I(q, t) \approx \exp \left(-\frac{q^{2}}{2} W(t)\right)
$$

- MSD and VACF:

$$
W(t)=\left\langle[x(t)-x(0)]^{2}\right\rangle=2 \int_{0}^{t} d \tau(t-\tau) c_{v v}(\tau)
$$

The GA represents a considerable simplification - it is always valid for small q.

EISF and GA

- Plateau for the MSD:

$$
\lim _{t \rightarrow \infty} W(t)=2\left\langle x^{2}\right\rangle
$$

- EISF:

$$
\operatorname{EISF}(q)=\lim _{t \rightarrow \infty} I(q, t)=\exp \left(-q^{2}\left\langle x^{2}\right\rangle\right)
$$

Lysozyme

Left: The lysozyme molecule. Each atom is represented by a van der Waals sphere. Right: Protein backbone.

The GA for the H -atoms

$I(q, t)$ for the H -atoms in lysozyme by direct calculation and GA.

The GA for the C_{α}-atoms

$I(q, t)$ for the C_{α}-atoms in lysozyme by direct calculation and GA.

Decomposing the EISF

Decomposition of the EISF of lysozyme.

Motional heterogeneity

Non-linear behaviour of $\ln (E I S F)$ as a function of q^{2} can be due to

- Truly non-gaussian behavior (rotation of the side-chains)
- Motional heterogeneity of the atoms: Averaging Gaussians with different widths leads to a non-gaussian function.

Coarse-grained harmonic model

EISF: ${ }^{67}$

$$
\operatorname{EISF}(\mathbf{q})=\sum_{\alpha=1}^{N} w_{\alpha} \exp \left(-k_{B} T \sum_{k=1}^{3 N} \frac{1}{\tilde{\omega}_{j}^{2}}\left(\mathbf{q}^{T} \cdot \mathbf{d}_{j \alpha}\right)^{2}\right)
$$

Normal modes: ${ }^{8}$

$$
\mathbf{K} \cdot \mathbf{d}_{j}=\omega_{j}^{2} \mathbf{d}_{j}
$$

$$
\mathbf{K}=\left.\mathbf{M}^{-1 / 2} \cdot\left(\frac{\partial^{2} U}{\partial x_{i} \partial x_{j}}\right)\right|_{\min .} \cdot \mathbf{M}^{-1 / 2}
$$

Scaled frequencies: $\tilde{\omega}_{j}=\eta \omega_{j}(0<\eta<1)$.

[^3]
Lysozyme at the residue level

Coarse-grained harmonic model for lysozyme. Each residue is represented by an "effective C_{α}-atom".

Harmonic EISF and MD

EISF for the C_{α}-atoms in lysozyme compared to an (effective) harmonic model with motional heterogeneity.

Multiscale relaxation

- Memory function equation (Zwanzig, 1961)

$$
\partial_{t} I(\mathbf{q}, t)=-\int_{0}^{t} d \tau \xi(\mathbf{q}, t-\tau) I(\mathbf{q}, \tau)
$$

Here $\xi(\mathbf{q}, t)$ is the memory function.

- Short-time memory $(q=|\mathbf{q}|)$

$$
\xi(\mathbf{q}, t)=D q^{2} \delta(t) \quad \Longrightarrow \quad I(\mathbf{q}, t)=\exp \left(-D q^{2} t\right)
$$

Short-time memory corresponds to free Brownian motion, characterized by an exponential correlation function.

Relaxation in proteins

- Proteins have an enormous range of characteristic time scales (sub-picosecond to seconds).
- Correlation functions are multiexponential - with a broad distribution of relaxation time. There is no "characteristic time scale".
- Memory functions are long-ranged.

Non-Lorentzian spectrum

Incoherent $S(q, \omega)$ for the internal dynamics of lysozyme from simulation and fit of a Lorentzian.

Fractional Brownian Dynamics

- Spectrum

$$
S_{f B D}(\omega)=\frac{2 \tau \sin (\beta \pi / 2)}{|\omega \tau|\left(|\omega \tau|^{\beta}+2 \cos (\beta \pi / 2)+|\omega \tau|^{-\beta}\right)}
$$

for $0<\beta \leq 1$.

- Memory function

$$
\xi(t) \propto(\beta-1)\left(\frac{t}{\tau}\right)^{\beta-2}
$$

Long-ranged memory function with $\int_{0}^{\infty} d t \xi(t)=0$.

Model and simulation

Dynamic structure factor and memory function for lysozyme at $q=10 \mathrm{~nm}^{-1}$ from MD and fBD model.

Different scattering laws

Solid line $=\mathrm{fBD}$ model with $\beta=1 / 2$, dashed line $=$ Lorentzian, dot-dashed line $=$ and stretched exponential with $\beta=1 / 2$.

Simulation / Experiment

EISF and global diffusion

- CM diffusion and internal motions

$$
S(\mathbf{q}, \omega)=\left(S_{C M} * S_{i n t}\right)(\mathbf{q}, \omega) .
$$

- Internal motions

$$
S_{i n t}(\mathbf{q}, \omega)=\operatorname{EISF}(\mathbf{q}) \delta(\omega)+S_{i n t}^{\prime}(\mathbf{q}, \omega)
$$

- Resulting scattering law

$$
S(\mathbf{q}, \omega)=\operatorname{EISF}(\mathbf{q}) S_{C M}(\mathbf{q}, \omega)+\left(S_{C M} * S^{\prime}\right)(\mathbf{q}, \omega)
$$

Summary

- MD simulation is a reliable tool for complementary numerical experiments to neutron scattering.
- Simulation-based modeling of protein dynamics is a powerful method to develop simple, but realistic models:
- The Gaussian approximation is very reasonable. Rotational motions account only for a small fraction of the EISF.
- Due to long-time memory effects, quasielastic spectra cannot be modeled with one or a few Lorentzians.

[^0]:

[^1]: ${ }^{1}$ J. Perez, J.M. Zanotti, D. Durand, Biophys. J. 77, 454-469 (1999)
 ${ }^{2}$ Nystrom \& Roots, Makromol. Chem. 185, 1441-1447 (1984)

[^2]: ${ }^{3}$ See lecture notes for the solution of the rotational diffusion equation for $P\left(\Omega, t \mid \Omega^{\prime}, 0\right)$.

[^3]: ${ }^{6}$ Kneller, Chem. Phys. (2000); Hinsen et al., Chem. Phys. (2000).
 ${ }^{7}$ The w_{α} are effective scattering lengths with $\sum_{\alpha} w_{\alpha}=1$.
 ${ }^{8} \mathrm{M}$ is the mass matrix of "point-like" residues.

